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Preface

This book presents the material that I had the privilege of teaching to Mas-
ter's level students at California State University, Long Beach. The material
was very well received by the students, and helped them a great deal in �nd-
ing good jobs. Now this book will serve as a textbook for an introductory
upper-division undergraduate course in linear regression models.
Chapters 1 through 7 present 22 regression models: for responses with nor-
mal, gamma, binary, multinomial, Poisson, negative binomial, and beta dis-
tributions. The last three chapters (Chapters 8 � 10) deal with models for
repeated measures and clustered data. Such aspects of regression are cov-
ered in this book as model setting and de�nition, formula for �tted model,
goodness of model �t, interpretation of estimated regression parameters, and
use of the �tted model for prediction. One example with complete SAS and
R codes and relevant outputs is shown for each regression. Results in each
example are discussed for SAS outputs, while R scripts and outputs are given
without discussion.
The topic that was deliberately left out (not an easy decision) is model build-
ing via variable selection procedures, which would require signi�cantly larger
data sets and longer codes.
The settings for examples came from consulting projects, which I had been
involved in for the past three years as the Faculty Director of the Statistical
Consulting Group at my university. To simplify the discussion and focus on
the models and their applications, the data have been �smoothed out� in a
sense that the issues of missing values, outliers, multi-collinearity, and trans-
formations of predictor variables don't have to be addressed.
The website that accompanies this book <http://web.csulb.edu/∼okoroste/
regressions.html> contains complete SAS and R codes for all examples, and
data sets for all exercises in .csv format. A complete solutions manual is also
available to instructors upon request.

Respectfully,
The author.
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Chapter 1

Introduction: General and

Generalized Linear Regression

Models

1.1 De�nition of General Linear Regression Model

Suppose a random sample of size n is drawn from a population, and measure-
ments (xi1, xi2, . . . , xik, yi), i = 1, . . . , n, are obtained on the n individuals.
The random variables x1, . . . , xk (with the lower-case notation for simplic-
ity) are commonly termed predictor variables (or, simply, predictors), but,
depending on the �eld of application, they may also be called independent
variables, covariates, regressors, or explanatory variables. The y variable is
the response variable (or, simply, response). Other terms include dependent
variable, variate, or outcome variable. The general linear regression model 1

represents a relation between the response variable y and the predictor vari-
ables x1, . . . , xk of the form:

y = β0 + β1 x1 + · · ·+ βk xk + ε (1.1)

where β0, . . . , βk are constant regression coe�cients, and ε is a random error
that has a normal distribution with the mean zero and a constant variance
σ2. Also, the random errors are assumed independent for di�erent individuals
in the sample. The parameters of the model β0, . . . , βk, and the variance σ2

are unknown and have to be estimated from the data. The relation between
y and x1, . . . , xk is not necessarily linear in the x variables as polynomial or
interaction terms may be included, but it is necessarily linear in the beta

1The �rst rigorous treatment of linear regression was published in Pearson, Karl (1896).
�Mathematical Contributions to the Theory of Evolution. III. Regression, Heredity, and
Panmixia�. Philosophical Transactions of Royal Society of London, Series A, 187, 253 �
318.
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coe�cients.

Note that in the general linear regression model, the response variable y has
a normal distribution with the mean

E(y) = β0 + β1 x1 + · · ·+ βk xk, (1.2)

and variance σ2. Moreover, the values of y for di�erent individuals are as-
sumed independent.

1.2 De�nition of Generalized Linear Regression

Model

In a generalized linear regression model 2, the response variable y is assumed
to follow a probability distribution from the exponential family of distri-
butions, that is, the probability density function (in a continuous case) or
probability mass function (in a discrete case) of y has the form

f(y; θ, φ) = exp
{yθ − c(θ)

φ
+ h(y, φ)

}
(1.3)

where c(·) and h(·) are some functions, and θ and φ are constants. The
parameter θ is called location parameter, whereas φ is termed dispersion or
scale parameter. Further, in a generalized linear regression model, the mean
response E(y) is related to the linear combination of predictors x1, . . . , xk
through an invertible link function g(·), that is, for some regression coe�-
cients β0, . . . , βk,

g
(
E(y)

)
= β0 + β1 x1 + · · ·+ βk xk, (1.4)

or, alternatively,

E(y) = g−1
(
β0 + β1 x1 + · · ·+ βk xk

)
. (1.5)

Note that the general linear regression de�ned by (1.1) is a special case of
a generalized linear regression, since the normal density with mean µ and
variance σ2 belongs to the exponential family of distributions with θ = µ
and φ = σ2 (see Exercise 1.1). In addition, E(y) = β0 + β1 x1 + · · · + βk xk,
which tells us that the link function g(·) is the identity.

2Introduced in Nelder, J. and R. Wedderburn (1972). �Generalized linear models�.
Journal of the Royal Statistical Society, Series A, 135 (3): 370 � 384.
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1.3 Parameter Estimation and Signi�cance Test

for Coe�cients

In a generalized linear regression model, the regression coe�cients β0, . . . , βk,
and the other parameters of the distribution are estimated by the method
of the maximum likelihood estimation. The estimates are computed numer-
ically via an iterative process.

From the theory it is known that for a large number of observations, the
maximum likelihood estimators have an approximately normal distribution.
In particular, it means that a standard z-test is appropriate to use to test
for equality to zero of each regression coe�cient. For this test, the null hy-
pothesis is that the coe�cient is equal to zero, while the alternative is that
it is not equal to zero. A p -value below 0.05 would imply that the regres-
sion coe�cient is a signi�cant predictor of the response variable at the 5%
level of signi�cance. Alternatively, this test may be conducted based on t-
distribution or a chi-squared distribution.

1.4 Fitted Model

In accordance to (1.2), the �tted general linear regression model has the es-
timated (also called �tted) mean response

Ê(y) = β̂0 + β̂1 x1 + · · ·+ β̂k xk, (1.6)

and the estimated standard deviation σ̂. As explained above, β̂0, . . . , β̂k and
σ̂ are the maximum likelihood estimates.

In view of (1.4) and (1.5), in the case of a generalized linear regression with

the link function g(·), the �tted model has the estimated mean response Ê(y)
that satis�es

g
(
Ê(y)

)
= β̂0 + β̂1 x1 + · · ·+ β̂k xk, (1.7)

or, equivalently,

Ê(y) = g−1
(
β̂0 + β̂1 x1 + · · ·+ β̂k xk

)
(1.8)

where the estimates of the beta coe�cients as well as the estimates for all the
other parameters of the underlying distribution are obtained by the method
of maximum likelihood.
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1.5 Interpretation of Estimated Regression Co-

e�cients

In a �tted general linear regression model with the estimated mean response
de�ned by (1.6), the estimates of the regression coe�cients β̂1, . . . , β̂k yield
the following interpretation:

• If a predictor variable x1 is numeric, then the corresponding estimated re-
gression coe�cient β̂1 indicates by how much the estimated mean response
Ê(y) changes for a unit increase in x1, provided all the other predictors are

held �xed. To see that, we can write Ê(y|x1 + 1) − Ê(y|x1) = β̂0 + β̂1(x1 +

1) + β̂2 x2 + · · ·+ β̂k xk − (β̂0 + β̂1 x1 + β̂2 x2 + · · ·+ β̂k xk) = β̂1.

• If a predictor variable x1 is an indicator variable (also termed 0 -1 vari-

able or dummy variable), then β̂1 has the meaning of the di�erence between

the estimated mean response Ê(y) for x1 = 1 and that for x1 = 0, con-

trolling for the other predictors. Indeed, Ê(y|x1 = 1) − Ê(y|x1 = 0) =

β̂0 + β̂1 · 1 + β̂2 x2 + · · ·+ β̂k xk − (β̂0 + β̂1 · 0 + β̂2 x2 + · · ·+ β̂k xk) = β̂1.

If the link function in (1.7) is not the identity, the interpretation of regression

coe�cients is analogous to the above, but is done in terms of g
(
Ê(y)

)
, the

link function of the estimated mean response.

1.6 Model Goodness-of-Fit Check

According to the theory of generalized linear regression modeling, the rel-
ative goodness-of-�t of several models may be compared based on several
criteria, including the Akaike information criterion3, corrected Akaike infor-
mation criterion 4, and Schwarz Bayesian information criterion 5. These three
criteria are built upon the log-likelihood function lnL of the model since the
larger its value, the better the �t of the model. However, it is known that a
perfect �t may be achieved by introducing a large number of predictors into
the model. Therefore, these criteria penalize for �tting too many predictors.

3Akaike, H. (1974).�A new look at the statistical model identi�cation�. IEEE Transac-

tions on Automatic Control, 19 (6): 716 � 723.
4Sugiura, N. (1978). �Further analysis of the data by Akaike's information criterion

and the �nite corrections�. Communications in Statistics � Theory and Methods, A7: 13
� 26.

5Schwarz, G. (1978). �Estimating the dimension of a model�. Annals of Statistics, 6(2):
461 � 464.
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Let p denote the number of unknown parameters in the regression model that
have to be estimated from the data. For instance, in the case of the general
linear regression (1.1), there are a total of k + 2 parameters (β0 through βk,
and σ).

The Akaike Information Criterion (AIC) value is de�ned as

AIC = −2 lnL+ 2 p. (1.9)

The Corrected Akaike Information Criterion (AICC) value is given by the
formula

AICC = −2 lnL+ 2p
n

n− p− 1
. (1.10)

The AICC represents the AIC with a correction for a small sample size n.

The Schwarz Bayesian Information Criterion (BIC) (or, simply, Bayesian
Information Criterion) value is computed as

BIC = −2 lnL+ p ln(n). (1.11)

For each of the three criteria, a model with the smallest value has the best �t.
Note that these criteria don't provide goodness-of-�t measures in absolute
terms, only relative to other models. When several regression models for the
same response variable are developed that are based on di�erent distributions
and/or link functions, then the best-�tted model may be chosen according
to the above criteria.

In absolute terms, though, the goodness-of-�t of a given model is based on
the deviance test (also known as the asymptotic likelihood ratio test). 6 In
this test, the null hypothesis is that the null model has a better �t, and the
alternative hypothesis is that the �tted model is better. Unless stated other-
wise, the null model is the intercept-only model, which contains no predictors
x1, . . . , xk. The test statistic is called the deviance, and is de�ned as −2
multiplied by the di�erence in log-likelihoods of the null and �tted models,
that is,

deviance = −2
(

lnL(null model)− lnL(fitted model)
)
.

Under H0, the test statistic has a chi-squared distribution with k degrees of
freedom, and the p -value is calculated as the area under the density curve

6Introduced in Wilks, S. S. (1938).�The Large-sample distribution of the likelihood
ratio for testing composite hypotheses�. The Annals of Mathematical Statistics, 9(1): 60
� 62.
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above the test statistic. The number of degrees of freedom is calculated as the
di�erence between the number of parameters of the �tted and null models.

1.7 Predicted Response

For a general linear regression model, the formula for the �tted mean re-
sponse (1.6) may be used to predict the value y0 of the response variable for
a �xed set of predictors x0

1, . . . , x
0
k. The prediction is carried out by calculat-

ing

y0 = β̂0 + β̂1 x
0
1 + · · ·+ β̂k x

0
k. (1.12)

For a generalized linear regression model, in view of (1.8), the predicted re-
sponse is computed as

y0 = g−1
(
β̂0 + β̂1 x

0
1 + · · ·+ β̂k x

0
k

)
. (1.13)

1.8 SAS Implementation

Prior to �tting a general linear regression, it is wise to verify that the distri-
bution of the response variable is indeed normal. To this end, we can plot a
histogram for the measurements of y and overlay it with a normal probability
density curve, which mean and standard deviation are estimated from the
data. This can be done with the following syntax:

proc univariate data=data name;
var response name;
histogram /normal;

run;

The output contains the requested graph as well as test statistics and p -
values for several normality tests, which are goodness-of-�t tests for normal
distribution with the null hypothesis being that the distribution is normal
and the alternative being that it is non-normal. SAS outputs the results
of the three tests: Kolmogorov-Smirnov test, Cramer-von Mises test, and
Anderson-Darling test. For these tests, p -values larger than 0.05 indicate
normality of the distribution of the response variable at the 5% level of sig-
ni�cance.

Once normality is established, the general linear regression model could be
�tted to the data. We describe next how to do that.
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A generalized linear regression model may be �tted using the procedure
genmod with a speci�ed distribution of the response variable and the type of
link function. As a special case, the general linear regression model is �tted
with the normal distribution of y and the identity link function. Both of
these are, in fact, defaults in SAS. In what follows, however, we will always
specify the distribution and link function as a reminder to ourselves.

To include computation of predicted response for �xed values of predictor
variables, the incomplete data may be added as the last row of the data set
with a dot in place of the missing response, and the following syntax can be
run on this data set:

proc genmod data=data name;
class catpredictor1 name (ref="level name") catpredictor2 name

(ref="level name") . . . ;
model response name = <list of predictors>/dist=dist name link=link type;

output out=outdata name p=predicted response name;
run;

proc print data=outdata name;
run;

• All categorical predictors catpredictor1 name, catpredictor2 name, . . . must
be listed in the class statement, and the reference level should be speci�ed.
If the appropriate reference level is not speci�ed, then SAS chooses the last
level in alphabetical order as a reference level for this variable. For ease of
practical interpretation, it is recommended that the reference level for each
categorical predictor be chosen so that the estimated regression coe�cients
for all the other levels of this variable have the same sign (typically, positive,
sometimes negative, depending on what response variable is modeled).
• In the model statement, all predictors are listed, categorical or numeric,
separated by a space.
• SAS automatically outputs the log-likelihood function of the �tted model,
the values of the AIC, AICC, and BIC criteria, the estimated beta coe�cients
along with p -values for signi�cance tests, and the estimated scale parameter.
In SAS, the scale parameter is termed Scale. In the case of the normal
distribution, SAS outputs the estimate of the standard deviation σ.
• To conduct the goodness-of-�t test for a particular model, �rst �t the null
model by running the code:

proc genmod data=data name;
model response name = / dist=dist name link=link type;
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run;

The deviance and the corresponding p -value may then be computed on a
calculator, or in SAS. In SAS, for a given value of deviance and degrees of
freedom df, the expression for the p -value becomes 1-probchi(deviance,df).
• The predicted response for the speci�ed values of x variables can be found
in the last row of the printed data set outdata name.

1.9 R Implementation

To plot a histogram for the response variable and to check for normality of
its distribution, use the following syntax:

library(rcompanion)

plotNormalHistogram(data.name$response.name)
shapiro.test(data.name$response.name)

The bell-shaped curve will be plotted on the same graph with the histogram.
In addition, the results of the Shapiro-Wilk test for normality of distribution
will be displayed. As expected, for this test, the null hypothesis claims that
the distribution is normal, while the alternative asserts otherwise. A p -value
larger than 0.05 will indicate normality at the 5% level of signi�cance.

Further, the R function glm() can be used to �t a generalized linear regression
model. The basic script is:

summary(�tted.model.name<- glm(response.name ∼ x1.name + · · ·
+ xk.name, data=data.name, family=dist.name(link=link.type)))

• Actually, the above script will work only if all the listed predictors are
numeric. Categorical predictors with numeric levels should be included as
as.factor(predictor.name).

• For categorical predictors with character levels, the lowest alphabetically
level is chosen as the reference. If you wish to change the reference category,
apply the function relevel() �rst in the following manner:

releveled.predictor.name<- relevel(data.name$predictor.name,
ref="level.name").
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• The function summary() outputs regression coe�cients, corresponding p -
values for the tests of signi�cance and the value for the AIC. The value of
BIC can be requested by typing BIC(�tted.model.name). The value of AICC
is not computed automatically. It can be calculated as

AICC<- -2*logLik(�tted.model.name)+2*p* n/(n-p-1)

with the appropriate values of p and n. Here logLik(�tted.model.name)
refers to the log-likelihood function of the �tted model.

• The estimate of sigma may be printed by specifying sigma(�tted.model.name).
The estimates of sigma produced by R and SAS are related as

σ̂R = σ̂SAS

√
n

n− k − 1
.

• To carry out the deviance test, �rst �t the null model and then compute
the deviance and the p -value by adding the following lines to the script:

null.model.name<- glm(response.name ∼ 1, data=data.name,
family=dist.name(link=link.type))
print(deviance.name<- -2*(logLik(null.model.name)-logLik(�tted.model.name)))
print(p.value.name<- pchisq(deviance.name, df=value, lower.tail=FALSE))

• To use the �tted model for prediction, implement the function predict().
The values for categorical predictors are placed in double quotation marks,
whereas for numeric predictors no quotation marks are needed. The syntax is:

predict(�tted.model.name, data.frame(catpredictor1.name="value", . . . ,
numpredictork.name=value)).

1.10 Example

Example 1.1. A survey of 48 employees of a large company was conducted
to determine how satis�ed they are with their jobs. Such demographic vari-
ables as gender, age, and education (Bachelor, Master, or Doctoral degree)
were recorded. The total satisfaction score was calculated as a sum of scores
on 20 questions on a 5-point Likert scale. We use these data to develop a
regression model that relates the job satisfaction score to the other variables.
First, we plot the histogram for the scores and conduct the normality tests.
We submit the following code:
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data job_satisfaction;

input gender$ age educ$ score @@;

cards;

M 53 doctoral 93 M 48 bachelor 66 M 47 master 82

M 34 bachelor 95 F 35 master 78 M 25 master 62

F 31 bachelor 87 F 25 master 76 M 26 master 71

M 58 bachelor 80 F 41 master 75 F 55 bachelor 75

M 40 bachelor 93 M 22 bachelor 96 F 49 master 63

F 39 bachelor 77 F 56 doctoral 73 F 49 master 56

M 45 master 77 M 23 bachelor 77 M 46 bachelor 79

M 25 master 94 F 62 bachelor 76 M 32 master 90

F 42 master 74 M 53 bachelor 92 F 29 master 91

F 47 bachelor 87 F 47 bachelor 55 M 27 bachelor 92

F 30 master 69 M 36 master 62 M 64 bachelor 77

F 40 bachelor 65 F 34 master 81 M 48 bachelor 64

M 46 bachelor 97 M 43 bachelor 80 F 37 bachelor 60

F 33 master 81 F 55 doctoral 68 M 22 bachelor 100

M 24 bachelor 68 M 54 bachelor 76 M 42 doctoral 81

F 63 bachelor 51 F 32 master 75 M 51 doctoral 81

;

proc univariate;

var score;

histogram/normal;

run;

The histogram and p -values for normality tests are given below.
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Figure 1.1: Histogram for Score in SAS

Test p Value
Kolmogorov-Smirnov >0.150
Cramer-von Mises >0.250
Anderson-Darling >0.250

Judging by the histogram and the large p -values, the distribution of the
scores is normal. Now we are ready to �t a general linear model. We write

proc genmod;

class gender(ref="F") educ(ref="master");

model score=gender age educ/dist=normal link=identity;

run;

The following estimators of the regression coe�cients with the correspond-
ing p -values for the test of signi�cance are outputted. The value of the
log-likelihood function and the estimate σ̂ of the standard deviation (termed
Scale) are also given.

Log Likelihood -180.4720

Parameter Estimate Pr > ChiSq
Intercept 84.2229 <.0001
gender M 7.4876 0.0184
age -0.3330 0.0216
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educ bachelor 3.8754 0.2743
educ doctoral 7.5983 0.1938
Scale 10.3905

From this output, the �tted regression model is Ê(score) = 84.2229+7.4876 ·
male− 0.3330 · age+ 3.8754 · bachelor+ 7.5983 · doctoral, and the estimated
standard deviation of the error is σ̂ = 10.3905. Only gender and age, how-
ever, are statistically signi�cant predictors of job satisfaction score at the 5%
level of signi�cance, since the corresponding p -values are less than 0.05. In
this model, the estimated mean satisfaction score for men is 7.4876 points
larger than that for women. In addition, with a one-year increase in age, the
estimated average job satisfaction score is reduced by 0.333 points.

To address the question of whether this model �ts the data well, we note
from the output that the log-likelihood function for the �tted model is equal
to −180.4720. Next, we �t the intercept-only model by submitting these
statements:

proc genmod;

model score=/dist=normal link=identity;

run;

Log Likelihood -187.0063

Now we are ready to calculate the deviance statistic and carry out the
goodness-of-�t test. The code and output are as follows:

data deviance_test;

deviance=-2*(-187.0063-(-180.4720));

pvalue=1-probchi(deviance,4);

run;

proc print noobs;

run;

deviance pvalue
13.0686 0.010945

The p -value is less than 0.05, thus we conclude that at the 5% level of sig-
ni�cance, the �tted model has a better �t.
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Lastly, suppose we would like to use the �tted model to predict the job
satisfaction score for a new female employee of this company who is 40
years of age and has a bachelor's degree. To this end, we compute y0 =
84.2229 − 0.3330 · 40 + 3.8754 = 74.7783. SAS outputs a very similar pre-
diction when the following statements are submitted. Here we �rst create a
data set containing the values of the predictors, then turn it into the last row
in the data set on which the model is run.

data prediction;

input gender$ age educ$;

cards;

F 40 bachelor

;

data job_satisfaction;

set job_satisfaction prediction;

run;

proc genmod;

class gender educ;

model score=gender age educ/dist=normal link=identity;

output out=outdata p=pred_score;

run;

proc print data=outdata (firstobs=49) noobs;

var pred_score;

run;

pred_score
74.7802

The annotated R script that is needed to conduct all of the above analyses
is given below along with the informative output.

job.satisfaction.data<- read.csv(file="./Example1.1Data.csv",

header=TRUE, sep=",")

#plotting histogram with fitted normal density

library(rcompanion)

plotNormalHistogram(job.satisfaction.data$score)
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Figure 1.2: Histogram for Score in R

#testing normality of distribution

shapiro.test(job.satisfaction.data$score)

Shapiro-Wilk normality test
W = 0.97436, p-value = 0.3706

#specifying reference levels

educ.rel<- relevel(job.satisfaction.data$educ, ref="master")

#fitting general linear model

summary(fitted.model<- glm(score ~ gender + age + educ.rel,

data=job.satisfaction.data, family=gaussian(link=identity)))

Coe�cients:
Estimate Pr(>|t|)

(Intercept) 84.2229 <2e-16
gender.relM 7.4876 0.0309
age -0.3330 0.0352
educ.relbachelor 3.8754 0.3066
educ.reldoctoral 7.5983 0.2254
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#outputting estimated sigma

sigma(fitted.model)

10.97801

#checking model fit

null.model<- glm(score ~ 1, data=job.satisfaction.data,

family=gaussian(link=identity))

print(deviance<- -2*(logLik(null.model)-logLik(fitted.model)))

13.06871

print(p.value<- pchisq(deviance, df=4, lower.tail=FALSE))

0.01094489

#using fitted model for prediction

print(predict(fitted.model, data.frame(gender="F", age=40,

educ.rel="bachelor")))

74.78019

2

Exercises for Chapter 1

Exercise 1.1. Show that the general linear regression model (1.1) is a spe-
cial case of the generalized linear regression, that is, show that the normal
distribution of the response variable y belongs to the exponential family of
distributions (1.3) with θ = µ and φ = σ2.

Exercise 1.2. A small-scale clinical trial is conducted to compare the ef-
�cacy of two drugs (A and B) in the reduction of excess body weight. Drug
(A or B), age, and gender were recorded at the baseline. The percent excess
body weight loss (EWL) was recorded 3 months into the study. The data
are available on 32 subjects:
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Drug Age Gender EWL Drug Age Gender EWL

A 49 F 14.2 A 44 F 6.7
A 54 M 25.4 B 52 F 29.4
A 37 F 14.1 B 51 M 21.9
A 43 F 20.0 B 44 F 23.6
A 57 M 11.7 B 53 F 23.8
A 48 M 16.6 B 55 M 7.4
A 34 F 15.9 B 30 F 23.1
A 51 F 17.4 B 47 M 16.8
A 54 F 22.8 B 26 M 14.1
A 45 F 16.7 B 56 F 24.6
A 36 M 12.7 B 28 F 17.8
A 57 M 15.0 B 34 M 27.8
A 44 M 8.4 B 43 M 10.6
A 56 M 11.2 B 55 M 26.8
A 44 M 17.3 B 52 F 15.7
A 47 M 20.5 B 54 F 23.7

(a) Verify the normality of the response variable, then �t the linear regression
model to the data. State the �tted model. Give estimates for all parameters.
(b) Which regression coe�cients turn out to be signi�cant at the 5%? Dis-
cuss goodness-of-�t of the model.
(c) Is one of the drugs more e�cient for weight loss than the other? Inter-
pret all estimated signi�cant coe�cients.
(d) According to the model, what is the predicted percent decrease in excess
body weight for a 35-year-old male who is taking drug A?

Exercise 1.3. A person is thinking of buying a new car. He conducts an
online search and collects information on makes and models that he likes. He
conjectures that the following car characteristics may potentially in�uence
its price: body style (coupe, hatchback, or sedan), country of manufacture
(USA, Germany, or Japan), highway mileage (in mpg), number of doors (2
or 4), and whether the interior is leather or not. The data for these variables
and the price (in U.S. dollars) are given below for 27 cars.
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Bodystyle Country Hwy Doors Leather Price

coupe USA 26 4 no 17,445
coupe USA 40 4 no 23,500
coupe USA 35 2 no 19,600
coupe Germany 37 4 no 23,400
coupe Germany 25 4 no 24,100
coupe Germany 24 2 no 12,400
coupe Japan 26 2 no 13,300
coupe Japan 27 4 no 15,550
coupe Japan 20 4 yes 29,345

hatchback USA 30 2 no 12,540
hatchback USA 39 4 no 17,595
hatchback USA 38 2 no 17,300
hatchback Germany 38 4 no 17,800
hatchback Germany 32 4 no 22,500
hatchback Germany 34 4 no 20,300
hatchback Japan 38 4 yes 27,300
hatchback Japan 38 2 yes 23,300
hatchback Japan 38 2 yes 29,300
sedan USA 29 4 no 32,000
sedan USA 25 2 yes 34,200
sedan USA 33 4 yes 33,395
sedan Germany 40 4 no 22,850
sedan Germany 23 2 yes 36,000
sedan Germany 25 4 no 19,900
sedan Japan 40 4 yes 36,700
sedan Japan 35 4 yes 31,600
sedan Japan 37 4 no 24,600

(a) Reduce the car price by the factor of 1000. Check that the distribution of
the price is normal. Fit a general linear regression model to predict the price
of a car. Write down the �tted model, specifying all estimated parameters.
(b) How good is the model �t? Discuss the signi�cance of the regression
coe�cients.
(c) Interpret the estimates of those regression coe�cients that di�er signi�-
cantly from zero.
(d) What is the predicted price of a sedan made in the USA that has 4 doors,
leather seats, and runs 30 mpg on the highway?

Exercise 1.4. Fifty people were surveyed randomly regarding the number
of hours of quality sleep they normally get per night. Additional measure-
ments on surveyed participants were age (in years), gender(M/F), number of
minutes per day spent having personal quiet time, number of children under
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5 years of age in the household, daily stress level (on a scale of 1 to 10), cur-
rent job status(full/part/unemployed/student), number of physical activities
per week, and number of months since last vacation or a weekend get-away.
The data are as follows:

Age Gender
Quiet N of Stress Job N of Months since Sleep

time children level status activities vacation hours

62 F 60 1 5 unempl 1 15 7.7
28 F 15 1 6 unempl 5 11 5.3
50 M 15 0 5 unempl 1 19 6.4
36 M 60 1 6 full 1 21 7.7
56 F 50 0 3 part 4 5 7.6
26 F 80 0 7 student 9 8 8.3
48 M 180 0 5 full 0 6 6.4
55 M 40 0 8 full 8 23 7.0
44 M 180 1 3 part 6 20 9.6
49 F 5 0 7 unempl 5 15 5.5
29 M 60 2 5 student 5 7 7.7
56 M 10 1 4 unempl 4 17 5.7
46 F 40 1 7 part 3 3 7.4
41 F 5 2 6 full 9 10 6.2
22 M 15 0 8 full 4 3 6.3
36 F 45 2 5 part 8 14 7.5
54 F 120 1 8 part 7 10 8.5
42 F 60 3 1 full 9 11 6.3
58 F 5 1 7 full 1 17 5.3
33 M 100 2 1 full 9 5 8.3
50 F 2 2 6 full 3 12 5.1
59 M 30 2 5 full 2 6 6.9
32 M 30 1 8 full 5 9 6.9
50 M 60 2 8 part 8 13 8.0
56 F 10 0 3 unempl 7 7 6.1
42 F 240 0 1 part 8 21 8.8
58 F 10 2 7 full 9 4 6.2
57 F 15 1 6 full 2 16 6.3
30 F 30 0 2 full 8 9 8.3
54 M 20 2 8 full 6 7 6.5
57 M 45 2 4 full 7 18 7.5

(Continues on the next page)
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(Continued from the previous page)

Age Gender
Quiet N of Stress Job N of Months since Sleep

time children level status activities vacation hours

45 F 120 0 9 part 2 13 6.6
33 F 40 1 6 unempl 9 24 7.0
56 F 120 0 5 part 2 20 8.7
59 F 60 2 9 part 4 19 8.1
41 M 60 2 3 student 2 3 7.5
62 M 40 0 1 unempl 0 2 8.6
29 M 15 1 7 unempl 3 20 6.3
34 F 30 0 7 unempl 9 0 6.6
32 F 20 3 7 unempl 2 8 7.8
46 F 20 2 3 unempl 9 18 7.9
45 M 60 0 2 unempl 0 22 9.0
23 M 45 0 6 part 4 12 7.6
38 M 60 4 5 full 3 5 7.8
45 M 30 0 5 unempl 9 7 6.8
63 F 40 0 6 unempl 5 5 7.3
27 F 120 0 4 student 1 16 7.3
30 F 45 0 7 part 8 10 7.7
34 F 5 3 6 full 0 4 6.0
62 M 10 0 10 part 8 11 6.0

(a) Show the normality of the distribution of the number of hours of sleep
per night. Regress the number of hours of sleep on all the given factors.
Write explicitly what the �tted model is.
(b) How good is the model �t? What beta coe�cients are signi�cantly dif-
ferent from zero at the 5% level of signi�cance?
(c) Interpret the estimated signi�cant regression coe�cients.
(d) Find the predicted number of hours of night's sleep that a 30-year-old
full-time mom of three children under the age of �ve has, if she gets 10 min-
utes a day for herself, walks to the park with her kids every day of the week,
estimates her stress level as 7, and who hasn't gotten any vacation for one
year.

Exercise 1.5. A 25-year-old student is training for a reverse triathlon (5-
kilometer run, 13-mile bike, and 200-meter swim). He is interested in �nding
out what variables predict the total time spent on transitions. He obtains
data for 420 people who participated in this triathlon the previous year and
chooses randomly 42 of them to do a regression analysis. The data presented
below consist of age, gender, run time, time spent on transition 1 (T1), bike
time, time spent on transition 2 (T2), and swim time. All times are in

31



minutes.

age gender run t1 bike t2 swim age gender run t1 bike t2 swim

55 M 24.17 2.6 37.95 2.5 5.7 42 F 25.12 1.72 39.52 2.5 4.55
59 F 34.88 2.83 52.15 3.05 5.2 42 F 26.33 1.7 48.98 2.3 5.02
24 M 32.97 2.55 59.2 3.47 5.37 41 F 36.75 3.95 62.85 3.13 6.93
53 F 22.2 1.83 46.7 2.15 5.5 15 M 25.12 1.7 44.75 3.2 7.48
51 M 27.35 1.75 42.05 2.32 3.75 48 M 26.52 4.43 40.98 3.82 6.58
38 F 32.13 2.38 50.92 2.95 6 37 M 28.3 2.85 41.78 3.47 6.02
66 M 25.39 1.95 41.57 2.8 3.93 55 M 31.25 2.7 43.43 3.25 5.25
30 F 24.67 1.58 48.28 2.77 5.68 42 M 24.38 1.45 37.13 1.83 3.7
43 F 42.33 2.78 63.6 4.08 7.18 25 M 33.45 2.25 51.38 4.03 7.45
47 F 28.73 2.35 45.57 3.9 6.62 12 F 27.62 2.23 55.47 2.97 4.37
26 F 29.62 2.92 51.23 3.85 4.92 23 F 28.55 2.17 54.57 2.55 7.9
45 M 22.23 2.07 38.95 2.35 4.28 49 M 33.88 2.77 54.82 3.87 6.9
29 F 26.93 2.1 44.33 2.45 7.47 53 F 26.97 1.77 42.33 3.4 6.58
34 M 17.75 0.75 33.27 1.23 3.65 45 F 26.58 1.65 44.3 2.52 5.4
39 M 37.47 2.52 55.67 4.47 8.6 33 F 32.32 2.1 54.87 2.32 6.25
54 M 36.63 3.27 43.92 3.08 7.15 63 M 40.53 3.78 69.75 3.83 12.17
26 M 34.42 2.73 52.62 2.67 9.23 50 M 33.68 3.07 43.57 3.13 5.77
36 M 27.38 2.22 39.03 2.92 7.43 43 F 34.93 2.58 62.35 2.95 7.92
42 M 21.37 2.12 35.95 1.93 3.95 24 M 22.88 1.82 39.55 2.12 4.03
49 M 29.03 4.5 38.53 3.95 8.8 44 M 29.25 2.47 45.6 2.75 9.18
42 F 28.53 3.27 49.85 3.67 8.13 51 F 36.98 3.7 46.58 5.18 7.6

(a) Compute the total time spent on both transitions. Verify normality of
the distribution of this variable, and �t a general linear regression model.
Specify the �tted model.
(b) Discuss the model �t. Are all the predictors in that model signi�cant at
the 5% signi�cance level?
(c) Interpret only the estimated signi�cant regression coe�cients of this
model.
(d) What is the predicted total time at transitions for the student, if his
best result at the 5-kilometer run is 27:32, the 13-mile bike is 56:17, and the
200-meter swim is 8:46? Hint: Convert the times into minutes �rst.

Exercise 1.6. A cardiologist conducts a study to �nd out what factors are
good predictors of elevated heart rate (HR) in her patients. She measures
heart rate at rest in 30 patients on their next visit and obtains from the
medical charts additional information on their age, gender, ethnicity(Black,
Hispanic, or White), body mass index (BMI), and the number of currently
taken heart medications. She also obtains the air quality index (AQI) for
the area of residence of her patients (unhealthy/moderate/good). The data
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follow.

Age Gender Ethnicity BMI Meds AQI HR

48 F Black 29.9 0 good 76
56 F White 22.9 3 unhealthy 112
67 F White 23.4 1 good 94
82 M Black 29.7 0 good 92
64 F White 31.4 3 good 97
58 M White 18.9 2 moderate 79
72 F Black 25.2 0 moderate 114
70 F Black 25.9 1 moderate 115
54 M Hispanic 29.6 0 moderate 80
57 F Hispanic 20.2 2 good 81
50 F Black 23.9 1 unhealthy 97
59 F Hispanic 22.6 0 good 86
61 M Hispanic 32.8 1 good 84
69 M Hispanic 24.1 2 unhealthy 94
65 F Black 23.4 2 moderate 114
66 F Hispanic 27.8 3 good 82
74 M White 32.4 1 moderate 97
66 M Hispanic 22.9 2 good 86
53 M Hispanic 25.2 0 good 84
55 M Hispanic 24.6 0 moderate 94
73 F Hispanic 24.8 3 moderate 105
45 F Hispanic 19.0 2 unhealthy 83
71 F White 20.3 2 unhealthy 111
63 M Black 23.8 2 unhealthy 108
71 F White 21.5 2 moderate 100
62 M Hispanic 27.4 3 good 79
44 F Hispanic 17.2 0 unhealthy 86
49 M White 17.1 1 good 75
63 M Black 28.0 2 good 91
65 F Hispanic 22.2 1 moderate 106

(a) Check that the measurements for the heart rate are coming from a normal
distribution. Fit the regression model and specify all estimated parameters.
(b) Discuss the goodness-of-�t of the model. What variables are signi�cant
predictors of heart rate at the 5% level of signi�cance?
(c) Give an interpretation of the estimated statistically signi�cant regres-
sion coe�cients.
(d) Compute the predicted heart rate of a 50-year-old Hispanic male who
has a BMI of 20, is not taking any heart medications, and resides in an area
with moderate air quality.
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Chapter 2

Regression Models for Response

with Right-skewed Distribution

Suppose the response variable y is continuous, assumes only positive values,
and its histogram doesn't appear to be roughly symmetrical and bell-shaped
(that is, normal) but rather has a long right tail (skewed to the right). In this
chapter, we talk about two possible approaches to modeling such a response:
the Box-Cox transformation and gamma regression.

2.1 Box-Cox Power Transformation

2.1.1 Model De�nition

If the density of the response variable y is right-skewed, a transformation
may be applied to y to make its density look more normally shaped. This
transformation is referred to as Box-Cox power transformation 1 (or, simply,
Box-Cox transformation). The transformed response variable, denoted here
by ỹ, has the form:

ỹ =


yλ − 1

λ
, if λ 6= 0,

ln y, if λ = 0.
(2.1)

This is a well-de�ned transformation since values of y are assumed positive,
which can always be achieved by adding an appropriate constant to all values
of y. Note also that the way this transformation is de�ned makes it contin-

uous in λ. Indeed, by the l'Hôpital's rule, lim
λ→0

yλ − 1

λ
= lim

λ→0
yλ ln y = ln y.

1Introduced in Box, G. E. P. and Cox, D. R. (1964). �An analysis of transformations�.
Journal of the Royal Statistical Society, Series B, 26(2), 211 � 252.
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The optimal value of λ is found through the maximum likelihood estimation.
For a set of discrete values of λ, a linear model is �tted, where the trans-
formed response ỹ is regressed on predictor variables x1, . . . , xk. The value
of λ that corresponds to the maximum of the likelihood function is chosen as
the optimal value. However, the described optimization is carried out under
the assumption that ỹ is normally distributed, which doesn't hold exactly,
so, in practice, researchers �round o�� the values of λ to result in several
meaningful transformations. These recommended transformations are sum-
marized in the table below.

Range for Recommended Transformed Transformation
optimal λ value of λ ỹ name

[−2.5,−1.5) -2
1

2

(
1− 1

y2

)
inverse square

[−1.5,−0.75) -1 1− 1

y
inverse (or reciprocal)

[−0.75,−0.25) -0.5 2
(
1− 1
√
y

)
inverse square root

[−0.25, 0.25) 0 ln y natural logarithm
[0.25, 0.75) 0.5 2(

√
y − 1) square root

[0.75, 1.5) 1 y − 1 linear

[1.5, 2.5] 2
1

2
(y2 − 1) square

2.1.2 Fitted Model

Let λ denote the recommended value from the table above. The �tted mean
for the Box-Cox transformed response is

Ê(ỹ) = Ê
(yλ − 1

λ

)
= β̂0 + β̂1 x1 + · · ·+ β̂k xk. (2.2)

2.1.3 Interpretation of Estimated Regression Coe�cients

By (2.2), for a continuous predictor x1, the estimated regression coe�cient

β̂1 represents the change in the estimated mean of the transformed response
Ê(ỹ) when x1 is increased by one unit, given that the other predictors stay

�xed. If x1 is an indicator variable, then β̂1 is interpreted as the di�erence
between the estimated mean of the transformed response Ê(ỹ) for x1 = 1
and that for x1 = 0, when the other predictors are kept unchanged.
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2.1.4 Predicted Response

By (2.2), the predicted response y0 for some given values of predictors x0
1, . . . , x

0
k

is

y0 =
(
λ(β̂0 + β̂1 x

0
1 + · · ·+ β̂k x

0
k) + 1

)1/λ

.

2.1.5 SAS Implementation

The Box-Cox transformation may be performed via procedure transreg with
the following syntax:

proc transreg;

model BoxCox(response name) = identity(<list of predictors>);
run;

• BoxCox(·) speci�es the Box-Cox transformation.
• identity(·) speci�es the identity transformation, since we assume no
transformations are applied to the predictor variables. Within this func-
tion, predictors should be listed separated by spaces.
• Since the class statement is not allowed in this procedure, all categorical
predictors must be 0 -1 variables. Suppose we have a variable variable name
with levels � A�, �B�, and �C�, and we want to include it into the model with
the level �C� as the reference level. We proceed to create two indicator vari-
ables by running the two lines of code in the data statement:

levelA name=(variable name="A");
levelB name=(variable name="B");

The general rule is that if a categorical predictor has c levels, then one of
them must be chosen as a reference level, and c− 1 indicator variables must
be created and entered into the model.

• SAS produces a graph of the log-likelihood functions and displays the op-
timal value of λ on the same graph.

Further, the transformed response variable may be computed with the help of
the table above, and the general linear regression may be run on that variable.
Before running the model, however, it is advisable to plot a histogram for
the transformed variable and conduct formal testing for the normality of its
distribution.
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2.1.6 R Implementation

In R, the library MASS (stands for �Modern Applied Statistics with S�) needs
to be called to �nd the optimal λ for a Box-Cox transformation. First, the
Box-Cox transformation is applied, and a column of lambda values is cre-
ated along with a column of corresponding values of the pro�le log-likelihood
function (which is proportional to the full log-likelihood function up to an
additive constant). To match SAS output, we can request that the lambda
values range between -3 and 3 with a step of 1/4 and that no interpolation is
applied. Note that all categorical predictors in the function boxcox() should
be re-leveled �rst, using the function relevel(). The syntax for the Box-
Cox transformation is:

library(MASS)

BoxCox.�t.name <- boxcox(response.name ∼ x1.name + ...

+ xk.name, data=data.name, lambda=seq(-3,3,1/4), interp=FALSE)

To extract the value of lambda that corresponds to the largest value of the
pro�le log-likelihood function, �rst, one has to create a data frame with
lambda and pro�le log-likelihood function columns as follows.

BoxCox.data.name <- data.frame(BoxCox.�t.name$x, BoxCox.�t.name$y)

Next, the two columns should be sorted in descending order with respect to
the pro�le log-likelihood function values, so that the optimal lambda appears
in the top row. The script that does that is below.

ordered.data.name <- BoxCox.data.name[with(BoxCox.data.name,
order(-BoxCox.�t.name.y)),]

The �nal step is to display the value of the optimal lambda in the top row.

ordered.data.name[1,]

Once the value of lambda is identi�ed, the table above should be used to
determine the recommended value of λ. Then the transformation (2.1) should
be carried out, its normality checked, and the general linear regression model
�tted to the transformed response.
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2.1.7 Example

Example 2.1. A real estate specialist is interested in modeling house prices
in a certain U.S. region. He suspects that house prices depend on such char-
acteristics as the number of bedrooms, the number of bathrooms, the square
footage of the house, the type of heating (central/electrical/none), the pres-
ence of an air conditioner (A/C) (yes/no), and the lot size. He obtains the
data on 30 houses currently on the market.

The SAS code below conducts the appropriate analysis. To avoid working
with large numbers, we divide the price by 10,000, and divide the square
footage and the lot size by 1,000. Also, since the variables that describe
the type of heating and presence or absence of air conditioner are categori-
cal, we create appropriate indicator variables. The levels "none" for heating
and "no" for A/C are chosen as references. The data statement in SAS looks
like this:

data real_estate;

input price beds baths sqft heating$ AC$ lot;

price10K=price/10000;

sqftK=sqft/1000;

central=(heating="central");

electric=(heating="electric");

ACyes=(AC="yes");

lotK=lot/1000;

cards;

669000 3 2 1733 central no 5641

715000 4 3.5 1812 none yes 4995

634900 5 3 2217 none no 8019

640000 3 2 1336 none no 7283

966000 5 3 4000 central no 7424

889000 3 2 2005 central no 7130

745000 4 3.5 2276 none no 7936

685000 2 1.5 1018 central yes 6141

549500 2 1 920 central no 5545

868999 5 2.5 1670 electric yes 5750

624900 3 2 1519 electric no 8267

549900 2 1 956 none no 4978

589900 3 2 1601 central no 5005

829000 5 3 2652 central yes 5601

599900 4 2 1802 none yes 5262

875000 6 2.5 3414 electric yes 6534
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635000 3 2 1565 central no 5619

599999 2 1 832 none no 5601

734997 3 2.5 1780 central yes 5400

699999 3 2 1969 electric no 5488

759000 4 2 1530 central yes 6446

684900 3 2 1519 central no 8267

888000 5 2.75 2039 central yes 5976

599999 4 2 1513 electric no 5937

565000 2 2 1616 central no 5227

825000 3 2.5 1421 central yes 5871

659900 3 2 1547 electric yes 4791

746000 3 2 1130 central no 5301

1089000 5 2.5 3314 central yes 7129

1195499 5 3.5 3760 central yes 6000

;

Before �tting a linear model, we would want to plot a histogram of the re-
scaled price to assess its deviation from normality. We run the code below
to obtain the histogram with an overlaid normal density curve.

proc univariate;

var price10K;

histogram /normal;

run;

Figure 2.1: Histogram for Price10K in SAS
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Goodness-of-Fit Tests for Normal Distribution
Test p Value
Kolmogorov-Smirnov 0.105
Cramer-von Mises 0.024
Anderson-Darling 0.018

The histogram exhibits a long right tail, suggesting that the distribution is
right-skewed. Also, two out of the three tests refute the normality of the
response, since their p -values are below 0.05.

Our next step would be to transform the response variable by means of the
Box-Cox transformation. We run procedure transreg as follows:

proc transreg data=real_estate;

model BoxCox(price10K) = identity(beds baths sqftK central

electric ACyes lotK);

run;

Figure 2.2: Graph of Log-Likelihood Functions

As seen from the graph, the optimal value of λ that corresponds to the largest
value of the log-likelihood function is -1, which, according to Table 2.1, is a
convenient value of λ. Thus, an inverse transformation is recommended.

Further, we perform the recommended transformation and plot the histogram
of the transformed response. The code that accomplishes this is as follows:
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Figure 2.3: Histogram for Transformed Price10K in SAS

data real_estate;

set real_estate;

tr_price10K=1-(1/price10K);

run;

proc univariate;

var tr_price10K;

histogram /normal;

run;

As seen on the histogram and con�rmed by the large p -values (larger than
0.05) for the normality tests, the transformed response is indeed normally
distributed.

Goodness-of-Fit Tests for Normal Distribution
Test p Value
Kolmogorov-Smirnov >0.150
Cramer-von Mises >0.250
Anderson-Darling >0.250

Finally, we �t the general linear model to the transformed response, regress-
ing it on all the predictors. Here we use the original predictors and the class
statement rather than the calculated indicator variables central, electric,
and ACyes, which would give us an alternative solution.
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proc genmod;

class heating(ref="none") AC(ref="no");

model tr_price10K=beds baths sqftK heating AC lotK/dist=normal

link=identity;

run;

The relevant output is

Log Likelihood 157.9841

Analysis Of Maximum Likelihood Parameter Estimates
Parameter Estimate Pr > ChiSq
Intercept 0.9768 <.0001
beds 0.0002 0.7175
baths 0.0007 0.2512
sqftK 0.0012 0.0269
heating central 0.0017 0.0052
heating electric 0.0009 0.2425
heating none 0.0000 .
AC yes 0.0018 0.0034
AC no 0.0000 .
lotK 0.0005 0.0704
Scale 0.0012

Addressing the issue of goodness-of-�t of the �tted model, we can �nd in the
output that the log-likelihood for the �tted model is 157.9841. We obtain the
log-likelihood function for the intercept-only model and conduct the deviance
test. The code and appropriate output are:

proc genmod data=real_estate;

model tr_price10K=/dist=normal link=identity;

run;

Log Likelihood 136.2538

data deviance_test;

deviance=-2*(136.2538-157.9841);

pvalue=1-probchi(deviance,7);

run;

proc print noobs;

run;
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deviance pvalue
43.4606 0.000000272

The p -value is way below 0.05. This, the �tted model has a good �t.

In the �tted model, only the square footage of a house, the presence of a cen-
tral heater, and the presence of an air conditioner turn out to be signi�cant
predictors of the house price at the 5% level. If the square footage of the
house were one thousand square feet larger, the estimated average inverse-
transformed price (in $10,000) would be 0.0012 units larger. For houses
with a central heater, the estimated inverse-transformed price is, on average,
0.0017 units larger than that for a house with no heater. The estimated mean
inverse-transformed price for a house with an air conditioner is 0.0018 units
larger than that for a house with no air conditioner.

Next, we might want to use the model to predict the price of a house that
has four bedrooms, two bathrooms, an area of 1680 square feet, a central
heater, no A/C, and a lot size of 5000 square feet. The formula that should
be used for prediction is (show it!):

price0 = $10, 000 ·
[
1−(0.9768+0.0002 ·beds0 +0.0007 ·baths0 +0.0012 · sqft

0

1000

+0.0017 · central + 0.0009 · electric+ 0.0018 · ACyes+ 0.0005 · lot
0

1000
)
]−1

.

Plugging the appropriate values into the formula above, we get that the
predicted price is equal to

price0 = $10, 000 ·
[
1− (0.9768 + 0.0002 · 4 + 0.0007 · 2 + 0.0012 · 1680

1000

+0.0017 + 0.0005 · 5000

1000
)
]−1

= $676, 406.93.

The prediction can also be requested in SAS via the following statements:

data prediction;

input beds baths sqftK heating$ AC$ lotK;

cards;

4 2 1.68 central no 5

;

data real_estate;

set real_estate prediction;
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run;

proc genmod;

class heating AC;

model tr_price10K=beds baths sqftK heating AC lotK/dist=normal

link=identity;

output out=outdata p=predicted;

run;

data outdata;

set outdata;

pred_price=10000/(1-predicted);

run;

proc print data=outdata (firstobs=31) noobs;

var pred_price;

run;

The output is

pred_price
658569.23

Thus, the predicted price of the house in SAS is $658,569.23. Note that the
discrepancy between the predicted prices computed by hand and in SAS is
due to the round-o� error. For calculations, SAS uses more digits in the
estimates of the regression coe�cients than it displays.

The R script that does the same tasks as described in this example is given
below. Recall that in R, the Shapiro-Wilk test is used to verify normality.
Relevant outputs are also presented.

real.estate.data<- read.csv(file="./Example2.1Data.csv",

header=TRUE, sep=",")

#rescaling variables and specifying reference categories

price10K<- real.estate.data$price/10000

sqftK<- real.estate.data$sqft/1000

heating.rel<- relevel(real.estate.data$heating, ref="none")

AC.rel<- relevel(real.estate.data$AC, ref="no")

lotK<- real.estate.data$lot/1000
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#plotting histogram with fitted normal density

library(rcompanion)

plotNormalHistogram(price10K)

Figure 2.4: Histogram for Price10K in R

#testing for normality of distribution

shapiro.test(price10K)

Shapiro-Wilk normality test
W = 0.89581, p-value = 0.006642

#finding optimal lambda for Box-Cox tranformation

library(MASS)

BoxCox.fit<- boxcox(price10K ~ beds + baths + sqftK + heating.rel

+ AC.rel + lotK, data=real.estate.data, lambda = seq(-3,3,1/4),

interp=FALSE)

BoxCox.data<- data.frame(BoxCox.fit$x, BoxCox.fit$y)

ordered.data<- BoxCox.data[with(BoxCox.data, order(-BoxCox.fit.y)),]

ordered.data[1,]

BoxCox.�t.x BoxCox.�t.y
-1 21.13092

#applying Box-Cox tranformation with lambda=-1

tr.price10K<- 1-(1/price10K)

#plotting histogram for tranformed response

plotNormalHistogram(tr.price10K)
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Figure 2.5: Histogram for Transformed Price10K in R

#testint or normality of distribution

shapiro.test(tr.price10K)

Shapiro-Wilk normality test
W = 0.96903, p-value = 0.5131

#fitting general linear model to transformed response

summary(fitted.model<- glm(tr.price10K ~ beds + baths + sqftK + heating.rel

+ AC.rel + lotK, data=real.estate.data, family=gaussian(link=identity)))

Coe�cients:
Estimate Pr(>|t|)

(Intercept) 0.9767546 <2e-16
beds 0.0001599 0.7596
baths 0.0006527 0.3365
sqftK 0.0011973 0.0712
heating.relcentral 0.0017088 0.0257
heating.relelectric 0.0008685 0.3278
AC.relyes 0.0017836 0.0200
lotK 0.0004792 0.1355

#outputting estimated sigma

sigma(fitted.model)

0.001459009

#checking model fit

null.model<- glm(tr.price10K ~ 1, family=gaussian(link=identity))

print(deviance<- -2*(logLik(null.model)-logLik(fitted.model)))
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43.46061

print(p.value<- pchisq(deviance, df=7, lower.tail=FALSE))

2.717569e-07

#using fitted model for prediction

pred.tr.price10K<-predict(fitted.model, data.frame(beds=4, baths=2,

sqftK=1.68, heating.rel="central", AC.rel="no", lotK=5))

print(pred.price<- 10000/(1-pred.tr.price10K))

658569.2

Note that R outputs more digits in the estimates for beta coe�cients. If
we use these estimates when computing the predicted value, we would get a
more accurate result. Indeed,

price0 = $10, 000·
[
1−(0.9767546+0.0001599·4+0.0006527·2+0.0011973·1.68

+0.0017088 + 0.0004792 · 5)
]−1

= $658, 582.09.

2

2.2 Gamma Regression Model

2.2.1 Model De�nition

A gamma regression 2 may be �tted to a positive response y with a right-
skewed distribution. In this model, y has a gamma distribution with the
density

fY (y) =
yα−1

Γ(α) βα
e−y/β, α, β > 0, y > 0. (2.3)

Remark. Note that in some settings, the response variable might have a
shifted gamma distribution which support includes zero and even negative
values. The gamma regression is still applicable but all the response values
must be made strictly positive, for example, by subtracting the smallest value
and adding a one.

2Discussed for the �rst time in Nelder, J.A. and Wedderburn, R.W.M. (1972). �Gen-
eralized linear models�. Journal of the Royal Statistical Society, Series A, 135 (3): 370 �
384.
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The expected value of y is E(y) = αβ. The relation between the mean re-
sponse and the predictor variables is modeled via a log link function:

lnE(y) = β0 + β1 x1 + · · ·+ βk xk. (2.4)

Here the parameters β0, . . . , βk, and α are unknown and are estimated from
the data by the method of maximum likelihood.

It can be shown (see Exercise 2.5) that the gamma distribution belongs to
the exponential family of distributions since its density can be written in
the form (1.3) with the location parameter θ = −1/(αβ) and the dispersion
parameter φ = 1/α. Hence, the gamma regression is a generalized linear
regression model with the log link function.

2.2.2 Fitted Model

The �tted mean response has the form:

Ê(y) = α̂ β̂ = exp{β̂0 + β̂1 x1 + · · ·+ β̂k xk}, (2.5)

and the estimated dispersion parameter φ̂ = 1/α̂. Thus, in the �tted model,
the estimated parameters satisfy:

α̂ = 1/φ̂, and β̂ = φ̂ exp{β̂0 + β̂1 x1 + · · ·+ β̂k xk}.

2.2.3 Interpretation of Estimated Regression Coe�cients

According to (2.5), estimated regression coe�cients in a gamma regression
yield the following interpretation:

• If a predictor variable x1 is numeric, then the corresponding estimated beta
coe�cient β̂1 indicates by how much the natural logarithm of the estimated
mean response ln Ê(y) changes for a unit increase in x1, provided all the other

predictors stay unchanged. Or, equivalently, (exp{β̂1}−1) · 100% represents
the percent change in estimated mean response for a unit increase in x1. To
obtain that, we write(
Ê(y|x1 +1)− Ê(y|x1)

)
/Ê(y|x1) =

(
exp{β̂0 + β̂1(x1 +1)+ β̂2 x2 + · · ·+ β̂k xk}

− exp{β̂0 + β̂1 x1 + · · ·+ β̂k xk}
)
/ exp{β̂0 + β̂1 x1 + · · ·+ β̂k xk} = exp{β̂1} − 1.

• If a predictor variable x1 is an indicator variable, then exp{β̂1} · 100% has

the meaning of the percent ratio of estimated mean response Ê(y) for x1 = 1
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and that for x1 = 0, keeping the other predictors intact. Indeed,

Ê(y|x1 = 1)/Ê(y|x1 = 0) = exp{β̂0 + β̂1 · 1 + β̂2 x2 + · · ·+ β̂k xk}/

exp{β̂0 + β̂1 · 0 + β̂2 x2 + · · ·+ β̂k xk} = exp{β̂1}.

2.2.4 Predicted Response

From (2.5), the predicted response y0 for a concrete set of predictors x0
1, . . . , x

0
k

can be found as y0 = exp{β̂0 + β̂1 x
0
1 + · · ·+ β̂k x

0
k}.

2.2.5 SAS Implementation

A gamma distribution may be �tted using proc genmod with dist=gamma

and link=log. SAS outputs the estimate of Scale which is the reciprocal of
α̂. Thus, α̂ = 1/Scale.

2.2.6 R Implementation

The R function glm() will �t the gamma regression if family=Gamma(link=log)
is speci�ed. To obtain the predicted response, the option type="response"

must appear in the function predict(). The Dispersion parameter that
R outputs is the estimate of α.

2.2.7 Example

Example 2.2. Consider the data real estate in Example 2.1. We �t the
gamma model and use it for prediction by running these lines of code:

proc genmod;

class heating(ref="none") AC(ref="no");

model price10K = beds baths sqftK heating AC lotK

/dist=gamma link=log;

run;

The informative output is:

Log Likelihood -100.0395
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Analysis Of Maximum Likelihood Parameter Estimates
Estimate Pr > ChiSq

Intercept 3.6462 <.0001
beds 0.0091 0.7837
baths 0.0295 0.4887
sqftK 0.1165 0.0035
heating central 0.1206 0.0084
heating electric 0.0484 0.3879
heating none 0.0000 .
AC yes 0.1292 0.0052
AC no 0.0000 .
lotK 0.0303 0.1326
Scale 113.4926

Next, we check whether this model has a good �t. The code and relevant
output are:

proc genmod;

model price10K=/dist=gamma link=log;

run;

Log Likelihood -122.8174

data deviance_test;

deviance=-2*(-122.8174-(-100.0395));

pvalue=1-probchi(deviance,7);

run;

proc print noobs;

run;

deviance pvalue
45.5558 0.000000107

Since the p -value for the deviance test is very small, we conclude that the
model with all the predictors �ts the data well. The �tted model is

Ê(price10K) = exp{3.6462 + 0.0091 · beds+ 0.0295 · baths+ 0.1165 · sqftK

+0.1206 · central + 0.0484 · electric+ 0.1292 · ACyes+ 0.0303 · lotK},

and α̂ = 1/113.4926 = 0.0088. We see that the square footage of the house,
central heater, and presence of A/C are signi�cant predictors (the same as
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in the model in Example 2.1). If the square footage of a house were larger by
one thousand square feet, then the estimated average price would be larger
by (exp{0.1165} − 1) · 100% = 12.36%. For a house with a central heater,
the estimated mean of the price is exp{0.1206} · 100% = 112.82% of that
for a house with no heater. Houses with air conditioners have an estimated
average price exp{0.1292} · 100% = 113.79% of that for houses where an air
conditioner is not installed.

Further, to predict the price of a house with four bedrooms, two bathrooms,
an area of 1680 square feet, central heating, no A/C, and a lot size of 5000
square feet, we compute:

price 0 = $10, 000·exp{3.6462+0.0091·4+0.0295·2+0.1165·1.68+0.1206+0.0303·5}

= $673, 174.84.

To reveal the predicted value in SAS, we run these statements:

data prediction;

input beds baths sqftK heating$ AC$ lotK;

cards;

4 2 1.68 central no 5

;

data real_estate;

set real_estate prediction;

run;

proc genmod;

class heating AC;

model price10K = beds baths sqftK heating AC lotK/dist=gamma

link=log;

output out=outdata p=pprice;

run;

data outdata;

set outdata;

pred_price=10000*pprice;

run;

proc print data=outdata (firstobs=31) noobs;

var pred_price;

run;
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The output is:

pred_price
673237.87

The di�erence between the predicted values computed by hand and in SAS
is due to the fact that SAS uses more digits in the estimated beta coe�cients
than are displayed in the output.

Finally, the R script below outputs the estimates that are close to those pro-
duced by SAS.

#fitting gamma regression

summary(fitted.model<- glm(price10K ~ beds + baths + sqftK

+ heating.rel + AC.rel + lotK, data=real.estate.data,

family=Gamma(link=log)))

Coe�cients:
Estimate Pr(>|t|)

(Intercept) 3.646245 <2e-16
beds 0.009136 0.8183
baths 0.029540 0.5650
sqftK 0.116481 0.0241
heating.relcentral 0.120590 0.0371
heating.relelectric 0.048372 0.4717
AC.relyes 0.129186 0.0261
lotK 0.030274 0.2117

Dispersion parameter for Gamma family taken to be 0.01233554

#checking model fit

null.model<- glm(price10K ~ 1, family=Gamma(link=log))

print(deviance<- -2*(logLik(null.model)-logLik(fitted.model)))

45.55644

print(p.value<- pchisq(deviance, df=7, lower.tail=FALSE))

1.066286e-07

#using fitted model for prediction

print(10000*predict(fitted.model, data.frame(beds=4, baths=2,

sqftK=1.68, heating.rel="central", AC.rel="no", lotK=5), type="response"))

673237.9

2
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Exercises for Chapter 2

Exercise 2.1. An intervention-control study on childhood obesity was con-
ducted at a children's clinic. A cohort of 36 obese children, ages 6 through
16, were followed for 9 months. The intervention consisted of educational ses-
sions for parents and vigorous exercise activities for kids. The control group
participants were provided with resources regarding other active and healthy
lifestyle programs o�ered in their community. Their gender(M/F), age (in
years), group (intervention Tx or control Cx), and percentiles for pre-BMI
and post-BMI were recorded. The data are provided in the table below:

Gender Age Group PreBMI PostBMI Gender Age Group PreBMI PostBMI

F 6 Cx 85.7 83.8 M 6 Cx 92.6 88.1
F 6 Cx 93.8 92.9 M 7 Cx 95.8 94.7
F 7 Cx 93.5 92.5 M 7 Cx 90.4 89.1
F 8 Cx 90.1 89.8 M 7 Cx 91.2 88.6
F 9 Tx 92.3 90.7 M 8 Tx 94.4 87.8
F 9 Tx 90.3 88.3 M 8 Tx 93.2 87.3
F 12 Cx 87.6 85.9 M 10 Cx 93.9 91.5
F 12 Cx 87.2 84.1 M 10 Tx 96.2 91.1
F 12 Tx 96.9 94.9 M 10 Tx 89.4 87.9
F 12 Tx 85.8 81.2 M 11 Tx 86.2 77.1
F 13 Cx 96.7 94.1 M 11 Tx 95.4 84.8
F 13 Cx 93.5 92.9 M 12 Cx 97.7 95.8
F 13 Tx 92.3 87.5 M 13 Tx 85.3 80.0
F 13 Tx 85.3 83.7 M 13 Tx 86.2 82.4
F 14 Tx 95.5 78.7 M 14 Cx 85.5 83.6
F 15 Cx 91.3 89.9 M 14 Cx 97.8 93.8
F 15 Tx 95.8 87.1 M 16 Cx 95.0 93.6
F 16 Tx 90.7 87.2 M 16 Tx 93.1 86.8

(a) Is the decrease in BMI percentile (preBMI-postBMI) normally distributed?
Plot a histogram and test for the normality of the distribution.
(b) Find the optimal lambda for Box-Cox transformation. Transform the
change in BMI percentile (�nd the appropriate transformation in Table 2.1),
and show that the transformed variable is normally distributed. Plot the
histogram and do formal testing.
(c) Fit the general regression model to the Box-Cox transformed change in
BMI percentile. Does this model have a good �t?
(d) What predictors are signi�cant at the 5% level? Write the interpretation
of the estimated regression coe�cients for the signi�cant predictors only.
(e) Predict the change in BMI percentile for a 9-year-old girl in the control
group.
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Exercise 2.2. Investigators at a large medical center conducted a quality
improvement (QI) study which consisted of a six-month-long series of sem-
inars and practical instructional tools on how to improve quality assurance
for future projects at this center. Data were collected on participants' desig-
nation (nurse/doctor/sta�), years of work at the center, whether had prior
experience with QI projects, and the score on the knowledge and attitude
test taken at the end of the study. The score was constructed as the sum
of 20 questions on a 5-point Likert scale, thus potentially ranging between
20 and 100. The large value indicates better knowledge about QI and more
con�dence and desire to use it in upcoming projects. The data on 45 study
participants are summarized as follows:

Desgn Wrkyrs PriorQI Score Desgn Wrkyrs PriorQI Score

nurse 16 yes 63 nurse 8 yes 62
nurse 9 yes 93 nurse 22 yes 68
nurse 8 yes 74 nurse 4 no 93
nurse 1 no 69 nurse 6 no 77
nurse 5 no 67 nurse 2 no 59
nurse 3 no 66 nurse 20 no 64
nurse 24 no 86 nurse 2 no 70
nurse 4 no 74 nurse 3 no 63
nurse 1 no 88 nurse 16 no 65
nurse 24 no 84 nurse 18 no 73
nurse 3 no 97 nurse 15 no 76
doctor 2 yes 88 doctor 2 yes 85
doctor 5 yes 78 doctor 7 yes 91
doctor 26 yes 82 doctor 2 yes 69
doctor 3 no 57 doctor 20 no 66
doctor 3 no 88 doctor 13 no 55
doctor 15 no 78 doctor 8 no 62
doctor 4 no 65 doctor 14 no 61
doctor 25 no 78 sta� 9 yes 57
sta� 3 yes 62 sta� 11 yes 69
sta� 21 no 55 sta� 19 no 64
sta� 8 no 62 sta� 17 no 76
sta� 11 no 67

(a) Construct a histogram of the score. Does the distribution look normal?
Perform the test for normality. Draw a conclusion.
(b) Transform the score variable using a meaningful Box-Cox transformation
and assure that it is now normally distributed by plotting the histogram and
doing normality testing.
(c) Run the general linear regression model on the transformed score. What
predictors are signi�cant at the 0.05 level?
(d) Interpret the estimates of the signi�cant beta coe�cients. Does the
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model �t the data well? Conduct the chi-squared deviance test.
(e) Predict the score for a nurse who has worked at the center for seven years
and who had previously been a co-PI on a grant that involved a quality as-
surance component.

Exercise 2.3. A group of 24 beginner-level cycling enthusiasts met at the
park for bicycling race that consists of biking for 30 minutes along a 1.3-mile
loop. The winner is the one who bikes the longest distance. The information
recorded for each participant is gender (M/F), whether had a prior experi-
ence in races like this (yes/no), self-evaluation of abilities to �nish the race
and do well (on a 10-point scale, with 10 being the highest con�dence), and
the distance biked (in miles). The data are presented below:

Gender
Prior Self

Distance Gender
Prior Self

Distance
Expr Eval Expr Eval

F no 2 1.9 F no 7 4.4
F no 2 2.1 F yes 3 3.1
F yes 8 3.8 M yes 10 6.4
F yes 4 3.0 F yes 4 3.2
M no 5 4.2 F no 6 5.1
F yes 10 8.2 M no 10 5.9
F no 3 3.1 F no 6 5.0
F no 4 2.4 M yes 3 3.6
F no 5 4.6 F no 7 4.4
M yes 6 8.7 M yes 10 11.2
F no 6 4.7 F yes 3 3.0
M yes 7 4.2 M yes 7 4.3

(a) Are the distances normally distributed? Plot the histogram, and do the
testing. Explain.
(b) Create indicator variables male and prior yes (existing prior experi-
ence), and use them to �nd a meaningful Box-Cox transformation that would
transform the distance into a normally distributed variable. Prove its nor-
mality.
(c) Fit the general linear regression model to the transformed distance. Show
that the model has a good �t. Discuss the signi�cance of predictors.
(d) Give interpretation for the estimates of the statistically signi�cant re-
gression coe�cients. Use alpha=0.05.
(e) Write down the �nal model that can be used for the prediction of dis-
tance. Predict the distance that a woman with no prior experience would
bike if she is moderately con�dent about her abilities with the self-assessment
value of 5.
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Exercise 2.4. A health insurance �rm is analyzing the aggregate insurance
claims that were received in a particular �scal year. Investigators randomly
select 40 companies that are insured by this �rm and, for each company, pull
out the data on the number of policies, the number of years insured with
the �rm, the percent of open claims from last year, and the aggregate claim
amount from this year (in millions of dollars). The data are:

Num Yrs w/ Open Claim Num Yrs w/ Open Claim
policies �rm claims amount policies �rm claims amount

12318 4 16 19.9 29629 9 35 107.4
29777 4 15 200.5 32319 6 19 78.9
36980 10 12 308.5 27103 23 25 0.3
18055 4 20 24.4 23704 2 28 6.1
16505 20 27 48.7 20432 21 16 58.4
19049 11 14 51.0 30899 16 12 19.5
37112 20 26 163.2 19052 10 23 46.9
22338 16 35 7.1 37823 12 19 325.6
32349 16 25 1.5 24269 14 31 5.7
26626 1 21 81.0 23103 22 14 71.2
28547 11 17 91.0 25556 4 32 29.3
33268 5 21 147.5 15878 11 12 34.4
29045 13 29 63.9 36772 17 13 50.6
18622 7 10 8.5 19475 1 34 107.5
22784 12 11 27.0 29241 8 29 180.2
39612 23 26 296.6 36821 7 33 158.7
28423 7 12 129.0 47309 11 12 124.0
17020 6 30 26.0 15381 2 25 41.9
36930 7 24 98.6 39857 13 11 195.0
37152 15 26 103.5 34790 7 18 60.7

(a) Plot a histogram and carry out statistical tests for normality of the dis-
tribution of claim amounts. Transform the variable via a Box-Cox transfor-
mation to achieve normality. Show that the transformed variable is normally
distributed.
(b) Fit a linear regression model, relating the transformed claim amounts to
all the other variables. Which variables are signi�cant predictors at the 5%
level?
(c) Assess the model �t. Interpret estimated signi�cant regression coe�-
cients.
(d) Compute the predicted amount of aggregate claims for a company with
15,500 policyholders, that has been buying policies at this �rm for the past
three years, and that still has 15% of outstanding claims from the previous
year.
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Exercise 2.5. Show that a gamma distribution with density de�ned by
(2.3) belongs to the exponential family of distributions (1.3) with θ = −1/(αβ)
and φ = 1/α. Conclude that the gamma regression is a generalized linear
regression. Give its link function.

Exercise 2.6. For the data in Exercise 2.1,
(a) Fit the gamma regression model with the log link function. Write down
the �tted model. Check its goodness of �t.
(b) What variables are signi�cant predictors in this model? Use the 5% sig-
ni�cance level.
(c) Interpret estimated signi�cant regression coe�cients.
(d) Predict the change in BMI percentile for a 9-year-old girl in the control
group. Compare the prediction with the one obtained in Exercise 2.1.

Exercise 2.7. For the data in Exercise 2.2,
(a) Fit the gamma regression model with the log link function. Present the
�tted model and discuss its goodness-of-�t.
(b) Discuss the signi�cance of the beta coe�cients. Interpret the estimated
signi�cant coe�cients.
(c) Predict the score for a nurse who has worked at the center for seven years
and who had previously been a co-PI on a grant that involved a quality as-
surance component. Compare that predicted score to the one obtained in
Exercise 2.2.

Exercise 2.8. Consider the data set in Exercise 2.3. Fit the gamma model
and do the following:
(a) Write out explicitly the estimated model. Check the goodness of �t of
this model.
(b) Which predictors would in�uence the response if changed? Give an in-
terpretation of the estimated signi�cant regression coe�cients.
(c) Predict the distance that a woman with no prior experience would bike if
she is moderately con�dent about her abilities with the self-assessment value
of 5. Compare your answer to the one obtained in Exercise 2.3.

Exercise 2.9. Refer to Exercise 2.4. Answer the questions below for the
data in that exercise.
(a) Run the gamma regression and write the predicted model. What vari-
ables are signi�cant predictors of the claim amount? Compare to the model
in Exercise 2.4.
(b) Interpret estimates of the signi�cant beta coe�cients. How good is the
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model �t?
(c) Obtain the predicted amount of aggregate claims for a company with
15,500 policyholders, that has been buying policies at this �rm for the past
three years, and that still has 15% of outstanding claims from the previous
year. Compare the result with the one computed in Exercise 2.4.
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Chapter 3

Regression Models for Binary

Response

Suppose the response variable y is binary (or dichotomous) variable, that is, it
assumes only two possible values. For simplicity, we will denote these values
by 0 and 1. The relation between y and predictors cannot be modeled by a
linear regression because the error terms would not be normally distributed.
The way out of this predicament is to use the generalized linear regression
approach and to model not y itself but the probability that y is equal to one.
In this chapter, three models for the binary response are presented: logistic,
probit, and complementary log-log models.

3.1 Binary Logistic Regression Model

3.1.1 Model De�nition

Denote by π the probability that y is equal to one, that is, π = P(y = 1).
Note that π is also the mean of y. Indeed, E(y) = (1)(π) + (0)(1 − π) = π.
The binary (or dichotomous) logistic regression model 1 with the predictors
x1, . . . , xk has the form:

π = E(y) =
exp{β0 + β1 x1 + · · ·+ βk xk}

1 + exp{β0 + β1 x1 + · · ·+ βk xk}
.

The name �logistic� comes from the fact that the distribution with the cu-

mulative distribution function F (x) =
ex

1 + ex
,−∞ < x < ∞, is called the

1Introduced in Cox, D.R. (1958).�The regression analysis of binary sequences�. Journal
of the Royal Statistical Society, Series B, 20(2): 215 � 242.
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logistic distribution.

An alternative form of the binary logistic regression model is derived via the
use of the logit link function of π (�logit�=�logistic�+�unit�), de�ned as:

logitπ = ln
π

1− π
.

The ratio
π

1− π
=

P(y = 1)

P(y = 0)
represents the odds in favor of the event y = 1.

Using the logit transformation, the binary logistic regression model may be
written in the form (verify!)

logitπ = ln
π

1− π
= β0 + β1 x1 + · · ·+ βk xk . (3.1)

Thus, the binary logistic regression is a linear model for the natural loga-
rithm of the odds and hence is sometimes called log-odds model.

It can be proven (see Exercise 3.1) that the logistic regression is an example
of a generalized linear model with the logit link function.

3.1.2 Fitted Model

The only model parameters that are unknown and have to be estimated from
the observations are the beta regression coe�cients. The �tted binary logis-
tic model has the form

π̂ = Ê(y) =
exp{β̂0 + β̂1 x1 + · · ·+ β̂k xk}

1 + exp{β̂0 + β̂1 x1 + · · ·+ β̂k xk}
. (3.2)

Alternative ways to write the �tted model, which aid better in the interpre-
tation of the estimated beta coe�cients, are:

logit π̂ = ln
π̂

1− π̂
= β̂0 + β̂1 x1 + · · ·+ β̂k xk, (3.3)

and

π̂

1− π̂
= exp{β̂0 + β̂1 x1 + · · ·+ β̂k xk}. (3.4)
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3.1.3 Interpretation of Estimated Regression Coe�cients

In view of (3.3) and (3.4), in the logistic regression model, the estimates of
the regression coe�cients yield the following interpretation.

• If a predictor variable x1 is numeric, then the estimated regression param-
eter β̂1 can be interpreted as the estimated change in the log-odds for every
unit increase in x1, holding all the other predictors �xed. Indeed, if x1 is
replaced by x1 + 1, the di�erence in estimated log-odds is

ln
π̂|x1+1

1− π̂|x1+1

− ln
π̂|x1

1− π̂|x1
= β̂0 + β̂1 (x1 + 1) + β̂2 x2 + · · ·+ β̂k xk − (β̂0 + β̂1 x1 + · · ·+ β̂k xk) = β̂1.

Alternatively, the quantity (exp{β̂1} − 1) · 100% represents the estimated
percent change in odds when x1 is increased by one unit, and the other pre-
dictors are held �xed. This can be seen by writing:

π̂|x1+1

1−π̂|x1+1
− π̂|x1

1−π̂|x1
π̂|x1

1−π̂|x1

· 100% =
( π̂|x1+1

1−π̂|x1+1

π̂|x1
1−π̂|x1

− 1
)
· 100%

=
(exp{β̂0 + β̂1(x1 + 1) + β̂2 x2 + · · ·+ β̂k xk}

exp{β̂0 + β̂1 x1 + · · ·+ β̂k xk}
− 1
)
· 100% =

(
exp{β̂1}−1

)
·100% .

• If a predictor variable x1 is an indicator variable, then the estimated pa-
rameter β̂1 can be interpreted as the estimated di�erence in log-odds when
x1 = 1 and when x1 = 0, controlling for all the other predictors. To see that,
we write

ln
π̂|x1=1

1− π̂|x1=1

− ln
π̂|x1=0

1− π̂|x1=0

= β̂0 + β̂1 · 1 + β̂2 x2 + · · ·+ β̂k xk − (β̂0 + β̂1 · 0 + β̂2 x2 + · · ·+ β̂k xk) = β̂1.

Alternatively, the estimated ratio of odds for x1 = 1 and that for x1 = 0,
expressed as percentage, is

π̂|x1=1

1−π̂|x1=1

π̂|x1=0

1−π̂|x1=0

· 100% =
exp{β̂0 + β̂1 · 1 + β̂2 x2 + · · ·+ β̂k xk}
exp{β̂0 + β̂1 · 0 + β̂2 x2 + · · ·+ β̂k xk}

· 100%

= exp{β̂1} · 100%,

hence, the quantity exp{β̂1} · 100% represents the estimated percent ratio
in odds when x1 = 1 and when x1 = 0, while the other predictors are held
constant.
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3.1.4 Predicted Probability

Taking into consideration (3.2), for particular values of predictor variables
x0

1, . . . , x
0
k, the predicted probability π0 can be found as

π0 =
exp{β̂0 + β̂1 x

0
1 + · · ·+ β̂k x

0
k}

1 + exp{β̂0 + β̂1 x0
1 + · · ·+ β̂k x0

k}
.

3.1.5 SAS Implementation

The procedure genmod with dist=binomial and link=logit may be applied
to �t the binary logistic regression. SAS orders the levels of the response vari-
able in alphabetical order (if categorical) or in ascending order (if numeric)
and models the probability of the lower level. To reverse that, one has to in-
clude descending after proc genmod statement. Or in the model statement,
after response name include (event="level name").

3.1.6 R Implementation

The function glm() with speci�cations family=binomial(link=logit) will
�t a binary logistic regression model.

3.1.7 Example

Example 3.1. A professor of organization and management is interested
in studying the factors that in�uence the approach that company managers
promote among their employees, competition or collaboration. The data on
50 companies are collected. The variables are the type of company ownership
(sole ownership, partnership, or stock company), the number of employees,
and the promoted approach (competition or collaboration). The SAS code
given below models the probability of collaboration via logistic regression.
In the output, we also included the values of AIC, AICC, and BIC criteria
which will be utilized later, in Example 3.3, to compare �ts of logistic, probit,
and complementary log-log models.

data companies;

input ownership$ nemployees approach$ @@;

cards;

partner 88 comp sole 60 coll stock 24 comp

partner 108 coll stock 88 coll stock 119 comp

partner 25 comp partner 53 comp stock 82 comp
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stock 69 coll stock 24 comp partner 94 coll

stock 86 coll stock 46 coll partner 106 coll

stock 92 coll stock 22 coll stock 94 coll

sole 20 coll stock 30 comp partner 92 coll

sole 90 coll stock 114 coll sole 66 coll

sole 26 coll stock 59 comp sole 54 coll

sole 69 comp partner 75 comp partner 62 coll

stock 26 comp sole 112 coll sole 87 comp

stock 104 comp partner 25 comp stock 63 comp

stock 21 comp sole 93 comp stock 91 coll

sole 33 comp sole 97 coll sole 93 coll

stock 41 comp partner 73 comp partner 32 comp

partner 56 comp partner 98 comp partner 97 comp

stock 117 coll stock 75 comp

;

proc genmod;

class ownership(ref="partner");

model approach(event="coll") = ownership nemployees /

dist=binomial link=logit;

run;

The relevant output is as follows:

Log Likelihood -29.9675
AIC 67.9350
AICC 68.8239
BIC 75.5831

Analysis Of Maximum Likelihood Parameter Estimates
Parameter Estimate Pr > ChiSq
Intercept -2.5147 0.0148
ownership sole 1.7388 0.0455
ownership stock 0.6726 0.3629
nemployees 0.0241 0.0267

To check how good the �t of this model is, we run the statements below.

proc genmod;

model approach = /dist=binomial link=logit;

run;
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Log Likelihood -34.6173

data deviance_test;

deviance=-2*(-34.6173-(-29.9675));

pvalue=1-probchi(deviance,3);

run;

proc print noobs;

run;

deviance pvalue
9.2996 0.025562

Since the p -value is not more than 0.05, we conclude that the �tted model
has a better �t than the intercept-only model. The �tted model for π =
P(collaboration) is

logit π̂ = −2.5146 + 1.7388 · sole+ 0.6726 · stock + 0.0241 · nemployees,

with sole ownership and number of employees being signi�cant predictors
at the 5% level of signi�cance. In this model, the estimated odds in fa-
vor of the collaborative approach in companies with a single owner are
exp{1.7388} · 100% = 569.1% of those in companies with multiple partners.
For every additional employee, the estimated odds of collaborative strategy
increase by

(
exp{0.0241} − 1

)
· 100% = 2.4%.

Finally, suppose the professor would like to estimate the probability of the
collaborative approach in a solely owned company with 40 employees. To
predict this probability we compute

P0(collaboration) =
exp{−2.5146 + 1.7388 + 0.0241 · 40}

1 + exp{−2.5146 + 1.7388 + 0.0241 · 40}
= 0.5469.

To get the same predicted probability in SAS, we run the following code:

data prediction;

input ownership$ nemployees;

cards;

sole 40

;

data companies;

set companies prediction;

run;
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proc genmod;

class ownership;

model approach = ownership nemployees / dist=binomial link=logit;

output out=outdata p=pred_probcoll;

run;

proc print data=outdata (firstobs=51) noobs;

var pred_probcoll;

run;

pred_probcoll
0.54688

The R output presented below matches the output of the SAS code.

companies.data<- read.csv(file="./Example3.1Data.csv",

header=TRUE, sep=",")

#specifying reference categories

ownership.rel<- relevel(companies.data$ownership, ref="partner")

approach.rel<- relevel(companies.data$approach, ref="comp")

#fitting logistic model

summary(fitted.model<- glm(approach.rel ~ ownership.rel + nemployees,

data=companies.data, family=binomial(link=logit)))

Coe�cients:
Estimate Pr(>|z|)

(Intercept) -2.51469 0.0148
ownership.relsole 1.73882 0.0455
ownership.relstock 0.67256 0.3629
nemployees 0.02410 0.0267

AIC: 67.935

#extracting AICC and BIC for fitted model

p<- 4

n<- 50

print(AICC<- -2*logLik(fitted.model)+2*p*n/(n-p-1))

68.82389
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BIC(fitted.model)

75.58309

#checking model fit

null.model<- glm(approach.rel ~ 1, family=binomial(link=logit))

print(deviance<- -2*(logLik(null.model)-logLik(fitted.model)))

9.2997

print(p.value<- pchisq(deviance, df=3, lower.tail=FALSE))

0.02556052

#using fitted model for prediction

print(predict(fitted.model, data.frame(ownership.rel="sole",

nemployees=40), type="response"))

0.5468756

2

3.2 Probit Model

3.2.1 Model De�nition

Consider a binary response variable y and predictors x1, . . . , xk. Let π =
P(y = 1) = E(y). The probit regression model 2 (�probit�=�probability�+�unit�)
is given by:

π = E(y) = Φ
(
β0 + β1 x1 + · · ·+ βk xk

)
where Φ(·) is the cumulative distribution function of a N (0, 1) distribution.

Alternatively, the above relation may be written as

Φ−1(π) = Φ−1(E(y)) = β0 + β1 x1 + · · ·+ βk xk.

The function Φ−1(·) is called the probit link function.

It may be shown (see Exercise 3.1) that the probit regression model belongs
to the class of generalized linear models.

2First appears in Bliss, C. I. (1935). �The calculation of the dosage-mortality curve�.
Annals of Applied Biology, 22(1): 134 � 167.
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3.2.2 Fitted Model

The �tted probit model looks like this:

Φ−1(π̂) = β̂0 + β̂1 x1 + · · ·+ β̂k xk, (3.5)

or, equivalently,

π̂ = Φ
(
β̂0 + β̂1 x1 + · · ·+ β̂k xk

)
. (3.6)

3.2.3 Interpretation of Estimated Regression Coe�cients

Taking into account (3.5), estimated regression coe�cients in the probit
model are interpreted in terms of z-score (or probit index), which is a per-
centile of the standard normal distribution.

• For a numeric predictor variable x1, the estimated coe�cient β̂1 gives the
change in the z-score of the estimated mean response for a unit increase in
x1, keeping all the other predictors unchanged. Indeed, we have

Φ−1
(
π̂|x1+1

)
− Φ−1

(
π̂|x1

)
= β̂0 + β̂1(x1 + 1) + β̂2 x2 + · · ·+ β̂k xk

−
(
β̂0 + β̂1 x1 + · · · + β̂k xk

)
= β̂1.

• For a 0 -1 predictor x1, the estimated coe�cient β̂1 is interpreted as a dif-
ference in the z-scores of the estimated mean response for the levels x1 = 1
and x1 = 0, controlling for the other predictors, since

Φ−1
(
π̂|x1=1

)
− Φ−1

(
π̂|x1=0

)
= β̂0 + β̂1 · 1 + β̂2 x2 + · · ·+ β̂k xk

−
(
β̂0 + β̂1 · 0 + β̂2 x2 + · · ·+ β̂k xk

)
= β̂1.

3.2.4 Predicted Probability

Suppose we are given certain values of the predictors x0
1, . . . , x

0
k. Then, in

accordance with (3.6), we predict the probability π0 by

π0 = Φ
(
β̂0 + β̂1 x

0
1 + · · ·+ β̂k x

0
k

)
.

3.2.5 SAS Implementation

To �t a probit model, use the procedure genmod with the option dist=binomial
link=probit.
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3.2.6 R Implementation

The function glm() with family=binomial(link=probit) may be used to
�t a probit model in R.

3.2.7 Example

Example 3.2. We �t the probit model to the data in Example 3.1. The
code and relevant output are given below.

proc genmod;

class ownership(ref="partner");

model approach(event="coll") = ownership nemployees /

dist=binomial link=probit;

run;

Log Likelihood -29.9519
AIC 67.9038
AICC 68.7926
BIC 75.5518

Analysis Of Maximum Likelihood Parameter Estimates
Parameter Estimate Pr > ChiSq
Intercept -1.5544 0.0099
ownership sole 1.0584 0.0404
ownership stock 0.4227 0.3449
nemployees 0.0148 0.0214

proc genmod;

class ownership;

model approach = / dist=binomial link=probit;

run;

Log Likelihood -34.6173

data deviance_test;

deviance=-2*(-34.6173 -(-29.9519));

pvalue=1-probchi(deviance,3);

run;

proc print noobs;

run;
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deviance pvalue
9.3308 0.025201

The p -value for the deviance test is less than 0.05, indicating a good �t of the
model with all predictors. At the 5% signi�cance level, sole ownership and
the number of employees are signi�cant predictors, as in the logistic model.
The �tted probit model is

Φ−1
(
π̂
)

= −1.5544 + 1.0584 · sole+ 0.4227 · stock + 0.0148 · nemployees.
The z-score of the estimated probability of the collaborative approach in
companies with a single owner is larger by 1.0584 than that in companies
with multiple partners. For every additional employee, the z-score of the
estimated probability of the collaborative strategy increases by 0.0148.

To estimate the probability of the collaborative approach in a solely owned
company with 40 employees, we calculate

π0 = Φ(−1.5544 + 1.0584 + 0.0148 · 40) = 0.5382.

SAS gives a similar prediction. The code follows.

data prediction;

input ownership$ nemployees;

cards;

sole 40

;

data companies;

set companies prediction;

run;

proc genmod;

class ownership;

model approach = ownership nemployees / dist=binomial link=probit;

output out=outdata p=pred_probcoll;

run;

proc print data=outdata (firstobs=51) noobs;

var pred_probcoll;

run;

pred_probcoll
0.53774
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The R script which output matches the output in SAS is as follows:

companies.data<-read.csv(file="./Example3.1Data.csv",

header=TRUE, sep=",")

# specifying reference categories

ownership.rel<- relevel(companies.data$ownership, ref="partner")

approach.rel<- relevel(companies.data$approach, ref = "comp")

# fitting probit model

summary(fitted.model <- glm(approach.rel ~ ownership.rel + nemployees,

data=companies.data, family=binomial(link=probit)))

Coe�cients:
Estimate Pr(>|z|)

(Intercept) -1.554466 0.0099
ownership.relsole 1.058424 0.0404
ownership.relstock 0.422743 0.3449
nemployees 0.014770 0.0214

AIC: 67.904

#extracting AICC and BIC for fitted model

p<- 4

n<- 50

print(AICC<- -2*logLik(fitted.model)+2*p*n/(n-p-1))

68.79264

BIC(fitted.model)

75.55185

#checking model fit

null.model<- glm(approach.rel ~ 1, family=binomial(link=probit))

print(deviance<- -2*(logLik(null.model)-logLik(fitted.model)))

9.330941

print(p.value<- pchisq(deviance, df=3, lower.tail=FALSE))

0.02519957

#using fitted model for prediction

print(predict(fitted.model, data.frame(ownership.rel="sole",

nemployees=40), type="response"))

0.5377392

2
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3.3 Complementary Log-Log Model

3.3.1 Model De�nition

Consider a binary response variable y and predictors x1, . . . , xk. Let π =
P(y = 1). The complementary log-log model 3 has the form

π = 1− exp
{
− exp

{
β0 + β1 x1 + · · ·+ βk xk

}}
,

or, equivalently,

ln
(
− ln(1− π)

)
= β0 + β1 x1 + · · ·+ βk xk.

Here the function ln
(
− ln(1 − π)

)
is referred to as complementary log-log

link function, since the log-log function is applied to the complement of π.
On a side note, the function F (x) = exp{− exp{−x}}, −∞ < x < ∞, that
is used in this model, is the cumulative distribution function of the Gumbel
or extreme value distribution.

Similar to the binary logistic and probit models, the complementary log-log
regression represents the class of generalized linear models (see Exercise 3.1).

3.3.2 Fitted Model

To ease interpretation of the estimated regression coe�cients (see below), it
is convenient to write the �tted model in the form

1− π̂ = exp
{
− exp

{
β̂0 + β̂1 x1 + · · ·+ β̂k xk

}}
. (3.7)

3.3.3 Interpretation of Estimated Regression Coe�cients

By (3.7), in the complementary log-log model, the estimated regression co-
e�cients are interpreted as follows.

• For a numeric random predictor x1, the estimate of the coe�cient β̂1 gives
the estimated rate ratio for a unit increase in x1. To see that, we write

1− π̂|x1+1 = exp
{
− exp

{
β̂0 + β̂1 (x1 + 1) + β̂2 x2 + · · ·+ β̂k xk

}}
3 First application of this model appeared in Draper, C. C., Voller, A., and R. G. Car-

penter, (1972). �The Epidemiologic interpretation of serologic data in malaria�. American
Journal of Tropical Medicine and Hygiene, 21 (5 Suppl): 696 � 703.
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= exp
{
− exp

{
β̂0 + β̂1 x1 + · · ·+ β̂k xk

}
exp{β̂1}

}
=
(

1− π̂|x1
)exp{β̂1}

,

that is, the probability 1 − π̂|x1+1 equals the probability 1 − π̂|x1 raised to

the power exp{β̂1}.

• If x1 is an indicator variable, then the estimated regression coe�cient β̂1 is
interpreted as the estimated rate ratio for x1 = 1 and x1 = 0. Indeed, we have

1− π̂|x1=1 = exp
{
− exp

{
β̂0 + β̂1 · 1 + β̂2 x2 + · · ·+ β̂k xk

}}
= exp

{
−exp

{
β̂0+β̂1 ·0+β̂2 x2+· · ·+β̂k xk

}
exp{β̂1}

}
=
(

1−π̂|x1=0

)exp{β̂1}
,

that is, the probability 1− π̂|x1=1 equals to the probability 1− π̂|x1=0 raised

to the power exp{β̂1}.

3.3.4 Predicted Probability

Using the expression (3.7), for a �xed set of predictors x0
1, . . . , x

0
k, the pre-

dicted probability π0 is calculated as

π0 = 1− exp
{
− exp

{
β̂0 + β̂1 x

0
1 + · · ·+ β̂k x

0
k

}}
.

3.3.5 SAS Implementation

To �t a complementary log-log model, use the procedure genmod with the
option dist=binomial link=cloglog in the model statement.

3.3.6 R Implementation

The function glm() with family=binomial(link=cloglog) will �t a com-
plementary log-log model.

3.3.7 Example

Example 3.3. We �t the complementary log-log model to the data in Ex-
ample 3.1. The SAS code and important output are as follows:
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proc genmod;

class ownership(ref="partner");

model approach(event="coll") = ownership nemployees /

dist=binomial link=cloglog;

run;

Log Likelihood -30.3467
AIC 68.6934
AICC 69.5823
BIC 76.3415

Parameter Estimate Pr > ChiSq
Intercept -2.0826 0.0058
ownership sole 1.0631 0.0656
ownership stock 0.4455 0.4249
nemployees 0.0161 0.0362

proc genmod;

class ownership;

model approach = / dist=binomial link=cloglog;

run;

Log Likelihood -34.6173

data deviance_test;

deviance=-2*(-34.6173-(-30.3467));

pvalue=1-probchi(deviance,3);

run;

proc print noobs;

run;

deviance pvalue
8.5412 0.036056

From the output, the estimated complement log-log model is 1 − π̂ = 1 −
P̂(collaboration) = P̂(competition) = exp

{
− exp

{
− 2.08025 + 1.0631 ·

sole+ 0.4455 · stock + 0.0161 · nemployees
}}
. The p -value for the deviance

test is less than 0.05, leading us to the conclusion that this model has a good
�t. It is more convenient to interpret the estimated regression coe�cients in
terms of the probability of competition rather than collaboration. Unlike in
the two previous models, sole ownership is signi�cant here only at the 10%
level, but not 5%. The number of employees is still a signi�cant predictor
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at the 5% level, since their p -values are smaller than 0.05. The estimated
probability of competition for single-owner companies equals the estimated
probability of competition for companies owned by partners raised to the
power exp{1.0631} = 2.8953. Also, if the number of employees of a company
is increased by one, the new estimated probability of competition is the old
one raised to the power exp{0.0161} = 1.0162.

The model estimates the probability of the collaborative approach in a solely
owned company with 40 employees as

P0(collaboration) = 1−exp
{
−exp

{
−2.08025+1.0631+0.0161·40

}}
= 0.4977.

The following statements produce the output in SAS.

data prediction;

input ownership$ nemployees;

cards;

sole 40

;

data companies;

set companies prediction;

run;

proc genmod;

class ownership;

model approach=ownership nemployees/dist=binomial link=cloglog;

output out=outdata p=pred_probcoll;

run;

proc print data=outdata (firstobs=51) noobs;

var pred_probcoll;

run;

pred_probcoll
0.49708

The corresponding R script is given below. Its output matches the one by
SAS.

companies.data<- read.csv(file="./Example3.1Data.csv",

header=TRUE, sep=",")
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#specifying reference categories

ownership.rel<- relevel(companies.data$ownership, ref="partner")

approach.rel<- relevel(companies.data$approach, ref = "comp")

#fitting complementary log-log model

summary(fitted.model <- glm(approach.rel ~ ownership.rel + nemployees,

data=companies.data, family=binomial(link=cloglog)))

Coe�cients:
Estimate Pr(>|z|)

(Intercept) -2.082608 0.00628
ownership.relsole 1.063128 0.06688
ownership.relstock 0.445539 0.41893
nemployees 0.016113 0.03474

AIC: 68.693

#extracting AICC and BIC for fitted model

p<- 4

n<- 50

print(AICC<- -2*logLik(fitted.model)+2*p*n/(n-p-1))

69.58228

BIC(fitted.model)

76.34148

#checking model fit

null.model<- glm(approach.rel ~ 1, family=binomial(link=cloglog))

print(deviance<- -2*(logLik(null.model)-logLik(fitted.model)))

8.54131

print(p.value<- pchisq(deviance, df=3, lower.tail=FALSE))

0.03605396

#using fitted model for prediction

print(predict(fitted.model, data.frame(ownership.rel="sole",

nemployees=40), type="response"))

0.4970774
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Finally, to compare the �tted logistic, probit, and complementary log-log
models in terms of goodness-of-�t, we compare the values for the AIC, AICC,
and BIC criteria. These were displayed in examples above. For convenience,
we repeat the quantities here:

logistic probit cloglog
AIC 67.9350 67.9038 68.6934
AICC 68.8239 68.7926 69.5823
BIC 75.5831 75.5518 76.3415

The probit model has the smallest values in all three criteria. We conclude
that the probit model should be accorded a preference over the other two
models. 2

Exercises for Chapter 3

Exercise 3.1. Let y be a Bernoulli random variable with the probability of
a success π. Show that the probability mass function belongs to the exponen-
tial family of distributions, that is, show that it can be written in the form

(1.3) with the location parameter θ = ln
π

1− π
and the dispersion parameter

φ = 1. Conclude that the logistic, probit, and complement log-log models
are special cases of generalized linear regression. Specify the respective link
functions.

Exercise 3.2. Dermatologists in a hospital study patients with acute pso-
riasis, a skin disease. They would like to know whether medication A is more
e�ective in relieving the symptoms of psoriasis than medication B. The data
are retrospectively collected on 30 patients. The variables are gender (M/F),
age (in years), medication(A/B), and response (1=relief, 0=no relief). The
data are as follows.
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Gender Age Medication Response Gender Age Medication Response

M 37 A 1 M 16 A 1
F 24 A 1 F 33 A 1
F 15 A 1 F 28 A 0
M 31 B 1 M 51 B 1
F 39 B 1 F 35 B 0
M 31 B 1 M 16 B 0
M 20 A 1 F 25 A 0
M 32 A 1 M 18 A 1
M 30 A 1 F 19 A 1
F 24 B 0 M 39 B 1
M 17 B 0 M 38 B 1
F 33 B 1 M 37 B 1
M 24 A 1 F 24 B 0
M 32 A 1 F 39 B 0
F 27 A 1 F 33 B 0

(a) Fit a binary logistic model. Write down the �tted model. Discuss the
signi�cance of predictor variable, and the goodness of �t of the model. Use
α = 0.05.
(b) Give an interpretation of the estimated signi�cant regression coe�cients.
(c) Find the predicted probability of relief from psoriasis for a 50-year-old
woman who is administered the medication A treatment.
(d) Repeat parts (a)-(c) but �t a probit model. Compare the results.
(e) Repeat parts (a)-(c), �tting a complementary log-log model. Compare
the results with the previous two models. Which of the three models has a
better �t?

Exercise 3.3. A study is conducted to reveal what factors underlie a �nan-
cial success of a novel. A random sample of 44 published novels is drawn. It
is recorded whether each novel is successful �nancially (yes/no), whether the
book cover is catchy (yes/no), the number of publisher's promotional meth-
ods (none/one/many), author's popularity (�rst novel/several novels/many
novels), and the number of years the publisher was in business before the
novel was published. The observations are
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Success Cover Methods Novels Years Success Cover Methods Novels Years

yes yes one many 18 no no one several 9
no no one �rst 7 yes no many several 13
no yes none several 10 yes yes none �rst 6
yes yes many many 6 no no none many 2
no yes none several 1 yes yes one several 7
no no one several 1 yes yes many many 17
no no one �rst 11 yes yes many �rst 18
yes no one several 19 yes yes one several 17
yes yes none �rst 5 no yes none several 9
no no none many 2 no no one several 11
no no one several 10 yes yes many �rst 17
no no many many 9 no no many many 1
yes no many several 6 no no many many 6
yes yes many many 8 no yes none several 1
no no one several 12 yes yes many �rst 6
no no none many 2 yes yes one many 4
yes no none several 17 no yes none many 7
yes yes many �rst 10 no no one �rst 12
yes no none several 7 no no one several 7
no no one �rst 12 yes yes one several 9
no yes none several 7 no no one several 8
no yes none many 4 no no one several 2

(a) Fit a binary logistic model to the data. What predictors turn out to be
signi�cant at the 5% level? How good is the �t of the model?
(b) Give an interpretation of the estimated signi�cant beta coe�cients.
(c) Suppose a newly established publishing house prints a novel by some
previously unknown author and doesn't advertise the publication. Find the
estimated probability that this novel is successful �nancially if it has an ex-
tremely catchy cover.
(d) Redo parts (a) through (c), �tting a probit model.
(e) Redo parts (a) through (c) with the complementary log-log model. How
good is the model �t compared to the logistic and probit models?

Exercise 3.4. A bank needs to estimate the default rate of customers'
home equity loans. A random sample of 35 customers is drawn. The se-
lected variables are the loan-to-value (LTV) ratio de�ned as the ratio of a
loan to the value of an asset purchased (in percent), age (in years), income
(high/low), and response (yes=default, no=payo�). The data are
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LTV Age Income Default LTV Age Income Default

70 41 low no 40 44 low no
70 25 high yes 80 36 high no
65 48 low no 90 47 high no
65 48 high no 80 29 high no
60 32 high yes 70 24 low yes
50 48 high no 30 42 high no
55 53 low no 50 33 low no
85 38 high yes 80 36 low no
80 43 low yes 75 54 low no
50 33 low no 75 29 high yes
60 42 low no 70 38 low no
90 23 low yes 60 35 low no
80 31 high no 95 30 low yes
70 37 high no 80 34 low yes
40 39 high no 75 43 low yes
80 40 low no 75 47 high no
70 52 high no 85 47 low yes
80 29 low yes

(a) Run the binary logistic model, regressing on all the predictors. Identify
variables that are signi�cant predictors of loan default at the 5% level of
signi�cance. Analyze the model �t.
(b) Interpret the estimated signi�cant beta coe�cients. What is your sug-
gestion for the bank to decrease the default rate of home equity loans?
(c) Give a point estimate for the probability of loan default if the LTV ratio
is 50%, and the borrower is a 50-year-old man with high income.
(d) Repeat the previous parts, �tting a probit model. How di�erent are the
results?
(e) Redo parts (a)-(c) with a complementary log-log model. Discuss the dif-
ferences between the three models, if any. Which model �ts the data the best?

Exercise 3.5. Three basic dermatoglyphic patterns occur in the popu-
lation: loops, whorls, and arches. A cardiologist is interested in �nding
whether a signi�cant di�erence exists in the count of the �ngerprint patterns
in cardiac patients and in the control patients. He obtained clear �ngerprint
pattern readings for 24 male cardiac patients and those for 24 healthy males.
The variables are the group (1=cardiac, 0=control), the number of arches
(A), and the number of whorls (W). Note that the number of loops (L) can
be recovered by subtraction from 10, therefore, it is not included as a pre-
dictor. The data are presented below.
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Group A W Group A W Group A W Group A W

1 8 2 1 2 7 0 0 9 0 3 2
1 1 2 1 2 8 0 2 1 0 1 2
1 2 1 1 6 0 0 0 8 0 2 5
1 4 0 1 3 5 0 1 3 0 4 0
1 2 7 1 1 0 0 3 1 0 8 1
1 6 3 1 7 1 0 1 4 0 2 7
1 2 8 1 4 3 0 0 8 0 0 10
1 1 9 1 2 4 0 1 6 0 0 5
1 3 0 1 5 3 0 0 9 0 0 6
1 0 2 1 7 1 0 2 2 0 2 1
1 3 2 1 8 1 0 4 4 0 0 7
1 2 7 1 0 6 0 0 6 0 0 6

(a) Model the probability of being a cardiac patient via the binary logistic
regression. Write the �tted model explicitly. Discuss the goodness-of-�t of
the model and the signi�cance of regression coe�cients. Assume α = 0.01
for all tests.
(b) Interpret the estimated signi�cant regression coe�cients. For which �n-
gerprint pattern the �tted probability is the largest? For which, the lowest?
(c) Suppose the model is used to predict the probability of being a cardiac
patient in a male with the dermatoglyphics reading L-L-W-W-A-W-A-L-L-
W. What is this predicted probability?
(d) In parts (a)-(c), �t a probit model. Compare results.
(e) Fit the complementary log-log model instead of the logistic model in (a)
through (c). Do the models di�er? Which of the three models should be
preferred?
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Chapter 4

Regression Models for Categorical

Response

A natural extension of the binary (dichotomous) regression model introduced
in Chapter 3 is when the categorical response variable assumes more than
two values, e.g., 0, 1, or 2. This model is called a multinomial (or polytomous)
regression model.

Two types of multinomial regression models are distinguished, depending on
whether the response variable is measured on an ordinal or nominal scale. A
categorical variable is measured on an ordinal scale (called an ordinal vari-
able) if the categories have a natural ordering. For example, health status
has ordered categories �poor,� �fair,� �good,� or �excellent�.

On the other hand, if the categories don't have a natural ordering, the vari-
able is called the nominal variable, and is measured on nominal scale. In this
case, the categories may be simply treated as names. For instance, race is a
nominal variable with unordered categories �African American,� �Hispanic,�
�Caucasian,� �Asian,� and �Other�.

In this chapter, we study three models for an ordinal response variable: cumu-
lative logit, cumulative probit, and cumulative complementary log-log mod-
els; and one model for a nominal response, a generalized logit model.
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4.1 Cumulative Logit Model

4.1.1 Model De�nition

Let y denote an ordinal response variable with categories 1, . . . , c. The prob-
ability P(y ≤ j) is the probability of y falling in one of the categories 1, . . . , j.
This is called a cumulative probability. For example, if c = 3, the cumulative
probabilities are

P(y ≤ 1) = P(y = 1), P(y ≤ 2) = P(y = 1) + P(y = 2),

and

P(y ≤ 3) = P(y = 1) + P(y = 2) + P(y = 3) = 1.

The ratio
P(y ≤ j)

P(y > j)
=

P(y ≤ j)

1− P(y ≤ j)
represents the odds of response y being

in the category j or below. The logits of the cumulative probabilities (called
cumulative logits) are the functions

logitP(y ≤ j) = ln
P(y ≤ j)

P(y > j)
= ln

P(y ≤ j)

1− P(y ≤ j)
, j = 1, . . . , c− 1.

For example, with c = 3,

logitP(y ≤ 1) = ln
P(y ≤ 1)

P(y > 1)
= ln

P(y = 1)

P(y = 2) + P(y = 3)
,

logitP(y ≤ 2) = ln
P(y ≤ 2)

P(y > 2)
= ln

P(y = 1) + P(y = 2)

P(y = 3)
,

and since P(y ≤ 3) = 1, logitP(y ≤ 3) is not de�ned.

The cumulative logit model 1 for an ordinal response y and predictors x1, . . . , xk
has the form

logitP(y ≤ j) = αj + β1 x1 + · · ·+ βk xk, j = 1, . . . , c− 1. (4.1)

Note that this model requires a separate intercept parameter αj for each
cumulative probability. Thus, there are a total of c + k − 1 unknown pa-
rameters in this model (c − 1 intercepts and k beta coe�cients). Because
the beta coe�cients don't depend on j, this model is sometimes termed the
proportional odds model.

1Introduced in McCullagh, P. (1980). �Regression models for ordinal data�. Journal of
the Royal Statistical Society, Series B, 42 (2): 109 � 142.
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To show that the cumulative logit model belongs to the class of generalized
linear models, we notice that P(y ≤ j) is the mean of the indicator random
variable of the event {y ≤ j}, which has a Bernoulli distribution. As shown
in Exercise 3.1, Bernoulli distribution belongs to the exponential family. In
addition, by (4.1), the link function in this model is logit.

4.1.2 Fitted Model

In view of (4.1), the �tted cumulative logit model is of the form:

logit P̂(y ≤ j) = ln
P̂(y ≤ j)

1− P̂(y ≤ j)
= α̂j + β̂1 x1 + · · ·+ β̂k xk, j = 1, . . . , c−1,

or, equivalently,

P̂(y ≤ j) =
exp

{
α̂j + β̂1 x1 + · · ·+ β̂k xk

}
1 + exp

{
α̂j + β̂1 x1 + · · ·+ β̂k xk

} , j = 1, . . . , c− 1. (4.2)

4.1.3 Interpretation of Estimated Regression Coe�cients

The estimates of the regression coe�cients are interpreted as follows:

• If a predictor variable x1 is numeric, then (exp{β̂1} − 1) · 100% represents
the estimated percent change in odds of the event {y ≤ j} as opposed to the
event {y > j}, for any j = 1, . . . , c−1, when x1 is increased by one unit, and
the other predictors are held �xed. This can be seen by writing

P̂(y ≤ j|x1 + 1)/P̂(y > j|x1 + 1)− P̂(y ≤ j|x1)/P̂(j > y|x1)

P̂(y ≤ j|x1)/P̂(y > j|x1)
· 100%

=
(exp{α̂j + β̂1 (x1 + 1) + β̂2 x2 + · · ·+ β̂k xk}

exp{α̂j + β̂1 x1 + β̂2 x2 + · · ·+ β̂k xk}
−1
)
·100% = (exp{β̂1}−1)·100%.

• If a predictor variable x1 is an indicator variable, then the quantity exp{β̂1}·
100% is interpreted as the ratio of odds in favor of {y ≤ j} against {y > j}
when x1 = 1 and when x1 = 0, provided the other predictors are unchanged.
This is obtained as follows:

P̂(y ≤ j|x1 = 1)/P̂(y > j|x1 = 1)

P̂(y ≤ j|x1 = 0)/P̂(y > j|x1 = 0)
· 100%

=
exp{α̂j + β̂1 · 1 + β̂2 x2 + · · ·+ β̂k xk}
exp{α̂j + β̂1 · 0 + β̂2 x2 + · · ·+ β̂k xk}

· 100% = exp{β̂1} · 100%.
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4.1.4 Predicted Probabilities

From (4.2), for given values of predictors x0
1, . . . , x

0
k, the predicted cumulative

probabilities may be found as

P0(y ≤ j) =
exp

{
α̂j + β̂1 x

0
1 + · · ·+ β̂k x

0
k

}
1 + exp

{
α̂j + β̂1 x0

1 + · · ·+ β̂k x0
k

} , j = 1, . . . , c− 1.

Moreover, we can predict the probability of exact equality to a value as the
di�erence of two consecutive predicted cumulative probabilities. Like this:

P0(y = j) = P0(y ≤ j) − P0(y ≤ j − 1), j = 2, . . . , c− 1,

P0(y = 1) = P0(y ≤ 1), and P0(y = c) = 1− P0(y ≤ c− 1). (4.3)

4.1.5 SAS Implementation

The procedure genmod with dist=multnomial link=cumlogit may be used
to run the cumulative logit model. Since the values of the response variable
must be on an ordinal scale, it is convenient to present them as numbers,
for instance, 1, 2, . . . , c, and possibly describe the levels in a proc format

statement like this:

proc format;

value response namefmt 1="level1 name"
2="level2 name" . . . c ="levelc name";

run;

Another possibility would be to enter level names as words but in proc

format put digits 1 through c in front of the names. For example, "1poor",
"2fair", "3good", "4excellent".

• By default, SAS orders the levels in alphabetical order and models the
cumulative probabilities of the response variable having lower ordered values.
If it is desired to reverse the order, the option descending may be used in
the proc genmod statement.
• SAS predicts the cumulative probability for each category, that is, the
probability of being in a given category or in any category that precedes it.

4.1.6 R Implementation

Function clm() in the library ordinal may be utilized to �t the cumulative
logit model. The name stands for �cumulative link models�. The syntax is
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summary(�tted.model.name<- clm(response.name ∼ x1.name + · · ·
+ xk.name, data = data.name, link="logit"))

• R outputs beta coe�cients with reversed signs. The signs of the intercepts
are not changed. This means that R outputs estimates for α1, . . . , αc−1, and
β0, . . . , βk where

logitP(y ≤ j) = αj − β1 x1 − · · · − βk xk, j = 1, . . . , c− 1.

• The intercepts are termed Threshold coefficients.
• R outputs the individual (non-cumulative) predicted probability for each
category. The argument type="prob" should be included in the predict()
function.

4.1.7 Example

Example 4.1. The California Health Interview Survey (CHIS) is a large-
scale survey of the health of Californians. Among the variables measured
are gender (M/F), age (in years), marital status (�yes�=married, �no�=not
married), the highest educational degree obtained (<HS/HSgrad/HSgrad+),
and health status (poor/fair/good/excellent). The code below �ts the cumu-
lative logit model to the data on 32 respondents.

data health_survey;

length health$ 9.;

input gender$ age marital$ educ$ health$ @@;

cards;

M 46 yes <HS good M 72 yes <HS poor

M 52 yes HSgrad excellent M 50 no <HS fair

F 44 no HSgrad+ poor F 68 no HSgrad fair

F 50 no HSgrad+ fair F 93 no <HS poor

M 50 yes HSgrad excellent M 88 no HSgrad+ good

M 58 yes HSgrad excellent M 52 yes HSgrad good

F 64 yes HSgrad+ good F 49 yes HSgrad good

F 41 yes HSgrad+ excellent M 32 no HSgrad+ good

F 88 no HSgrad poor F 36 yes HSgrad+ excellent

M 35 no HSgrad+ excellent F 38 no HSgrad+ fair

M 39 yes HSgrad+ excellent F 43 no <HS good

M 61 yes HSgrad good F 41 yes HSgrad+ excellent

F 36 yes <HS good F 44 yes HSgrad+ excellent

M 41 no HSgrad good M 55 yes <HS good
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M 57 no <HS fair M 28 yes HSgrad+ excellent

F 40 yes HSgrad good F 97 no HSgrad poor

;

proc format;

value $healthfmt "poor"="1poor" "fair"="2fair"

"good"="3good" "excellent"="4excellent";

run;

proc genmod;

class gender(ref="M") marital(ref="yes") educ(ref="HSgrad+");

model health=gender age marital educ/dist=multinomial

link=cumlogit;

format health $healthfmt.;

run;

Log Likelihood -24.0727
AIC 64.1455
AICC 70.4064
BIC 75.8714

Analysis Of Maximum Likelihood Parameter Estimates
Parameter Estimate Pr > ChiSq
Intercept1 -11.7440 <.0001
Intercept2 -9.7021 <.0001
Intercept3 -5.9098 0.0014
gender F 2.0630 0.0281
age 0.0805 0.0145
marital no 3.3593 0.0021
educ <HS 3.2609 0.0093
educ HSgrad 1.1877 0.2420

proc genmod;

model health=/dist=multinomial link=cumlogit;

run;

Log Likelihood -41.9644

data deviance_test;

deviance=-2*(-41.9644-(-24.0727));

pvalue=1-probchi(deviance,5);

run;

proc print noobs;

run;
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deviance pvalue
35.7834 0.000001049

Since the p -value is tiny, we conclude that the �tted model has a good �t.
The �tted model is:

P̂(poor)

1− P̂(poor)
= exp

{
− 11.7440 + 2.0630 · female

+0.0805 · age+ 3.3593 · notmarried+ 3.2609· < HS + 1.1877 ·HSgrad
}
,

P̂(poor, or fair)

1− P̂(poor, or fair)
= exp

{
− 9.7021 + 2.0630 · female

+0.0805 · age+ 3.3593 · notmarried+ 3.2609· < HS + 1.1877 ·HSgrad
}
,

and
P̂(poor, fair, or good)

P̂(excellent)
= exp

{
− 5.9098 + 2.0630 · female

+0.0805 · age+ 3.3593 · notmarried+ 3.2609· < HS + 1.1877 ·HSgrad
}
.

The signi�cant predictors at the 5% level are gender, age, marital status, and
less than high-school educational level. The corresponding estimated regres-
sion coe�cients may be interpreted as follows. The estimated odds in favor of
worse health rather than better health for females are exp{2.0630} · 100% =
786.95% of the estimated odds for males. For a one-year increase in age, these
estimated odds increase by (exp{0.0805}−1) ·100% = 8.38%. These odds for
not married people are estimated to be exp{3.3593} · 100% = 2, 876.90% of
those for married people. For people with less than a high school education,
these odds are exp{3.2609}·100% = 2, 607.30% of those for people with some
college education.

Finally, suppose we would like to �nd the predicted probability for each of
the health levels for a married 52-year-old male with a high school diploma.
We calculate:

P0(poor) =
exp{−11.7440 + 0.0805 · 52 + 1.1877}

1 + exp{−11.7440 + 0.0805 · 52 + 1.1877}
= 0.0017,

P0(poor or fair) =
exp{−9.7021 + 0.0805 · 52 + 1.1877}

1 + exp{−9.7021 + 0.0805 · 52 + 1.1877}
= 0.0130,

and

P0(poor, fair, or good) =
exp{−5.9098 + 0.0805 · 52 + 1.1877}

1 + exp{−5.9098 + 0.0805 · 52 + 1.1877}
= 0.3691.
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The predicted probabilities for individual categories are: P0(poor) = 0.0017,
P0(fair) = P0(poor or fair)−P0(poor) = 0.0130−0.0017 = 0.0113,P0(good) =
P0(poor, fair, or good) − P0(poor or fair) = 0.3691 − 0.0130 = 0.3561, and
P0(excellent) = 1− P0(poor, fair, or good) = 1− 0.3691 = 0.6309.

The following lines of code produce predicted cumulative probabilities in
SAS:

data prediction;

input gender$ age marital$ educ$;

cards;

M 52 yes HSgrad

;

data health_survey;

set health_survey prediction;

run;

proc genmod;

class gender marital educ;

model health=gender age marital educ/dist=multinomial

link=cumlogit;

output out=outdata p=pred_prob;

format health $healthfmt.;

run;

proc print data=outdata (firstobs=97) noobs;

var _level_ pred_prob;

run;

_LEVEL_ pred_prob
1poor 0.00171
2fair 0.01303
3good 0.36934

Thus, the predicted probabilities for individual health categories predicted
by SAS are: P0(poor) = 0.00171, P0(fair) = 0.01303− 0.00171 = 0.01132,
P0(good) = 0.36934− 0.01303 = 0.35631, and P0(excellent) = 1− 0.36934 =
0.63066.

The R script and relevant output for this example are below.
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health.survey.data<-read.csv(file="./Example4.1Data.csv",

header=TRUE, sep=",")

#specifying reference categories

gender.rel<- relevel(health.survey.data$gender, ref="M")

marital.rel<- relevel(health.survey.data$marital, ref="yes")

educ.rel<- relevel(health.survey.data$educ, ref="HSgrad+")

#fitting cumulative logit model

library("ordinal")

summary(fitted.model<- clm(health ~ gender.rel + age

+ marital.rel + educ.rel, data=health.survey.data, link="logit"))

AIC
64.15

Coe�cients:
Estimate Pr(>|z|)

gender.relF -2.06296 0.02810
age -0.08052 0.01450
marital.relno -3.35931 0.00206
educ.rel<HS -3.26088 0.00926
educ.relHSgrad -1.18772 0.24200

Threshold coe�cients:
Estimate

1poor|2fair -11.744
2fair|3good -9.702
3good|4excellent -5.910

#extracting AICC and BIC for fitted model

p<- 8

n<- 32

print(AICC<- -2*logLik(fitted.model)+2*p*n/(n-p-1))

70.40635

BIC(fitted.model)

75.87137

#checking model fit

null.model<- clm(health ~ 1, data=health.survey.data, link="logit")

print(deviance<- -2*(logLik(null.model)-logLik(fitted.model)))
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35.78339

print(p.value<- pchisq(deviance, df=5, lower.tail=FALSE))

1.049431e-06

#using fitted model for prediction

print(predict(fitted.model, data.frame(gender.rel="M", age=52,

marital.rel="yes", educ.rel="HSgrad"), type="prob"))

1poor 2fair 3good 4excellent
0.001710524 0.01132041 0.3563093 0.6306598

2

4.2 Cumulative Probit Model

4.2.1 Model De�nition

The cumulative probit model 2 for an ordinal response y with values in cate-
gories 1, . . . , c and predictors x1, . . . , xk has the form

P(y ≤ j) = Φ
(
αj + β1 x1 + · · ·+ βk xk

)
, j = 1, . . . , c− 1,

where Φ(·) denotes the cumulative distribution function of a standard normal
random variable. Note that like the cumulative logistic regression, the cumu-
lative probit model also belongs to the class of generalized linear regressions,
with the probit link function.

4.2.2 Fitted Model

The �tted model may be written as

Φ−1
(
P̂(y ≤ j)

)
= α̂j + β̂1 x1 + · · ·+ β̂k xk, j = 1, . . . , c− 1, (4.4)

or

P̂(y ≤ j) = Φ
(
α̂j + β̂1 x1 + · · ·+ β̂k xk

)
, j = 1, . . . , c− 1. (4.5)

2First proposed in McKelvey, R.D. and W. Zavoina (1975). �A statistical model for the
analysis of ordinal level dependent variables�. Journal of Mathematical Sociology, 4: 103
� 120.
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4.2.3 Interpretation of Estimated Regression Coe�cients

Given (4.4), the estimated cumulative probit regression coe�cients are inter-
preted as described below.

• If a predictor variable x1 is numeric, then β̂1 gives the change in the z-
score of the estimated cumulative probability for a one-unit increase in x1,
controlling for the other predictors. Indeed,

Φ−1
(
P̂(y ≤ j|x1 + 1)

)
− Φ−1

(
P̂(y ≤ j|x1)

)
= β̂1(x1+1)+β̂2 x2+· · ·+β̂k xk−

(
β̂1 x1+β̂2 x2+· · ·+β̂k xk

)
= β̂1, j = 1, . . . , c−1.

• If a predictor variable x1 is an indicator variable, then β̂1 represents the
di�erence in the z-scores of the estimated cumulative probability when x1 = 1
and x1 = 0, provided all the other predictor variables stay unchanged. We
write

Φ−1
(
P̂(y ≤ j|x1 = 1)

)
− Φ−1

(
P̂(y ≤ j|x1 = 0)

)
= β̂1 ·1+β̂2 x2+· · ·+β̂k xk−

(
β̂1 ·0+β̂2 x2+· · ·+β̂k xk

)
= β̂1, j = 1, . . . , c−1.

4.2.4 Predicted Probabilities

Taking into account (4.5), in the cumulative probit model, predicted cumu-
lative probabilities are computed as

P0(y ≤ j) = Φ
(
α̂j + β̂1 x

0
1 + · · ·+ β̂k x

0
k

)
, j = 1, . . . , c− 1,

for predetermined values x0
1, . . . , x

0
k. Predicted probabilities of exact equality

to j, j = 1, . . . , c, are found via the same equations (4.3) as in the cumulative
logit model.

4.2.5 SAS Implementation

The procedure genmod with dist=multnomial link=cumprobitmay be used
to run the cumulative probit model.

4.2.6 R Implementation

The cumulative probit model may be �t using function clm() with the option
link="probit".
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R outputs beta coe�cients with reversed signs. It �ts the model

Φ−1
(
P(y ≤ j)

)
= αj − β1 x1 − · · · − βk xk, j = 1, . . . , c− 1.

4.2.7 Example

Example 4.2. Consider the data health survey in Example 4.1. We �t
the cumulative probit model to the data set, check its goodness of �t, and use
the �tted model for prediction. The code and important outputs are given
below.

proc genmod;

class gender(ref="M") marital(ref="yes") educ(ref="HSgrad+");

model health=gender age marital educ/dist=multinomial

link=cumprobit;

format health $healthfmt.;

run;

Log Likelihood -24.1213
AIC 64.2426
AICC 70.5035
BIC 75.9685

Parameter Estimate Pr > ChiSq
Intercept1 -6.7442 <.0001
Intercept2 -5.6721 <.0001
Intercept3 -3.4867 0.0007
gender F 1.1447 0.0257
age 0.0499 0.0062
marital no 1.8788 0.0010
educ <HS 1.8103 0.0057
educ HSgrad 0.6060 0.2942

proc genmod;

model health=/dist=multinomial link=cumprobit;

run;

Log Likelihood -41.9644

data deviance_test;

deviance=-2*(-41.9644-(-24.1213));

pvalue=1-probchi(deviance,5);

run;
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proc print noobs;

run;

deviance pvalue
35.6862 0.000001097

The �tted model has the form:

P̂(poor) = Φ
(
− 6.7442 + 1.1447 · female+ 0.0499 · age

+1.8788 · notmarried+ 1.8103· < HS + 0.6060 ·HSgrad
)
,

P̂(poor, or fair) = Φ
(
− 5.6721 + 1.1447 · female+ 0.0499 · age

+1.8788 · notmarried+ 1.8103· < HS + 0.6060 ·HSgrad
)
,

and

P̂(poor, fair, or good) = Φ
(
− 3.4867 + 1.1447 · female+ 0.0499 · age

+1.8788 · notmarried+ 1.8103· < HS + 0.6060 ·HSgrad
)
.

We can see that the �tted model has a good �t because the p -value in the
deviance test is very small. Similar to the cumulative logistic model, in this
case, gender, age, marital status, and less than high school educational level
are statistically signi�cant predictors. Their estimated beta coe�cients may
be interpreted as follows. The z-score of the estimated probability of worse
health for women is larger than that for men by 1.1447. As age increases by
one year, the z-score increases by 0.0499. People who are not married have
z-score larger by 1.8788 compared to their married counterparts. Finally,
the z-score for people with less than a high school education exceeds that for
people who studied in college by 1.8103.

Next, we will �nd predicted probabilities of each category of health status
for a 52-year-old married man who has a high school diploma. To this end,
we write:

P0(poor) = Φ
(
− 6.7442 + 0.0499 · 52 + 0.6060

)
= 0.00020,

P0(poor, or fair) = Φ
(
− 5.6721 + 0.0499 · 52 + 0.6060

)
= 0.00673,

and

P(poor, fair, or good) = Φ
(
− 3.4867 + 0.0499 · 52 + 0.6060

)
= 0.38748.

From here, the individual predicted probabilities are P0(poor) = 0.00020,
P0(fair) = 0.00673 − 0.00020 = 0.00653,P0(good) = 0.38748 − 0.00673 =
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0.380746, and P0(excellent) = 1− 0.38748 = 0.61252.

The cumulative probabilities can be requested in SAS by entering the follow-
ing statements:

data prediction;

input gender$ age marital$ educ$;

cards;

M 52 yes HSgrad

;

data health_survey;

set health_survey prediction;

run;

proc genmod;

class gender marital educ;

model health=gender age marital educ/dist=multinomial

link=cumprobit;

output out=outdata p=pred_prob;

format health $healthfmt.;

run;

proc print data=outdata (firstobs=97) noobs;

var _level_ pred_prob;

run;

_LEVEL_ pred_prob
1poor 0.00020
2fair 0.00669
3good 0.38658

We can obtain the non-cumulative probabilities by subtraction: P0(poor) =
0.00020,P0(fair) = 0.00669 − 0.00020 = 0.00649,P0(good) = 0.38658 −
0.00669 = 0.37989, and P0(excellent) = 1− 0.38658 = 0.61342.

The R script below reproduces the results that were obtained in SAS.

health.survey.data<- read.csv(file="./Example4.1Data.csv",

header=TRUE, sep=",")
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#specifying reference categories

gender.rel<- relevel(health.survey.data$gender, ref="M")

marital.rel<- relevel(health.survey.data$marital, ref="yes")

educ.rel<- relevel(health.survey.data$educ, ref="HSgrad+")

#fitting cumulative probit model

library(ordinal)

summary(fitted.model<- clm(health ~ gender.rel + age

+ marital.rel + educ.rel, data=health.survey.data, link="probit"))

AIC
64.24

Coe�cients:
Estimate Pr(>|z|)

gender.relF -1.14467 0.025685
age -0.04986 0.006244
marital.relno -1.87884 0.000952
educ.rel<HS -1.81028 0.005683
educ.relHSgrad -0.60599 0.294219

Threshold coe�cients:
Estimate

1poor|2fair -6.744
2fair|3good -5.672
3good|4excellent -3.487

#extracting AICC and BIC for fitted model

p<- 8

n<- 32

print(AICC<- -2*logLik(fitted.model)+2*p*n/(n-p-1))

70.50345

BIC(fitted.model)

75.96847

#checking model fit

null.model<- clm(health ~ 1, data=health.survey.data, link="probit")

print(deviance<- -2*(logLik(null.model)-logLik(fitted.model)))

35.68629
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print(p.value<- pchisq(deviance, df=5, lower.tail=FALSE))

1.0974e-06

#using fitted model for prediction

print(predict(fitted.model, data.frame(gender.rel="M", age=52,

marital.rel="yes", educ.rel="HSgrad"), type="prob"))

1poor 2fair 3good 4excellent
0.0001957589 0.006491104 0.3798914 0.6134217

2

4.3 Cumulative Complementary Log-Log Model

4.3.1 Model De�nition

The cumulative complementary log-log model 3 for an ordinal response y and
predictors x1, . . . , xk is de�ned by

ln
[
− ln

(
1− P(y ≤ j)

)]
= αj + β1 x1 + · · ·+ βk xk, j = 1, . . . , c− 1,

or, equivalently,

P(y ≤ j) = 1− exp
{
− exp

{
αj + β1 x1 + · · ·+ βk xk

}}
, j = 1, . . . , c− 1.

Similar to cumulative logit and probit models, the cumulative complemen-
tary log-log model falls into the class of generalized linear models with the
complementary log-log link function.

4.3.2 Fitted Model

In the �tted cumulative complementary log-log model, the estimated cumu-
lative probabilities satisfy

P̂(y ≤ j) = 1− exp
{
− exp

{
α̂j + β̂1 x1 + · · ·+ β̂k xk

}}
, j = 1, . . . , c− 1.

(4.6)

3First appears in McCullagh, P. (1980). �Regression models for ordinal data�. Journal
of the Royal Statistical Society, Series B, 42 (2): 109 � 142.
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4.3.3 Interpretation of Estimated Regression Coe�cients

From (4.6), the estimated regression coe�cients are interpreted as:

• If a predictor variable x1 is numeric, then exp
{
β̂1

}
gives the estimated rate

ratio for a unit increase in x1, given that other predictors remain the same,
since for any j = 1, . . . , c− 1,

1− P̂(y ≤ j|x1 + 1) = exp
{
− exp

{
α̂j + β̂1(x1 + 1) + β̂2 x2 + · · ·+ β̂k xk

}}
= exp

{
− exp

{
α̂j + β̂1 x1 + β̂2 x2 + · · ·+ β̂k xk

}
exp{β̂1}

}
=
[

exp
{
−exp

{
α̂j+β̂1 x1+β̂2 x2+· · ·+β̂k xk

}}]exp{β̂1}
=
[
1−P̂(y ≤ j|x1)

]exp{β̂1}
.

Thus, when x1 increases by one unit, the estimated complement cumulative
probability 1− P̂(y ≤ j|x1 + 1) equals to the complement cumulative proba-

bility 1− P̂(y ≤ j|x1) raised to the power exp{β̂1}.

• If a predictor variable x1 is an indicator variable with two levels 0 and 1,
then exp

{
β̂1

}
gives the estimated rate ratio for the levels x1 = 1 and x1 = 0,

provided the other predictors stay intact, which can be seen by writing

1− P̂(y ≤ j|x1 = 1) = exp
{
− exp

{
α̂j + β̂1 · 1 + β̂2 x2 + · · ·+ β̂k xk

}}
=
[

exp
{
− exp

{
α̂j + β̂1 · 0 + β̂2 x2 + · · ·+ β̂k xk

}}]exp{β̂1}

=
[
1− P̂(y ≤ j|x1 = 0)

]exp{β̂1}
, j = 1, . . . , c− 1.

4.3.4 Predicted Probabilities

Using (4.6), we can write the equations for the predicted cumulative proba-
bilities for some de�ned values of predictors x0

1, . . . , x
0
k as

P0(y ≤ j) = 1− exp
{
− exp

{
α̂j + β̂1 x

0
1 + · · ·+ β̂k x

0
k

}}
, j = 1, . . . , c− 1.

The individual probabilities may be obtained via the expressions in (4.3).

4.3.5 SAS Implementation

To �t the cumulative complementary log-log model, use proc genmod with
the option dist=multimonial link=cumcll.
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4.3.6 R Implementation

The clm() function with the option link="cloglog" would �t the cumula-
tive complement log-log model.

The signs of the beta coe�cients in the �tted model are reversed. R �ts the
model of this form:

ln
[
− ln

(
1− P(y ≤ j)

)]
= αj − β1 x1 − · · · − βk xk, j = 1, . . . , c− 1.

4.3.7 Example

Example 4.3. We will �t the cumulative complementary log-log model to
the data in Example 4.1. Referring to the data set health survey, we run
the following statements. The relevant output is also presented.

proc genmod;

class gender(ref="M") marital(ref="yes") educ(ref="HSgrad+");

model health=gender age marital educ/dist=multinomial

link=cumcll;

format health $healthfmt.;

run;

Log Likelihood -23.6572
AIC 63.3144
AICC 69.5753
BIC 75.0403

Analysis Of Maximum Likelihood Parameter Estimates
Parameter Estimate Pr > ChiSq
Intercept1 -9.2186 <.0001
Intercept2 -7.7333 <.0001
Intercept3 -4.7078 0.0003
gender F 1.2741 0.0239
age 0.0624 0.0046
marital no 2.2980 0.0029
educ <HS 2.2481 0.0034
educ HSgrad 0.9700 0.1353

proc genmod;

model health=/dist=multinomial link=cumcll;

run;

Log Likelihood -41.9644
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data deviance_test;

deviance=-2*(-41.9644-(-23.6572));

pvalue=1-probchi(deviance,5);

run;

proc print noobs;

run;

deviance pvalue
36.6144 0.000000716

The �tted model takes the form: P̂(poor) = 1 − exp
{
− exp

{
− 9.2186 +

1.2741 ·female+0.0624 ·age+2.2980 ·notmarried+2.2481· < HS+0.9700 ·
HSgrad

}}
, P̂(poor, or fair) = 1−exp

{
− exp

{
−7.7333+1.2741·female+

0.0624 ·age+ 2.2980 ·notmarried+ 2.2481· < HS+ 0.9700 ·HSgrad
}}
, and

P̂(poor, fair, or good) = 1−exp
{
− exp

{
−4.7078+1.2741·female+0.0624·

age+ 2.2980 · notmarried+ 2.2481· < HS + 0.9700 ·HSgrad
}}
.

Like in the cumulative logit and probit models, in this model gender, age,
marital status, and less than high school educational level are signi�cant
at the 5% level. The estimated probability of better health for women is
that for men raised to the power exp

{
1.2741

}
= 3.5755. For a one-year in-

crease in age, this estimated probability is the old one raised to the power
exp{0.0624} = 1.0644. For a not-married person, the estimated probability
is that for a married one raised to the power exp{2.2980} = 9.9543. For those
with less than a high school education, the estimated probability is the one
for individuals with some college raised to the power exp{2.2481} = 9.4697.

For a 52-year-old man who is married and has graduated from high school,
the predicted cumulative probabilities can be found as

P̂(poor) = 1− exp
{
− exp

{
− 9.2186 + 0.0624 · 52 + 0.9700

}}
= 0.00669,

P̂(poor, or fair) = 1−exp
{
− exp

{
−7.7333+0.0624·52+0.9700

}}
= 0.02921,

and

P̂(poor, fair, or good) = 1−exp
{
− exp

{
−4.7078+0.0624·52+0.9700

}}
= 0.45708.

The predicted probabilities for individual categories are computed as P̂(poor) =

0.00669, P̂(fair) = 0.02921 − 0.00669 = 0.02252, P̂(good) = 0.45708 −
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0.02921 = 0.42787, and P̂(excellent) = 1 − 0.45708 = 0.54292. The same
predictions for cumulative probabilities are made by SAS via the following
statements:

data prediction;

input gender$ age marital$ educ$;

cards;

M 52 yes HSgrad

;

data health_survey;

set health_survey prediction;

run;

proc genmod;

class gender marital educ;

model health=gender age marital educ/dist=multinomial

link=cumcll;

output out=outdata p=pred_prob;

format health $healthfmt.;

run;

proc print data=outdata (firstobs=97) noobs;

var _level_ pred_prob;

run;

_LEVEL_ pred_prob
1poor 0.00669
2fair 0.02921
3good 0.45708

The R script and the output for this example follow.

health.survey.data<- read.csv(file="./Example4.1Data.csv",

header=TRUE, sep=",")

#specifying reference categories

gender.rel<- relevel(health.survey.data$gender, ref="M")

marital.rel<- relevel(health.survey.data$marital, ref="yes")

educ.rel<- relevel(health.survey.data$educ, ref="HSgrad+")
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#fitting cumulative complementary log-log model

library(ordinal)

summary(fitted.model<- clm(health ~ gender.rel + age

+ marital.rel + educ.rel, data=health.survey.data,

link="cloglog"))

AIC
63.31

Coe�cients:
Estimate Pr(>|z|)

gender.relF -1.27412 0.02392
age -0.06240 0.00458
marital.relno -2.29800 0.00288
educ.rel<HS -2.24809 0.00337
educ.relHSgrad -0.97005 0.13527

Threshold coe�cients:
Estimate

1poor|2fair -9.219
2fair|3good -7.733
3good|4excellent -4.708

#extracting AICC and BIC for the fitted probit model

p<- 8

n<- 32

print(AICC<- -2*logLik(fitted.model)+2*p*n/(n-p-1))

69.57525

BIC(fitted.model)

75.04027

#checking model fit

null.model<- clm(health ~ 1, data=health.survey.data,link="cloglog")

print(deviance<- -2*(logLik(null.model)-logLik(fitted.model)))

36.6145

print(p.value<- pchisq(deviance, df=5, lower.tail=FALSE))

7.155456e-07
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#using fitted model for prediction

print(predict(fitted.model, data.frame(gender.rel="M", age=52,

marital.rel="yes", educ.rel="HSgrad"), type="prob"))

1poor 2fair 3good 4excellent
0.006689841 0.02251738 0.4278729 0.5429199

The last thing we do in this example is to select the best-�tted model among
the cumulative logit, probit, and complementary log-log models. Here we
summarize the values for the AIC, AICC, and BIC criteria that were given
in the outputs for these models.

cumlogit cumprobit cumcloglog
AIC 64.15 64.24 63.31
AICC 70.4064 70.5035 69.5753
BIC 75.8714 75.9685 75.0403

The values are the smallest for the cumulative complementary log-log model,
thus it �ts the data the best and should be preferred over the other two
models. 2

4.4 Generalized Logit Model for Nominal Re-

sponse

4.4.1 Model De�nition

Suppose the response y is a nominal variable with categories j = 1, . . . , c.
Let the category c be the reference category. The generalized logit functions
pair each category with the reference category, that is,

logitP(y = j) = ln
P(y = j)

P(y = c)
, j = 1, . . . , c− 1.

If, for example, c = 3, then

logitP(y = 1) = ln
P(y = 1)

P(y = 3)
, and logitP(y = 2) = ln

P(y = 2)

P(y = 3)
.

The generalized logit model 4 for a nominal response y and predictors x1, . . . , xk
is given by

logitP(y = j) = αj + βj1 x1 + · · ·+ βjk xk, j = 1, . . . , c− 1.

4A common reference to the primary source is Agresti, A. (1990). �Categorical Data
Analysis,� Wiley, New York.
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Note that in this model all regression coe�cients are di�erent. There are
c− 1 intercepts and (c− 1) k beta coe�cients. This model doesn't belong to
the class of generalized linear regressions.

4.4.2 Fitted Model

Once the regression coe�cients are estimated, the �tted model may be writ-
ten as

ln
P̂(y = j)

P̂(y = c)
= α̂j + β̂j1 x1 + · · ·+ β̂jk xk, j = 1, . . . , c− 1,

or, equivalently,

P̂(y = j)

P̂(y = c)
= exp

{
α̂j + β̂j1 x1 + · · ·+ β̂jk xk

}
j = 1, . . . , c− 1. (4.7)

4.4.3 Interpretation of Estimated Regression Coe�cients

The estimated regression coe�cients are interpreted as follows.

• If a predictor variable x1 is numeric, then the quantity
(
exp{β̂j1}−1

)
·100%

represents the percent change in estimated odds of the event {y = j} as op-
posed to {y = c} for a unit increase in x1, controlling for all the other
predictors. Indeed,

( P̂(y = j|x1 + 1)/P̂(y = c|x1 + 1)− P̂(y = j|x1)/P̂(y = c|x1)

P̂(y = j|x1)/P̂(y = c|x1)

)
· 100%

=
(exp{α̂j + β̂j1(x1 + 1) + β̂j2 x2 + · · ·+ β̂jk xk}

exp{α̂j + β̂j1 x1 + β̂j2 x2 + · · ·+ β̂jk xk}
− 1
)
· 100%

=
(

exp{β̂j1} − 1
)
· 100%.

• If a predictor x1 is a 0 -1 variable, then exp{β̂j1} · 100% gives the ratio
of the estimated odds of {y = j} versus {y = c} for the levels x1 = 1 and
x1 = 0, provided the other predictors stay unchanged. We write

( P̂(y = j|x1 = 1)/P̂(y = c|x1 = 1)

P̂(y = j|x1 = 0)/P̂(y = c|x1 = 0)

)
· 100%
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=
exp{α̂j + β̂j1 · 1 + β̂j2 x2 + · · ·+ β̂jk xk}
exp{α̂j + β̂j1 · 0 + β̂j2 x2 + · · ·+ β̂jk xk}

· 100% = exp{β̂j1} · 100%.

4.4.4 Predicted Probabilities

In view of (4.7), for a �xed set of predictors x0
1, . . . , x

0
k, the predicted proba-

bility that y = j, where j = 1, . . . , c− 1, is

P0(y = j) = P0(y = c) exp
{
α̂j + β̂j1 x

0
1 + · · ·+ β̂jk x

0
k

}
, (4.8)

and, since the probabilities must add up to one,

P0(y = c) =
(

1 +
c−1∑
j=1

exp
{
α̂j + β̂j1 x

0
1 + · · ·+ β̂jk x

0
k

})−1

. (4.9)

4.4.5 SAS Implementation

The generalized logit model may be �tted by using the logistic procedure
with the option link=glogit. The syntax is:

proc logistic data=data name;
class catpredictor1 name (ref="level name") catpredictor2 name

(ref="level name") . . . /param=ref;
model response name(ref="level name") = <list of predictors>/link=glogit;

output out=outdata name p=predicted response name;
run;

• The option param=ref must be included in the class statement in order
for proper indicator functions to be created. If this option is omitted, then
SAS creates variables that assume values 1 and -1 instead of 1 and 0.
• The reference level for the response variable can be speci�ed in the model
statement if needed.

4.4.6 R Implementation

The function multinom() from the package nnet (stands for �neural net-
works�) may be used to �t the generalized logit model. The syntax is

summary(�tted.model.name <- multinom(response.name ∼ x1.name + · · ·
+ xk.name, data=data.name))
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4.4.7 Example

Example 4.4. In a dental clinic, an oral hygienist surveys new patients to
�nd out what factors in�uence their choice of toothpaste. For each patient,
she records gender, age, the number of problematic teeth (teeth with �llings,
root canals, or extracted), and the type of toothpaste used (tartar control,
cavity protection, or for sensitive teeth). The following SAS code �ts a gen-
eralized logit model for the choice of toothpaste.

data oral_hygiene;

length choice$ 9.;

input ID gender$ age nteeth choice$ @@;

cards;

1 F 48 7 sensitive 2 M 30 5 cavity

3 M 34 6 tartar 4 M 50 8 sensitive

5 M 68 4 tartar 6 F 22 1 cavity

7 M 53 8 sensitive 8 F 38 2 cavity

9 M 36 7 sensitive 10 F 25 1 cavity

11 F 32 7 sensitive 12 F 54 2 tartar

13 M 32 8 sensitive 14 M 26 3 cavity

15 F 35 2 cavity 16 F 33 8 cavity

17 F 52 4 tartar 18 F 43 9 sensitive

19 M 58 2 tartar 20 F 43 3 cavity

21 F 60 6 tartar 22 M 28 3 tartar

23 M 70 10 sensitive 24 M 41 2 tartar

25 F 43 5 cavity 26 M 18 1 cavity

27 M 66 12 sensitive 28 M 34 2 sensitive

;

proc logistic;

class gender(ref="M")/param=ref;

model choice(ref="tartar")=gender age nteeth/link=glogit;

run;

The output is

Testing Global Null Hypothesis: BETA=0
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 35.8586 6 <.0001

The p -value is extremely small compared to 0.05. Thus, the model has a
good �t.
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Analysis of Maximum Likelihood Estimates
Parameter choice Estimate Pr > ChiSq
Intercept cavity 9.7152 0.0310
Intercept sensitive -1.3987 0.6361
gender F cavity 5.0207 0.0369
gender F sensitive 0.4061 0.8106
age cavity -0.3176 0.0143
age sensitive -0.0903 0.2323
nteeth cavity 0.00143 0.9976
nteeth sensitive 0.9806 0.0164

The �tted model is

P̂(cavity)

P̂(tartar)
= exp

{
9.7152 + 5.0207 · female− 0.3176 · age+ 0.00143 ·nteeth

}
,

and

P̂(sensitive)

P̂(tartar)
= exp

{
−1.3987+0.4061·female−0.0903·age+0.9806·nteeth

}
.

Gender and age are signi�cant predictors of odds in favor of cavity pro-
tection versus tartar control toothpaste, since both p -values are less than
0.05. The estimated odds in favor of cavity protection versus tartar con-
trol toothpaste for women is exp{5.0207} · 100% = 15, 151.73% of those for
men. Also, as age increases by one year, the estimated odds change by
(exp{−0.3176} − 1) · 100% = −27.21%, that is, decrease by 27.21%.

The number of problematic teeth is the only signi�cant predictor of odds in
favor of toothpaste for sensitive teeth versus tartar control toothpaste, since
its p -value is less than 0.05. As the number of problematic teeth increases
by one, the estimated odds grow by (exp{0.9806} − 1) · 100% = 166.61%.

To estimate the probabilities of choosing each type of toothpaste by a 49-
year-old male patient with seven problematic teeth, we compute P0(cavity) =
exp{9.7152−0.3176 ·49 + 0.00143 ·7}(1 + exp{9.7152−0.3176 ·49 + 0.00143 ·
7}+ exp{−1.3987− 0.0903 · 49 + 0.9806 · 7})−1 = 0.00076, P0(sensitive) =
exp{−1.3987−0.0903 ·49+0.9806 ·7}(1+exp{9.7152−0.3176 ·49+0.00143 ·
7} + exp{−1.3987 − 0.0903 · 49 + 0.9806 · 7})−1 = 0.73844, P0(tartar) =
(1 + exp{9.7152 − 0.3176 · 49 + 0.00143 · 7} + exp{−1.3987 − 0.0903 · 49 +
0.9806 · 7})−1 = 0.26080.
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SAS outputs similar predicted values, which can be checked by running the
following lines of code.

data prediction;

input gender$ age nteeth;

cards;

M 49 7

;

data oral_hygiene;

set oral_hygiene prediction;

run;

proc logistic;

class gender;

model choice=gender age nteeth/link=glogit;

output out=outdata p=pred_prob;

run;

proc print data=outdata (firstobs=85) noobs;

var _level_ pred_prob;

run;

The output is:

_LEVEL_ pred_prob
cavity 0.00076
sensitive 0.73839
tartar 0.26085

The statements in R that produce the same results as in SAS and the corre-
sponding relevant outputs are located below.

oralhygiene.data<-read.csv(file="./Example4.4Data.csv",

header=TRUE, sep=",")

#specifying reference categories

gender.rel<- relevel(oralhygiene.data$gender, ref="M")

choice.rel<- relevel(oralhygiene.data$choice, ref="tartar")

#fitting generalized logits model
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library(nnet)

summary(fitted.model<- multinom(choice.rel ~ gender.rel + age + nteeth,

data = oralhygiene.data))

Coe�cients:
(Intercept) gender.relF age nteeth

cavity 9.715717 5.0209204 -0.3175656 0.001382412
sensitive -1.398798 0.4061775 -0.0903070 0.980622823

#checking model fit

summary(intercept.model<- multinom(choice.rel ~ 1,data=oralhygiene.data))

print(deviance<- deviance(intercept.model)

-deviance(fitted.model))

35.85856

print(p.value <- pchisq(deviance, df=6,lower.tail = FALSE))

2.936716e-06

#using fitted model for prediction

print(predict(fitted.model, data.frame(gender.rel="M",

age=49, nteeth=7), type="prob"))

tartar cavity sensitive
0.2608508757 0.0007623345 0.7383867899

2

Exercises for Chapter 4

Exercise 4.1. Grade point average (GPA) and graduate management apti-
tude test (GMAT) scores are used by the admission o�ce of a business school
to decide which applicants should be admitted to the school's graduate pro-
gram. The data below are GPA and GMAT scores for 42 recent applicants
who have been categorized as admitted, borderline, or not admitted.
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GPA GMAT status GPA GMAT status GPA GMAT status

2.96 596 admit 3.47 552 admit 3.12 463 border
3.14 473 admit 3.35 520 admit 3.08 440 notadmit
3.22 482 admit 2.89 543 admit 3.01 453 notadmit
3.29 527 admit 2.28 523 admit 3.03 414 notadmit
3.69 505 admit 3.21 530 admit 3.04 446 notadmit
2.46 693 admit 3.58 564 admit 2.89 485 notadmit
3.03 626 admit 3.33 565 admit 2.79 490 notadmit
3.19 663 admit 2.8 444 border 2.54 446 notadmit
3.63 447 admit 3.13 416 border 2.43 425 notadmit
3.59 588 admit 2.89 431 border 2.2 474 notadmit
3.3 563 admit 3.01 471 border 3.36 531 notadmit
3.78 591 admit 2.91 446 border 2.57 542 notadmit
3.44 692 admit 2.75 546 border 2.36 482 notadmit
3.48 528 admit 2.73 467 border 3.66 420 notadmit

(a) Run the cumulative logit model and specify the �tted model. Discuss
the model �t. What predictors are signi�cant at the 5% level? Interpret the
estimated signi�cant regression coe�cients. Predict the probabilities of each
admission status for a person whose GPA is 3.1 and GMAT score is 550.
(b) Redo part (a), �tting the cumulative probit model.
(c) Redo part (a), �tting the cumulative complementary log-log model.
(d) Which of the models obtained in parts (a)-(c) has the best �t?

Exercise 4.2. A satellite television provider is focusing on improving cus-
tomer service. The company surveys subscribers who contact the call center
and record how long the callers have been subscribed with the company
(in months), whether they receive their monthly programming magazine
(yes/no), whether the issue they called about was resolved (yes/no), and
overall satisfaction with the customer service, measured on a �ve-point Lik-
ert scale (1=very dissatis�ed, 2=dissatis�ed, 3=neutral, 4=satis�ed, 5=very
satis�ed). The data for 36 callers are recorded below.
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Subscr Magzn Resolved Satisf Subscr Magzn Resolved Satisf

5 yes no 5 2 no yes 4
49 yes no 5 11 no no 2
56 no no 3 98 yes yes 5
13 yes yes 5 11 no yes 5
27 no yes 4 46 no no 4
41 yes yes 5 7 no no 3
2 yes yes 5 7 no yes 5
64 yes yes 4 9 yes yes 5
88 yes yes 4 17 no no 2
43 yes yes 4 8 no yes 2
94 yes no 4 9 no yes 1
8 no no 1 95 no no 4
9 yes no 2 60 no yes 3
68 yes no 4 80 no yes 4
5 no yes 2 2 yes no 3
108 no yes 3 33 yes yes 4
21 yes yes 4 5 yes no 3
25 yes no 3 7 no no 1

(a) Regress the satisfaction score on the other variables via the cumulative
logit model. How good is the model �t? Which regression coe�cients are
signi�cant at α = 0.05? State the �tted model explicitly and interpret the
estimated signi�cant beta coe�cients. Predict probabilities of each of the
�ve levels of the satisfaction score for a caller who had been subscribed for 3
months, doesn't receive the magazine, and whose issue was resolved over the
phone.
(b) Redo part (a), running the cumulative probit model.
(c) Redo part (a), running the cumulative complementary log-log model.
(d) Discuss the relative �t of the models obtained in parts (a)-(c).

Exercise 4.3. A large o�ce supply corporation has collected data on pur-
chasing habits of their customers (which are companies). The data for a
sample of 34 companies that purchased products during one month are made
available. The record is kept on how long the company has been in business
(<1 year, 1-5 years, or 5+ years), whether it is a �rst-time buyer (yes/no),
what type of supply is bought (stationery, electronics, or furniture), and the
amount of money spent (in U.S. dollars). The data are:
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In business 1st time Type Amount In business 1st time Type Amount

< 1 year yes stationery $5,690 1-5 years no electronics $24,336
1-5 years yes stationery $14,454 5+ years yes stationery $452
5+ years yes electronics $20,489 < 1 year yes stationery $3,600
5+ years no stationery $13,115 5+ years yes furniture $2,450
< 1 year no electronics $44,885 < 1 year no electronics $12,230
< 1 year no electronics $28,182 5+ years yes stationery $2,451
< 1 year no furniture $40,982 1-5 years no stationery $1,110
< 1 year no stationery $10,160 < 1 year yes electronics $69,280
1-5 years no furniture $51,363 < 1 year yes furniture $119,613
5+ years yes electronics $29,448 < 1 year no electronics $21,770
5+ years no stationery $2,093 < 1 year yes electronics $64,160
< 1 year no furniture $127,133 < 1 year no furniture $78,900
1-5 years yes furniture $21,593 < 1 year no electronics $75,095
< 1 year no furniture $220,909 5+ years no furniture $7,450
1-5 years no electronics $17,000 5+ years no furniture $5,200
1-5 years yes electronics $22,812 < 1 year no furniture $32,099
1-5 years yes electronics $13,090 5+ years no electronics $1,997

(a) Categorize the amount spent into the three categories: (1)"<$10,000",
(2) "$10,000− <$30,000", and (3) "$30,000+". Fit a cumulative logit model.
Write down the �tted model, discuss its �t, and interpret estimated signif-
icant coe�cients. Predict probabilities of each expenditure bracket for a
company that has been in business for 4 years, and buys electronics from the
supply corporation on a regular basis.
(b) Fit a cumulative probit model to the data, and answer the questions in
part (a).
(c) Repeat part (a) with a cumulative complementary log-log model.
(d) Which of the three �tted models has the best �t?

Exercise 4.4. In aviation, the weather forecast often plays a decisive role.
A data set for 30 large airports around the country was obtained. The
independent variables are airport elevation (in feet above sea level), its prox-
imity to a large body of water (whether within 20 miles of lake, sea, or
ocean), wind direction (in degrees, clockwise from north), and wind speed
(in knots=1.15mph). The dependent variable is the outcome of the weather
forecast: correct prediction, false alarm (when the actual conditions were
better than predicted), or failure to detect (when the actual conditions were
worse than predicted). The measurements are as follows:
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Elev Water Wdir Wspeed Outcome Elev Water Wdir Wspeed Outcome

146 yes 270 2 FA 1026 no 290 1 C
841 no 360 13 FA 17 yes 180 2 C
672 yes 360 4 FA 20 yes 270 6 C
312 no 250 5 FA 15 yes 0 3 C
126 yes 170 8 FA 1135 no 20 13 C
607 no 360 8 FA 21 yes 30 8 C
748 no 270 15 FA 98 no 140 8 C
620 yes 290 5 FA 36 yes 10 3 C
5431 no 200 2 FD 8 yes 270 10 C
2181 yes 310 8 FD 26 yes 0 3 C
645 yes 170 7 FD 13 yes 170 9 C
433 no 270 6 FD 9 yes 270 6 C
360 no 140 15 FD 18 yes 200 12 C
4227 yes 200 2 FD 96 no 200 8 C
14 yes 150 7 C 60 yes 240 9 C

(a) Assuming that the outcome is measured on the nominal scale, run the
generalized logit model. Use the correct prediction as the reference category.
Write down the �tted model explicitly.
(b) How good is the model �t? Which variables are signi�cant predictors at
the 10% level of signi�cance?
(c) Give an interpretation of the estimated signi�cant coe�cients.
(d) Find predicted probabilities of each outcome of the weather forecast for
an airport that is located at 2,000 feet above sea level, away from a large
body of water, in the presence of wind at 5 knots blowing from the east.

Exercise 4.5. A group of 25 school-age patients in an orthopedic clinic is
studied and their age, gender, and ankle condition (sprained, torn ligament,
or broken) are recorded. The data are
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Age Gender Condition Age Gender Condition

7 female sprained 10 female sprained
9 male torn 9 female torn
11 male broken 8 male sprained
12 male broken 8 female sprained
8 male torn 7 female torn
8 female torn 15 male broken
9 female broken 17 male broken
13 male broken 18 male broken
13 male torn 18 female sprained
15 female sprained 18 female torn
16 female sprained 16 female torn
11 male torn 12 male broken
12 male broken

(a) Regress the ankle condition on age and gender by running the general-
ized logit regression model for the nominal response. Use �sprained� as the
reference category.
(b) Write down the estimated model. Discuss its goodness-of-�t.
(c) Interpret the estimates of the regression coe�cients that signi�cantly dif-
fer from zero.
(d) What are the predicted probabilities of each type of ankle injury for a
9-year-old girl?

Exercise 4.6. A sample of 40 female users who were matched with male
candidates was obtained from a dating website. The following variables were
computed: communication status (0 if neither sent messages, 1 if the user
sent a message, 2 if the candidate sent a message, and 3 if they exchanged
messages), the age di�erence between the user and candidate (in years), their
height di�erence (in inches), and an indicator of same drinking preferences
(1=same, 0=di�erent). The data are presented in the table below.
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Status Agedi� Heightdi� Drinking Status Agedi� Heightdi� Drinking

3 -3 -1 0 2 0 -7 1
3 3 -2 1 2 4 -3 0
3 2 -3 1 1 8 -7 1
3 0 1 1 1 1 0 1
3 -5 0 1 1 11 0 0
3 -6 -6 1 1 -4 -7 0
3 2 -5 1 1 7 -6 1
3 0 -4 1 1 14 -6 1
3 4 -7 1 1 -1 -8 0
3 -1 -8 1 1 -5 -4 0
3 -5 1 1 1 -1 -7 0
3 -2 2 1 1 -3 -8 1
3 -6 -4 1 1 8 -4 1
3 -7 -6 0 1 4 -5 1
2 -5 -1 0 0 4 -8 1
2 -18 0 1 0 -6 3 0
2 -8 3 0 0 -4 3 0
2 4 0 1 0 8 -2 0
2 -4 2 1 0 -5 3 1
2 1 -8 1 0 -6 3 0

(a) Regress the communication status on the other variables. Treat it as a
nominal variable. Use the zero level as a reference. Write down the �tted
model.
(b) Evaluate goodness-of-�t of the model. What predictors are signi�cant
at the 5% level of signi�cance?
(c) Give an interpretation of the estimated signi�cant beta coe�cients.
(d) Find the predicted probabilities for each communication status for the
case of the same age, height, and drinking preference.
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Chapter 5

Regression Models for Count

Response

Suppose the response variable y assumes values 0, 1, 2, . . . , but large values
are very unlikely. In this chapter, we consider four regressions that may be
applied to model this response: Poisson regression, zero-truncated Poisson
(if y is strictly positive), zero-in�ated Poisson (if zero is an allowed value
for y, and there are too many zeros observed than can be accounted for by
the Poisson distribution), and hurdle Poisson (where zeros are modeled sep-
arately from the positive values of y).

5.1 Poisson Regression Model

5.1.1 Model De�nition

A variable that assumes only non-negative integer values (0, 1, 2, . . . ) is
called a count variable. When the response is a count variable which follows
a Poisson distribution, the data may be modeled using a Poisson regression.
The Poisson regression model 1 speci�es that given predictors x1, . . . , xk, the
response variable y follows a Poisson distribution with the probability mass
function

P(Y = y) =
λy exp{−λ}

y!
, y = 0, 1, 2, . . . ,

1The �rst application appears in Cochran, W.G. (1940). �The analysis of variance
when experimental errors follow the Poisson or binomial law�. Annals of Mathematical

Statistics, 11(3): 335 � 347.
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where the rate

λ = E(y) = exp
{
β0 + β1 x1 + · · ·+ βk xk

}
. (5.1)

This model belongs to the class of generalized linear models with the log link
function. It can be shown (do it!) that the above function can be written in
the form (1.3) with θ = lnλ and φ = 1.

5.1.2 Fitted Model

By (5.1), in a �tted Poisson regression model, the estimated mean response
has the form

λ̂ = exp
{
β̂0 + β̂1 x1 + · · ·+ β̂k xk

}
. (5.2)

5.1.3 Interpretation of Estimated Regression Coe�cients

From (5.2), in the Poisson regression model, the estimates of the regression
coe�cients are interpreted as follows.

• If a predictor variable x1 is numeric, then the exponentiated estimate of
the respective regression coe�cient exp{β̂1} represents an estimated rate ra-
tio corresponding to a unit increase in the predictor. Indeed,

λ̂|x1+1

λ̂|x1
=

exp
{
β̂0 + β̂1 (x1 + 1) + β̂2 x2 + · · ·+ β̂k xk

}
exp

{
β̂0 + β̂1 x1 + · · ·+ β̂k xk

} = exp
{
β̂1

}
.

Equivalently, (exp{β̂1}−1)·100% may be interpreted as the estimated percent
change in rate when x1 increases by one unit, while all the other predictors
are held �xed.

• If a predictor variable x1 is an indicator variable, then the exponentiated
estimated coe�cient exp{β̂1} represents the ratio of the estimated rates when
x1 = 1 and when x1 = 0. To see that, we write

λ̂|x1=1

λ̂|x1=0

=
exp

{
β̂0 + β̂1 · 1 + β̂2 x2 + · · ·+ β̂k xk

}
exp

{
β̂0 + β̂1 · 0 + · · ·+ β̂k xk

} = exp
{
β̂1

}
.

Equivalently, the quantity exp{β̂1} · 100% represents the estimated percent
ratio of rates when x1 = 1 and when x1 = 0, while the other predictors are
held constant.
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5.1.4 Predicted Response

Taking into account(5.2), for a given set of predictors x0
1, . . . , x

0
k, the predicted

response y0 is computed as y0 = exp
{
β̂0 + β̂1 x

0
1 + · · ·+ β̂k x

0
k

}
.

5.1.5 SAS Implementation

In SAS, the procedure genmod with the option dist=poisson link=log is
used to �t a Poisson regression model.

5.1.6 R Implementation

In R, the function glm() with the option family="poisson"(link=log) �ts
a Poisson regression model.

5.1.7 Example

Example 5.1. Number of days of hospital stay were recorded for 45 pa-
tients with chest pain, along with their gender, age, and history of chronic
cardiac illness. We regress the number of days on the other variables via a
Poisson regression model. To this end, we run the following SAS code:

data hospital_stay;

input days gender$ age illness$ @@;

cards;

1 F 31 yes 0 F 28 no 0 M 52 yes

1 M 72 yes 0 F 29 no 0 F 30 no

1 M 74 no 2 M 30 yes 2 F 72 no

1 M 58 no 2 F 28 no 2 F 65 no

2 M 65 no 1 M 52 no 4 M 51 no

2 F 63 no 0 F 31 no 1 F 47 yes

1 M 49 no 2 M 71 yes 2 M 48 no

2 F 47 no 0 F 31 no 3 M 44 yes

3 M 44 no 3 M 54 yes 4 F 72 yes

4 M 56 yes 3 F 73 yes 1 F 46 no

3 M 58 no 4 M 70 yes 2 M 36 no

1 M 50 no 1 M 59 no 0 M 52 no

6 M 68 yes 2 F 41 no 1 M 31 yes

1 M 69 no 3 M 73 no 3 F 77 yes

2 F 54 no 4 M 69 yes 5 M 68 yes

;
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proc genmod;

class gender(ref="F") illness(ref="no");

model days=gender age illness/dist=poisson link=log;

run;

The relevant output is:

Log Likelihood -68.2139

Analysis Of Maximum Likelihood Parameter Estimates
Parameter Estimate Pr > ChiSq
Intercept -0.8263 0.0789
gender M 0.2264 0.3315
age 0.0205 0.0093
illness yes 0.4477 0.0440

proc genmod;

model days=/dist=poisson link=log;

run;

Log Likelihood -77.0978

data deviance_test;

deviance=-2*(-77.0978-(-68.2139));

pvalue=1-probchi(deviance,3);

run;

proc print noobs;

run;

deviance pvalue
17.7678 0.000491110

In the �tted model, the estimated rate is λ̂ = exp
{
− 0.8263 + 0.2264 ·

male + 0.0205 · age + 0.4477 · illness
}
. The p -value in the deviance test

is less than 0.05, and so the model has a good �t. Patient's age and the
indicator of a chronic cardiac illness are signi�cant predictors of the average
length of stay at the 5% signi�cance level. For a one-year increase in pa-
tient's age, the estimated average number of days of hospital stay increases
by (exp{0.0205} − 1) · 100% = 2.07%. Also, the estimated average num-
ber of days of hospital stay for patients with a chronic cardiac illness is
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exp{0.4477} · 100% = 156.47% of that for patients without it.

The predicted length of stay for a 55-year old male with no chronic cardiac
illness is computed as y0 = exp

{
− 0.8263 + 0.2264 + 0.0205 · 55

}
= 1.6949.

This value can be veri�ed in SAS by running the following statements:

data prediction;

input gender$ age illness$;

cards;

M 55 no

;

data hospital_stay;

set hospital_stay prediction;

run;

proc genmod;

class gender illness;

model days=gender age illness/dist=poissonlink=log;

output out=outdata p=pred_days;

run;

proc print data=outdata(firstobs=46) noobs;

var pred_days;

run;

pred_days
1.69207

The R script and the relevant output are given below.

hospitalstay.data<-read.csv(file="./Example5.1Data.csv",

header=TRUE, sep=",")

#fitting Poisson model

summary(fitted.model<- glm(days ~ gender + age + illness,

data=hospitalstay.data, family=poisson(link=log)))

Coe�cients:
Estimate Pr(>|z|)

(Intercept) -0.826269 0.07888
genderM 0.226425 0.33145
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age 0.020469 0.00931
illnessyes 0.447653 0.04404

#checking model fit

null.model<- glm(days ~ 1, data=hospitalstay.data, family=poisson(link=log))

print(deviance<- -2*(logLik(null.model)-logLik(fitted.model)))

17.76773

print(p.value<- pchisq(deviance, df=3, lower.tail=FALSE))

0.0004911253

#using fitted model for prediction

print(predict(fitted.model, data.frame(gender="M", age=55, illness="no"),

type="response"))

1.692066

2

5.2 Zero-truncated Poisson Regression Model

5.2.1 Model De�nition

If the response variable y assumes only positive integer values (no zeros),
then the data may be modeled through a zero-truncated Poisson regression
model 2. Let x1, . . . , xk be the predictors in this model. Then the response
variable y follows a zero-truncated Poisson distribution with the probability
mass function

P(Y = y) =
λy exp{−λ}

y!
(
1− exp{−λ}

) , y = 1, 2, . . . ,

where

λ = exp
{
β0 + β1 x1 + · · ·+ βk xk

}
. (5.3)

For a zero-truncated Poisson distribution, the expected value of y is (show it!)

E(y) =
λ

1− exp{−λ}
, (5.4)

and, even though, the probability mass function belongs to the exponential
family of distributions, this regression is not a generalized linear model be-
cause the log link function in (5.3) relates linear regression to λ which is not
the expected value of y.

2Introduced in Gurmu, S. (1991). �Tests for detecting overdispersion in the positive
Poisson regression model�. Journal of Business and Economic Statistics, 9(2): 215 � 222.
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5.2.2 Fitted Model

In a �tted zero-truncated Poisson regression model, according to (5.3), the
estimate of λ is written as

λ̂ = exp
{
β̂0 + β̂1 x1 + · · ·+ β̂k xk

}
. (5.5)

5.2.3 Interpretation of Estimated Regression Coe�cients

The formula for the expected value of y (5.4) contains an exponentiated λ.
Since by (5.3) lambda itself is an exponential function, this expected value
may be assumed negligibly di�erent from λ for most values of λ. Hence, the
way the estimated regression coe�cients are interpreted in the �tted Poisson
regression model (see Subsection 5.1.3) remains in e�ect.

5.2.4 Predicted Response

In view of (5.4) and (5.5), for some given values x0
1, . . . , x

0
k, the predicted

response y0 is found as

y0 =
exp

{
β̂0 + β̂1 x

0
1 + · · ·+ β̂k x

0
k

}
1 − exp

{
− exp

{
β̂0 + β̂1 x0

1 + · · ·+ β̂k x0
k

}} .

5.2.5 SAS Implementation

The procedure fmm (stands for ��nite mixture models�) with the option
dist=truncpoisson in the model statement may be used to �t a zero-
truncated Poisson model. The following syntax invokes the procedure:

proc fmm data=data name;
class <list of categorical predictors>;

model response name=<list of predictors>/dist=truncpoisson;
output out=outdata name pred=predicted response name;

run;

For categorical predictors, the level that comes last in alphabetical order is
used for reference. The fmm procedure doesn't allow speci�cation of reference
categories in the class statement. It can be done by changing the format of
categorical variables in a proc format statement.
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5.2.6 R Implementation

In R, the function vglm() (stands for �vector generalized linear models�) in
the library VGAM (�Vector Generalized Linear and Additive Models�) is used
to �t a zero-truncated Poisson model. The general form of this function is

summary(�tted.model.name<- vglm(response.name ∼ x1.name + · · ·
+ xk.name, data=data.name, family=pospoisson()))

• The function pospoisson() �ts a positive Poisson distribution, that is, the
zero-truncated Poisson.

5.2.7 Example

Example 5.2. Consider the setting in Example 5.1. Suppose investigators
are not concerned with outpatients, that is, those who were treated and dis-
missed the same day. Hence, the data are reduced to the 38 patients who
spent at least one day in the hospital. We run a zero-truncated Poisson
model with the three predictor variables along with the intercept-only model
to check the �t. The SAS code and respective outputs are:

data hospital_days;

set hospital_stay;

if (days>0);

run;

proc format;

value $genderfmt "F"="ref_F";

value $illnessfmt "yes"="illness" "no"="ref";

run;

proc fmm;

class gender illness;

model days=gender age illness/dist=truncpoisson;

format gender $genderfmt. illness $illnessfmt.;

run;

-2 Log Likelihood 105.2

Parameter Estimates for Truncated Poisson Model
E�ect gender illness Estimate Pr > |z|
Intercept -0.7041 0.2797
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gender M 0.2146 0.4559
gender ref 0 .
age 0.01604 0.1056
illness illness 0.5903 0.0296
illness ref 0 .

proc fmm;

model days=/dist=truncpoisson;

run;

-2 Log Likelihood 115.2

data deviance_test;

deviance=115.2-105.2;

pvalue=1-probchi(deviance,3);

run;

proc print noobs;

run;

deviance pvalue
10 0.018566

In the �tted model, the estimated rate is λ̂ = exp
{
−0.7041+0.2146 ·male+

0.01604 · age + 0.5903 · illness
}
. The p -value in the goodness-of-�t test is

smaller than 0.05, con�rming that the model �ts the data well. Only the
presence of chronic cardiac illness is signi�cant at the 5% level. The esti-
mated average number of days of hospital stay for patients with a chronic
cardiac illness is exp{0.5903}·100% = 180.45% of that for patients without it.

To predict the number of days of hospital stay for a 55-year old male without
a chronic cardiac illness, we calculate

y0 =
exp

{
− 0.7041 + 0.2146 + 0.01604 · 55

}
1 − exp

{
− exp

{
− 0.7041 + 0.2146 + 0.01604 · 55

}} = 1.9169.

A similar result may be obtained from SAS by running these lines of code:

data prediction;

input gender$ age illness$;

cards;

M 55 no

;
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data hospital_days;

set hospital_days prediction;

run;

proc fmm;

class gender illness;

model days=gender age illness/dist=truncpoisson;

output out=outdata pred=pred_days;

run;

proc print data=outdata(firstobs=39) noobs;

var pred_days;

run;

pred_days
1.91706

R script and output for this example are presented below.

hospitalstay.data<- read.csv(file="./Example5.1Data.csv",

header=TRUE, sep=",")

#eliminating zeros from the original data set

hospitaldays.data<- hospitalstay.data[which(hospitalstay.data$days!=0),]

#fitting zero-truncated Poisson model

library(VGAM)

summary(fitted.model<- vglm(days ~ gender + age + illness,

data=hospitaldays.data, family=pospoisson()))

Coe�cients:
Estimate Pr(>|z|)

(Intercept) -0.704061 0.2797
genderM 0.214611 0.4558
age 0.016042 0.1056
illnessyes 0.590345 0.0296

#checking model fit

null.model<- vglm(days ~ 1, data=hospitaldays.data, family=pospoisson())

print(deviance<- -2*(logLik(null.model)-logLik(fitted.model)))
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9.993755

print(p.value<- pchisq(deviance, df=3, lower.tail=FALSE))

0.0186193

#using fitted model for prediction

print(predict(fitted.model, data.frame(gender="M", age=55, illness="no"),

type="response"))

1.917057

2

5.3 Zero-in�ated Poisson Regression Model

5.3.1 Model De�nition

Suppose that one of the variables recorded during a health survey was the
number of cigarettes the respondent smoked yesterday. Some respondents
may have reported zero number of cigarettes smoked. There are two possi-
ble scenarios: either the respondents do not smoke at all, or they happened
not to smoke a single cigarette that day. That is, the observed zero may be
either a structural zero when the respondent's behavior lies outside of the
behavioral repertoire under study (for example, a person doesn't smoke), or
a chance zero, when the respondent's typical behavior falls within the behav-
ioral range under the study, but just not during a particular period of time
(in this case, a person normally smokes at least one cigarette a day, but just
happened not to smoke yesterday).

The presence of structural zeros in�ates the number of zeros in the Poisson
model, which makes the Poisson model invalid, and a zero-in�ated Poisson
model (often abbreviated as ZIP) should be used instead. The ZIP model
attempts to separate the structural zeros from the chance zeros, by viewing
the response variable y as assuming the value zero with probability π (the
case of a structural zero), and otherwise, with probability 1 − π, being a
count variable with the Poisson distribution with the rate λ.

To increase the rigor, in the zero-in�ated Poisson regression model 3 with the
predictor variables x1, . . . , xk, the response variable y has a probability dis-
tribution de�ned as follows:

3Introduced in Lambert, D. (1992). �Zero-in�ated Poisson regression, with an applica-
tion to defects in manufacturing�. Technometrics, 34(1): 1 � 14.
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P(Y = y) =

π + (1− π) exp{−λ}, if y = 0,

(1− π)
λy exp{−λ}

y!
, if y = 1, 2, . . . ,

(5.6)

where

π =
exp{β0 + β1 x1 + · · ·+ βm xm}

1 + exp{β0 + β1 x1 + · · ·+ βm xm}
, (5.7)

and
λ = exp

{
γ0 + γ1 xm+1 + · · ·+ γk−m xk

}
. (5.8)

Here the �rst m of the predictor variables are being used to model the prob-
ability of a structural zero π, while the rest of the x variables are used as
predictors for the Poisson rate λ. The β and γ coe�cients are the parameters
of this model.

The zero-in�ated Poisson distribution de�ned in (5.6) is a mixture of two
distributions: a Poisson and a point mass at zero. This type of distribution is
not a representative of the exponential family of distributions. Consequently,
the zero-in�ated Poisson model is not a member of the class of generalized
linear models.

5.3.2 Fitted Model

By (5.7) and (5.8), in the �tted zero-in�ated Poisson regression model, the
estimated parameters are

π̂ =
exp{β̂0 + β̂1 x1 + · · ·+ β̂m xm}

1 + exp{β̂0 + β̂1 x1 + · · ·+ β̂m xm}
, (5.9)

and
λ̂ = exp

{
γ̂0 + γ̂1 xm+1 + · · ·+ γ̂k−m xk

}
. (5.10)

5.3.3 Interpretation of Estimated Regression Coe�cients

Since in the zero-in�ated Poisson model the probability π is modeled via a
logistic link function, the interpretation of the estimated beta coe�cients is
identical to those in a binary logistic regression model (see Subsection 3.1.3).
Also, the expected value of the response variable y is E(y) = (1 − π)λ (see
Exercise 5.7), and the sets of x variables in the de�nitions of π and λ are
chosen to be non-overlapping. This implies that when we are interpreting the
estimated gamma coe�cients, we may assume that π is �xed, and thus the
interpretation is the same as in the Poisson regression model (see Subsection
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5.1.3). Note that it is possible to use the same x variables in the regression
parts of π and λ, but the estimates of the regression coe�cients won't be
easily interpretable.

5.3.4 Predicted Response

In view of the above expression for E(y) and formulas (5.9) and (5.10), when
x0

1, x
0
2, . . . , x

0
k are �xed, the predicted response y0 is computed as

y0 =
(

1− exp{β̂0 + β̂1 x
0
1 + · · ·+ β̂m x

0
m}

1 + exp{β̂0 + β̂1 x0
1 + · · ·+ β̂m x0

m}

)
exp

{
γ̂0+γ̂1 x

0
m+1+· · ·+γ̂k−m x0

k

}
.

(5.11)

5.3.5 SAS Implementation

The ZIP model may be requested in SAS by adding an option dist=zip to
the model statement of the genmod procedure, and including the zeromodel
statement. The general syntax is

proc genmod data=data name;
class <list of categorical predictors>;

model response name = <list of predictors>/dist=zip;
zeromodel <list of predictors of structural zeros>;

run;

5.3.6 R Implementation

Function zeroinfl() in the library pscl, which stands for �Political Science
Computational Laboratory�, is used to �t a zero-in�ated Poisson model in
R. The general form of this function is

summary(�tted.model.name<- zeroinfl(response.name ∼ x{m+1}.name
+ · · · + xk.name|x1.name + · · · + xm.name, data = data.name))

5.3.7 Example

Example 5.3. A health survey has been administered to a random sam-
ple of 40 people aged between 25 and 50. Their gender, self-reported health
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condition (excellent or good), age, and the number of cigarettes they smoked
yesterday were recorded. Since those respondents who don't smoke were in-
cluded in the survey, it is expected that the number of cigarettes smoked
would have a Poisson distribution with an in�ated number of zeros. Below
we �t a ZIP model where health condition is used as the predictor of struc-
tural zero, while gender and age are the count model predictors. The SAS
code and output are:

data smoking;

input gender$ health$ age cigarettes @@;

cards;

M good 34 3 F exclnt 48 1 M exclnt 26 0 M good 39 0

F good 27 1 M good 28 5 F good 44 1 M exclnt 30 0

F exclnt 26 0 F good 38 2 F good 40 1 F exclnt 31 0

M good 27 3 F exclnt 34 1 F good 36 2 F exclnt 34 2

F exclnt 39 0 F good 42 1 F good 48 4 M good 32 5

M good 47 2 M good 29 3 M exclnt 38 0 F good 50 4

M good 30 3 M good 38 2 M good 31 6 F exclnt 33 0

F good 28 0 F good 42 3 M exclnt 28 0 M good 31 2

F exclnt 31 0 F exclnt 42 0 F good 44 4 F good 39 1

M good 40 6 M good 39 3 M exclnt 25 0 F good 45 2

;

proc genmod;

class gender(ref="F") health(ref="good");

model cigarettes=gender age/dist=zip;

zeromodel health;

run;

Log Likelihood -57.0406

Analysis Of Maximum Likelihood Parameter Estimates
Parameter Estimate Pr > ChiSq
Intercept -0.1381 0.8692
gender M 0.7268 0.0107
gender F 0.0000 .
age 0.0186 0.3509

Analysis Of Maximum Likelihood Zero In�ation Parameter Estimates
Parameter Estimate Pr > ChiSq
Intercept -3.7950 0.0876
health exclnt 4.9195 0.0341
health good 0.0000 .
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proc genmod;

model cigarettes=/dist=zip;

zeromodel;

run;

Log Likelihood -71.3892

data deviance_test;

deviance=-2*(-71.3892-(-57.0406));

pvalue=1-probchi(deviance,3);

run;

proc print noobs;

run;

deviance pvalue
28.6972 0.000002593

From this output, the �tted regression model has estimated parameters

π̂ =
exp{−3.7950 + 4.9195 · excellent_health}

1 + exp{−3.7950 + 4.9195 · excellent_health}
,

and
λ̂ = exp{−0.1381 + 0.7268 ·male+ 0.0186 · age}.

This model has a good �t, since the p -value in the deviance test is very
small. At the 5% level, health status signi�cantly predicts the odds of
being a non-smoker, whereas gender has a signi�cant e�ect on the aver-
age number of cigarettes smoked in a day. As follows from these esti-
mates, the estimated odds of not smoking for people in excellent health
is exp{4.9195} · 100% = 13, 694.26% of those for people in good health.
Also, the estimated average number of cigarettes smoked in a day by men is
exp{0.7268} · 100% = 206.85% of the average number of cigarettes smoked
by women.

Further, by (5.11), the predicted number of cigarettes smoked per day by a
50-year old male who is in good health is found as

y0 =
(

1− exp{−3.7950}
1 + exp{−3.7950}

)
exp{−0.1381 + 0.7268 + 0.0186 · 50} = 4.4659.

The SAS code for prediction is
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data prediction;

input gender$ health$ age;

cards;

M good 50

;

data smoking;

set smoking prediction;

run;

proc genmod;

class gender health;

model cigarettes=gender age/dist=zip;

zeromodel health;

output out=outdata p=pred_cig;

run;

proc print data=outdata(firstobs=41)noobs;

var pred_cig;

run;

pred_cig
4.47333

R script and output for this example follow.

smoking.data<-read.csv(file="./Example5.3Data.csv",

header=TRUE, sep=",")

#specifying reference category

health.rel<- relevel(smoking.data$health, ref="good")

#fitting zero-inflated Poisson model

library(pscl)

summary(fitted.model<- zeroinfl(cigarettes ~ gender + age|health.rel,

data=smoking.data))

Count model coe�cients (poisson with log link):
Estimate Pr(>|z|)

(Intercept) -0.13820 0.8690
genderM 0.72686 0.0107
age 0.01863 0.3506
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Zero-in�ation model coe�cients (binomial with logit link):
Estimate Pr(>|z|)

(Intercept) -3.795 0.0875
health.relexclnt 4.920 0.0341

#checking model fit

null.model<- zeroinfl(cigarettes ~ 1, data=smoking.data)

print(deviance<- -2*(logLik(null.model)-logLik(fitted.model)))

28.6972

print(p.value<- pchisq(deviance, df=3, lower.tail=FALSE))

2.592711e-06

#using fitted model for prediction

print(predict(fitted.model, data.frame(gender="M", health.rel="good",

age=50)))

4.473475

2

5.4 Hurdle Poisson Regression Model

5.4.1 Model De�nition

The hurdle Poisson regression is applied when the response variable y has a
Poisson distribution with an in�ated number of zeros, and, moreover, there
is a reason to believe that the underlying characteristics of cases with zeros
systematically di�er from those with positive responses. Put di�erently, ze-
ros are modeled separately from zero-truncated Poisson observations. Thus,
for predictors x1, . . . , xk, the hurdle Poisson regression model 4 assumes that
the response variable y has a probability distribution function

P(Y = y) =

π, if y = 0,

(1− π)
λy exp{−λ}

y!(1− exp{−λ})
, if y = 1, 2, . . . ,

(5.12)

where

π =
exp{β0 + β1 x1 + · · ·+ βm xm}

1 + exp{β0 + β1 x1 + · · ·+ βm xm}
, (5.13)

4Originally examined in Mullahy, J. (1986). �Speci�cation and testing of some modi�ed
count data models�. Journal of Econometrics, 33(3): 341 � 365.
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and

λ = exp
{
γ0 + γ1 xm+1 + · · ·+ γk−m xk

}
. (5.14)

The distribution of y is a mixture of a degenerate distribution at zero and
a zero-truncated Poisson distribution. This type of distribution is not in the
exponential family, and thus, the hurdle Poisson model is not a generalized
linear model.

5.4.2 Fitted Model

By (5.13) and (5.14), in a �tted hurdle Poisson regression model, estimated
parameters are

π̂ =
exp{β̂0 + β̂1 x1 + · · ·+ β̂m xm}

1 + exp{β̂0 + β̂1 x1 + · · ·+ β̂m xm}
(5.15)

and

λ̂ = exp
{
γ̂0 + γ̂1 xm+1 + · · ·+ γ̂k−m xk

}
. (5.16)

5.4.3 Interpretation of Estimated Regression Coe�cients

It can be shown (see Exercise 5.11) that the expected value of the response

variable E(y) = (1− π)
λ

1− exp{−λ}
, and thus, estimated regression coe�-

cients in π and λ are interpreted as in a binary logistic (see Subsection 3.1.3)
and Poisson regressions (see Subsection 5.1.3), respectively, provided all the
other predictors remain the same.

5.4.4 Predicted Response

Taking into account the above expression for the expected value of y and
relations (5.15) and (5.16), we can write the predicted response as

y0 =
(

1− exp{β̂0 + β̂1 x
0
1 + · · ·+ β̂m x

0
m}

1 + exp{β̂0 + β̂1 x0
1 + · · ·+ β̂m x0

m}

)
×

×
exp

{
γ̂0 + γ̂1 x

0
m+1 + · · ·+ γ̂k−m x

0
k

}
1− exp{− exp

{
γ̂0 + γ̂1 x0

m+1 + · · ·+ γ̂k−m x0
k

}
}
.
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5.4.5 SAS Implementation

The hurdle Poisson model may be �t by means of the fmm procedure with
the syntax below.
proc fmm data=data name;

class <list of categorical predictors>;
model response name = <list of predictors>/dist=truncpoisson;
model + /dist=constant;

probmodel <list of predictors of zeros>;
output out=outdata name pred=predicted response name;

run;

• The second model statement adds a degenerate distribution at point zero.
• The probmodel statement �ts the probability of zero that, in our notation,
is equal to 1− π. Applying (5.13), we obtain

1− π = 1− exp{β0 + β1 x1 + · · ·+ βm xm}
1 + exp{β0 + β1 x1 + · · ·+ βm xm}

=
exp{−(β0 + β1 x1 + · · ·+ βm xm)}

1 + exp{−(β0 + β1 x1 + · · ·+ βm xm)}
.

It means that when �tting the model using our notation, the signs of esti-
mated beta regression coe�cients have to be reversed.

5.4.6 R Implementation

In R, the function hurdle() in the library pscl may be used to �t a hurdle
Poisson regression model. The general syntax is

summary(�tted.model.name<- hurdle(response.name ∼ x{m+1}.name + · · ·
+ xk.name | x1.name + · · · + xm.name, data = data.name,
dist="poisson", zero.dist="binomial", link="logit"))

Note that similar to SAS, R evaluates 1−π and thus the estimated regression
coe�cients for π have to be taken with the opposite sign.

5.4.7 Example

Example 5.4. A college bookstore wants to gain insight into the textbook
purchasing habits of students. A random sample of 40 students was drawn,
and it was recorded how many textbooks each student purchased through

135



the bookstore for the current term, whether the student is currently renting
any textbooks, and whether a student has �nancial aid. The manager at
the bookstore conjectures that no textbook purchase might be attributed to
renting textbooks and that students with �nancial aid tend to purchase more
textbooks. The data and the analysis follow.

data bookstore;

input ntextbooks renting aid$ @@;

cards;

0 3 no 0 2 no 3 0 yes 0 0 no 0 1 no 1 0 no

0 3 no 2 0 yes 4 0 no 0 2 no 4 1 no 7 0 yes

3 2 yes 0 4 no 1 2 no 0 0 no 0 5 no 1 0 no

0 2 no 3 0 no 0 3 no 6 1 yes 2 1 yes 1 0 no

6 0 yes 2 0 no 0 3 no 4 0 yes 0 1 no 0 2 no

3 0 no 3 2 no 3 0 yes 2 0 yes 0 3 no 2 1 no

3 0 yes 1 3 no 3 0 yes 0 2 no

proc format;

value $aidfmt "no"="ref_no" "yes"="aid";

run;

proc fmm;

class aid;

model ntextbooks=aid/dist=truncpoisson;

model+/dist=constant;

probmodel renting;

run;

-2 Log Likelihood 115.7

Parameter Estimates for Truncated Poisson Model
E�ect aid Estimate Pr > |z|
Intercept 0.5951 0.0147
aid aid 0.6754 0.0204
aid ref 0 .

Parameter Estimates for Mixing Probabilities
E�ect Estimate Pr > |z|
Intercept 2.0494 0.0016
renting -1.2749 0.0009

proc fmm;
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model ntextbooks=/dist=truncpoisson;

model + /dist=constant;

probmodel;

run;

-2 Log Likelihood 139.1

data deviance_test;

deviance=139.1-115.7;

pvalue=1-probchi(deviance,2);

run;

proc print noobs;

run;

deviance pvalue
23.4 0.000008294

Reversing the estimated beta coe�cients, we obtain that in the �tted model,

the parameter estimates are π̂ =
exp{−2.0494 + 1.2749 · renting}

1 + exp{−2.0494 + 1.2749 · renting}
, and

λ̂ = exp
{

0.5951+0.6754·aid
}
. The model �ts the data well since the p -value

in the deviance test is tiny. Whether a student rents textbooks signi�cantly
predicts the probability of not purchasing them, whereas the presence of �-
nancial aid is signi�cantly associated with the mean number of purchased
textbooks. If the number of rented books increases by one, the estimated
odds in favor of not buying textbooks increase by (exp{1.2749}−1) ·100% =
257.83%. The estimated average number of purchased textbooks for a stu-
dent with �nancial aid is exp{0.6754} ·100% = 196.48% of that for a student
without it.

Prediction of the number of textbooks purchased by a student who has no
rented books or �nancial aid is calculated as follows:

y0 =
(

1− exp{−2.0494}
1 + exp{−2.0494}

)
·

exp
{

0.5951
}

1− exp{− exp{0.5951}}
= 1.9194.

SAS produces a similar prediction as can be seen by running the statements
below.

data prediction;

input renting aid$;

cards;
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0 no

;

data bookstore;

set bookstore prediction;

run;

proc fmm;

class aid;

model ntextbooks=aid/dist=truncpoisson;

model+/dist=constant;

probmodel renting;

output out=outdata pred=p_ntextbooks;

run;

proc print data=outdata(firstobs=41) noobs;

var p_ntextbooks;

run;

p_ntextbooks
1.91942

The R script and output are:

bookstore.data<-read.csv(file="./Example5.4Data.csv",

header=TRUE, sep=",")

#fitting hurdle Poisson model

library(pscl)

summary(fitted.model<- hurdle(ntextbooks ~ aid|renting,

data=bookstore.data, dist="poisson", zero.dist="binomial",

link="logit"))

Count model coe�cients (truncated poisson with log link):
Estimate Pr(>|z|)

(Intercept) 0.5951 0.0147
aidyes 0.6754 0.0204

Zero hurdle model coe�cients (binomial with logit link):
Estimate Pr(>|z|)

(Intercept) 2.0494 0.001610
renting -1.2749 0.000923
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#checking model fit

null.model<- hurdle(ntextbooks ~ 1, data=bookstore.data, dist="poisson",

zero.dist="binomial", link="logit")

print(deviance<- -2*(logLik(null.model)-logLik(fitted.model)))

23.39548

print(p.value<- pchisq(deviance, df=2, lower.tail=FALSE))

8.312594e-06

#using fitted model for prediction

print(predict(fitted.model, data.frame(renting=0, aid="no")))

1.919422

2

Exercises for Chapter 5

Exercise 5.1. The number of defective items produced by a machine op-
erator during one shift is modeled through a Poisson regression where inde-
pendent variables are the length of work experience as a machine operator
(in years), and whether it was morning, day, evening, or night shift. The
data were obtained for 36 randomly chosen shifts and operators.

NDefectives Exprience Shift NDefectives Exprience Shift

2 3.1 morning 0 2.1 day
5 2.1 morning 2 3.0 day
3 8.0 morning 5 8.2 evening
3 7.6 morning 4 4.0 evening
2 5.9 morning 4 6.2 evening
2 4.0 morning 3 2.9 evening
1 1.7 morning 2 2.1 evening
0 1.8 morning 2 1.9 evening
0 8.2 morning 1 6.7 evening
1 8.1 morning 1 3.4 evening
3 3.0 day 1 7.6 evening
3 7.7 day 6 5.1 night
2 6.3 day 4 3.2 night
2 8.1 day 4 7.6 night
2 7.7 day 4 2.5 night
1 2.4 day 3 6.2 night
1 3.0 day 3 2.0 night
1 4.6 day 5 4.0 night
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(a) Run the Poisson regression model. Discuss the signi�cance of predictors
at the 5% level of signi�cance.
(b) Write down the estimated model. How good is the �t of the model?
(c) Give an interpretation of the estimated signi�cant coe�cients.
(d) Predict the number of defective items produced during a night shift by
an operator with six months of experience.

Exercise 5.2. A large automobile insurance company is studying the re-
lation between the total number of auto accidents (including minor) that a
policyholder had caused, and the policyholder's gender, age, and the total
number of miles driven (in thousands). The data for 48 randomly chosen
policyholders are given in the table below.

NAccidents Gender Age Miles NAccidents Gender Age Miles

1 M 27 90 0 F 36 190
1 M 60 70 0 F 57 140
1 M 36 160 1 F 47 160
2 M 32 80 1 F 59 70
2 M 27 150 1 F 55 180
2 M 58 150 2 F 44 170
2 M 38 105 2 F 36 100
3 M 42 75 2 F 40 170
3 M 55 170 2 F 58 60
3 M 42 70 3 F 53 200
3 M 30 110 3 F 29 180
3 M 54 170 3 F 51 150
4 M 36 120 3 F 49 150
4 M 47 145 4 F 32 180
5 M 20 25 4 F 51 90
5 M 67 160 4 F 43 90
5 M 33 140 4 F 43 20
5 M 41 50 4 F 31 120
5 M 43 150 4 F 50 130
6 M 59 130 4 F 36 50
7 M 65 90 5 F 40 100
9 M 68 180 6 F 48 170
0 F 33 110 6 F 57 180
0 F 40 190 8 F 66 130

(a) Fit the Poisson model to the data and specify estimated parameters.
What variables are statistically signi�cant predictors of the number of car
accidents? Use α = 0.05.
(b) Check goodness-of-�t of the model.
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(c) Interpret the estimated signi�cant regression coe�cients.
(d) Give a predicted value of the total number of auto accidents caused by
a 35-year-old woman who has driven a total of one hundred thousand miles.

Exercise 5.3. A howling survey is a productive method for estimating the
minimum number of wolves within a pack. Thirty-two surveys have been
conducted at one site per 100 acres of land. The count of individual wolves
that called back, time of the howling session (dusk or night), and wind speed
(in mph) were recorded. Also, the presence of a source of drinking water was
noted. The data are summarized in the table below.

NCalls Time Wind Water NCalls Time Wind Water

2 dusk 0 yes 3 dusk 0 yes
2 dusk 1 yes 0 dusk 3 no
3 dusk 0 no 1 dusk 3 yes
2 night 6 no 2 dusk 3 yes
3 dusk 2 no 7 night 2 yes
4 night 3 yes 5 dusk 0 yes
5 dusk 1 yes 2 night 0 yes
3 night 5 yes 4 night 2 no
4 night 5 yes 6 night 1 yes
7 night 0 yes 3 night 3 yes
1 dusk 6 yes 0 dusk 1 no
2 night 1 no 1 dusk 3 no
4 dusk 2 yes 4 night 3 yes
6 night 2 yes 1 dusk 0 yes
5 dusk 3 yes 4 dusk 2 yes
2 night 3 yes 1 dusk 2 yes

(a) Fit a Poisson regression model for the number of calls. Discuss the model
�t.
(b) Specify the �tted model. Give estimates of all parameters. Which vari-
ables are signi�cant at the 5%?
(c) Give an interpretation of estimated signi�cant regression coe�cients.
(d) What is the predicted number of wolves that would call back during a
howling session conducted at dusk, in a wilderness with no water source, if
the wind's speed is 5 mph?

Exercise 5.4. Reduce the data in Exercise 5.1 to only those operators who
produced defective items.
(a) Model the number of defective items via the zero-truncated Poisson re-
gression model. Display the �tted model. List the signi�cant predictors.
(b) Discuss the model �t.
(c) Interpret estimated signi�cant coe�cients.
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(d) Predict the number of defective items produced during a night shift by
an operator with six months of experience.

Exercise 5.5. In the setting of Exercise 5.2, remove those policyholders
who caused no accidents. Run the zero-truncated Poisson regression model
on the remaining data.
(a) Write down the �tted model. Are there any signi�cant predictors at the
5% level?
(b) Discuss the �t of the model.
(c) Interpret the estimated signi�cant beta coe�cients.
(d) Give a predicted value of the total number of auto accidents caused by
a 35-year-old woman who has driven a total of one hundred thousand miles.

Exercise 5.6. Trim the data in Exercise 5.3, leaving the records of the
howling sessions when wolves were present in the area and responded.
(a) Model the number of wolves through a zero-truncated Poisson regression
model. Estimate all parameters. Are there any signi�cant predictors at the
0.05 level?
(b) Test the goodness-of-�t of the model.
(c) Give an interpretation of the estimated signi�cant regression coe�cients.
(d) Find the predicted number of wolves that would call back during a howl-
ing session conducted at dusk, in a wilderness with no water source, if the
wind's speed is 5 mph.

Exercise 5.7. Consider the zero-in�ated Poisson regression model de�ned
by (5.6) � (5.8).
(a) Show that the expected value of y is E(y) = (1− π)λ.

(b) Prove that the estimated gamma coe�cients in the expression for λ̂ yield
the same interpretation as in the Poisson regression model (see Subsection
5.1.3). Hint: Use the fact that the predictors in the de�nitions of λ and π
are di�erent.

Exercise 5.8. On the day of a race, runners were asked how many races
they participated in during the past four months. The runners' bib numbers
were also noted, and after the race the data were obtained on the runners'
gender, age, type of run on that day (5K/10K/full marathon). In addition,
the average pace was calculated for each runner (in minutes per mile) from
the distance and time of the runs. The data on 36 runners are
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NRaces Gender Age Run Pace NRaces Gender Age Run Pace

0 F 33 10K 10.04 1 F 51 5K 12.28
5 M 26 Full 7.17 4 F 35 10K 6.98
0 M 32 10K 11.14 2 M 25 10K 12.01
3 F 27 5K 9.18 3 M 34 5K 6.78
0 M 48 5K 7.52 0 M 28 5K 11.66
4 F 47 10K 11.59 0 F 39 10K 12.31
1 M 51 5K 9.44 2 M 32 Full 6.58
2 F 49 5K 9.53 5 F 44 Full 7.46
0 M 54 10K 8.48 0 F 49 10K 11.11
3 F 27 5K 11.71 2 M 52 Full 9.20
2 M 24 10K 7.56 1 M 30 5K 6.41
0 F 14 5K 13.78 1 M 43 10K 7.70
3 M 35 Full 7.34 1 M 30 10K 10.01
0 M 50 5K 7.51 0 M 53 5K 7.56
0 M 44 5K 8.92 2 F 46 Full 8.34
6 F 37 5K 10.71 0 F 28 5K 9.67
0 M 54 5K 8.72 2 F 50 Full 10.07
2 F 51 10K 7.41 2 F 54 5K 7.58

(a) Fit the zero-in�ated Poisson regression to model the number of races in
the previous four months. Check if the pace is signi�cantly associated with
the in�ation of zeros. Write down the �tted model.
(b) Discuss the model �t.
(c) Interpret the estimated signi�cant coe�cients.
(d) Calculate the predicted number of races in the past four months for a
female runner, aged 45, who ran at an average pace of 10 minutes per mile,
if she ran 10K.

Exercise 5.9. In an elementary school, children participate in a home read-
ing club. They are asked to read at least 15 minutes every day and submit
at the end of each month a list of books read. Some teachers make this as-
signment a part of the homework, others leave it optional. A random sample
of 50 students is drawn and the following variables are recorded: grade level,
whether reading assignment was a part of homework (yes/no), gender, and
the number of books read at the proper grade level or above. The books
below the grade level were not counted. If a student didn't turn in the list
of books, then a zero was recorded for the number of books. The data are
given below.
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Grade HW Gender NBooks Grade HW Gender NBooks

3 no M 3 2 yes F 0
3 yes M 3 2 yes M 3
2 no F 4 2 no M 3
2 yes M 3 3 yes F 4
3 no F 2 3 yes M 3
1 yes F 0 3 yes F 1
1 yes F 4 1 no M 0
2 no F 0 2 no M 0
1 no M 0 1 yes M 0
3 no M 1 2 yes F 6
3 yes F 3 2 yes F 2
2 no F 4 2 no F 3
3 no M 0 2 no F 0
2 no M 0 3 no F 5
1 yes F 5 3 yes M 2
3 yes M 2 1 no M 0
1 no F 1 3 no F 2
3 no F 4 2 yes F 0
1 no F 0 2 no M 2
2 yes F 2 2 no M 0
3 no F 4 3 no F 3
1 no M 2 1 yes F 1
2 no M 0 2 no F 0
2 no F 4 1 yes M 1
3 no F 5 2 yes M 2

(a) Model these data using a zero-in�ated Poisson regression with grade
(considered as a continuous variable) responsible for structural zeros, and
homework and gender predicting the counting portion. Write the model ex-
plicitly, estimating all parameters. Which predictors are signi�cant at the
5% signi�cance level?
(b) Is it a reliable model? Present the quantitative argument for the goodness-
of-�t of the model.
(c) How are the estimated signi�cant coe�cients interpreted?
(d) What is the predicted number of books read by a second-grade girl for
whom the reading is part of the homework?

Exercise 5.10. Forty patients in a large hospital were randomly chosen
for a survey. The variables recorded were the patient's BMI, age, gender,
an indicator of current smoking, and the number of mild to severe asthma
attacks in the past three months. The data are summarized in the table
below.
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BMI Age Gender Smoking NAttacks BMI Age Gender Smoking NAttacks

25.1 61 F no 2 28.6 50 F no 0
27.1 33 F yes 0 20.0 65 F yes 3
26.8 61 F no 1 31.5 58 F no 2
23.9 53 F yes 1 25.8 64 M yes 5
26.9 59 M yes 2 38.3 56 F no 1
18.8 45 F no 0 41.4 45 F no 0
25.2 54 M yes 2 31.2 26 F no 0
23.5 75 M yes 5 18.5 42 M yes 0
29.7 64 F no 3 32.2 26 F no 0
24.5 55 F no 1 23.9 65 F no 3
21.5 63 M yes 2 31.3 52 M no 2
37.9 52 M no 0 25.6 32 F no 0
22.6 43 M no 0 33.2 31 M no 0
23.0 56 F no 1 23.8 60 M no 2
28.1 50 F no 0 31.4 55 M no 1
24.8 86 M yes 6 34.0 53 F no 1
30.6 74 M yes 4 27.4 42 M no 3
33.7 71 F yes 3 20.6 61 F yes 2
26.4 66 F yes 1 28.3 64 M no 3
27.4 25 F no 0 30.1 52 M yes 3

(a) Run a ZIP model with age and smoking predicting the probability of ex-
cess zeros. Fit the model, estimate the parameters. Discuss the signi�cance
of predictors.
(b) How good is the model �t?
(c) Interpret the estimates of the signi�cant regression coe�cients.
(d) Calculate the predicted value for the number of severe asthma attacks
for a male patient, aged 60, whose BMI is 21.2, and who is currently a smoker.

Exercise 5.11. Consider the hurdle Poisson regression model de�ned by
(5.12) � (5.14).
(a) Show that the expected value of the response variable has the form

E
(
y|x1, . . . , xk

)
= (1− π)

λ

1− exp(−λ)
.

(b) Argue that the estimated regression coe�cients in π and λ have the
same interpretation as in binary logistic and Poisson regression models, re-
spectively.

Exercise 5.12. A coordinator of librarianship program within a school dis-
trict is concerned with the negative e�ect of budget cuts on libraries. She
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randomly chooses 34 schools within the district and collects information on
the number of computers, number of books (in thousands), number of jour-
nals during the current academic year, and the budget size (expenditure per
student, in dollars). The data are:

NComps NBooks NJrnls Budget NComps NBooks NJrnls Budget

0 8.2 0 0.00 22 9.0 16 0.00
19 11.7 10 16.45 32 18.3 23 22.22
0 2.0 0 5.29 0 12.0 5 0.17
13 8.2 8 23.50 6 8.8 12 7.14
5 30.0 2 6.33 1 14.0 60 1.83
16 14.1 15 7.20 5 12.5 32 24.66
12 9.5 0 3.07 7 3.0 5 7.07
6 21.8 0 4.00 3 16.3 40 12.00
12 9.0 11 4.39 1 6.5 40 13.85
22 5.0 20 17.07 3 8.5 4 18.22
0 15.7 4 1.82 4 10.0 20 30.49
7 19.3 66 9.09 7 18.0 100 0.81
6 20.8 2 10.49 0 11.5 2 0.61
28 11.0 30 0.47 3 9.1 0 9.19
0 9.3 0 0.06 13 10.4 36 25.67
11 12.7 14 0.00 36 7.5 55 7.89
17 15.6 14 22.22 0 19.7 8 1.00

(a) Run the hurdle Poisson regression to model the number of computers.
Assume that if observations are positive, the number of computers is related
to the number of books and periodicals, whereas the zero values are governed
by expenditure per student. Write down the �tted model.
(b) Discuss the model �t.
(c) Interpret estimated signi�cant parameters. State the practical conclu-
sion.
(d) What is the predicted number of computers in a library with 10,000
books, 25 periodicals, and an annual budget of $15 per student?

Exercise 5.13. Health care professionals conduct a study on medication
adherence among senior citizens. They obtain medical and pharmaceutical
records for a random sample of 30 patients (15 men, 15 women) who were
prescribed the same once-daily heart medication. The variables that the in-
vestigators use for the analysis are the number of days a patient forgot to take
the prescribed medication (according to the pharmaceutical record), gender,
age, and the number of other medications prescribed. The investigators sus-
pect that patients with more medications are more likely to account for zeros
in the response variable and that women and older patients have larger av-
erage positive responses. The collected data are given in the following table.
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N of Days
Gender Age

N of Other N of Days
Gender Age

N of Other
no meds meds no meds meds

0 F 87 12 1 F 71 2
2 M 65 3 2 M 65 1
0 M 85 3 5 F 68 7
1 F 68 3 4 M 73 4
5 F 76 18 4 F 72 3
1 F 72 9 0 M 86 13
4 F 73 5 3 F 66 4
1 M 64 0 5 F 70 5
2 M 71 1 1 M 70 5
7 F 81 5 3 M 62 3
0 M 89 7 0 M 93 15
4 F 87 8 5 F 70 1
2 M 78 9 3 F 68 11
0 F 87 9 3 M 75 2
1 M 77 4 2 M 88 11

(a) Fit the hurdle Poisson model to verify the hypotheses. Identify all pa-
rameters in the predicted model. Is the conclusion supportive of the research
hypotheses?
(b) How good is the model �t?
(c) Give an interpretation of estimated signi�cant regression coe�cients.
(d) Predict the number of days with missed heart medication for a 78-year-
old male patient who is prescribed to take only that one medication.
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Chapter 6

Regression Models for

Overdispersed Count Response

Suppose the response y is a count variable assuming non-negative integer
values but unlike in the Poisson model, y may assume large values. In
this chapter, we consider four models that are reasonable alternatives to
the Poisson-based models considered in the previous chapter: negative bino-
mial, zero-truncated negative binomial, zero-in�ated negative binomial, and
hurdle negative binomial models.

6.1 Negative Binomial Regression Model

6.1.1 Model De�nition

Recall that for a Poisson random variable, the mean is equal to the variance.
A count variable for which the variance is larger than the mean is termed
overdispersed. In this case a negative binomial regression would be a more
appropriate model.
In a negative binomial regression model 1 with predictors x1, . . . , xk, the re-
sponse y follows a negative binomial distribution with the probability mass
function given as:

P(Y = y) =
( r

r + λ

)r Γ(r + y)

y! Γ(r)

( λ

r + λ

)y
, y = 0, 1, 2, . . . , (6.1)

1First rigorous treatment can be found in Hausman, J., Hall, B.H., and Z. Griliches
(1984). �Econometric models for count data with an application to the patents � R & D
relationship�. Econometrica, 52(4): 909 � 938.
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where

λ = exp
{
β0 + β1 x1 + · · ·+ βk xk

}
, and r is a positive integer. (6.2)

It can be proven (see Exercise 6.1) that E(y) = λ and Var(y) = λ + λ2/r.
Thus, if the response y has a large variance compared to its mean, the value of
the parameter r is small. For this reason, r is called the dispersion parameter.
If we let r go to in�nity, the second term in the variance tends to zero, and,
in fact, the limiting distribution is Poisson with rate λ.

Further, one can show (see Exercise 6.1) that the negative binomial distribu-
tion belongs to the exponential family of distributions, and thus the negative
binomial model is an example of a generalized linear model with the log link
function.

6.1.2 Fitted Model

From (6.2), in a �tted negative binomial regression model, the estimated

parameters are λ̂ = exp
{
β̂0 + β̂1 x1 + · · ·+ β̂k xk

}
, and r̂.

6.1.3 Interpretation of Estimated Regression Coe�cients

Since the mean of y is λ, the interpretation of estimated regression coe�cients
is identical to that in the Poisson model (see Subsection 5.1.3).

6.1.4 Predicted Response

Considering the above expression for λ̂, for a given set of predictors x0
1, x

0
2, . . . , x

0
k,

the predicted response y0 is computed as y0 = exp
{
β̂0 + β̂1 x

0
1 + · · ·+ β̂k x

0
k

}
.

6.1.5 SAS Implementation

The genmod procedure invoked with the option dist=negbin �ts a negative
binomial regression.

• SAS outputs the quantity 1/r and terms it dispersion parameter. If the
dispersion parameter is zero or close to zero, then the Poisson model is more
appropriate. If it is much larger than zero, then negative binomial regression
is valid.
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6.1.6 R Implementation

In R, the function glm.nb() in the library MASS may be used to �t a negative
binomial regression model. The general script looks like this:

summary(�tted.model.name<- glm.nb(response.name ∼ x1.name + · · ·
+ xk.name, data = data.name))

• R outputs the estimate of the dispersion parameter r and calls it Theta.

6.1.7 Example

Example 6.1. A college o�ers a 20-mile swim challenge program to all
students, faculty, and sta�. People who within 12 weeks complete a 20-mile
swim in the pool on the college campus are awarded T-shirts. The number
of laps swam is recorded in sets of 20 after every swim. The organizers have
the data for 30 program participants for the �rst week of the program. They
are interested in regressing the distance swam (in sets of 20 laps) on the
swimmer's gender, age, and whether it is their �rst time in this program.
Since it is a self-paced program, it is expected to see great variability in the
number of sets that were swam during one week. The SAS code and relevant
output are below.

data swim;

input gender$ age firsttime$ sets @@;

cards;

M 38 yes 20 M 26 no 0 M 21 yes 8

M 19 yes 13 M 18 yes 28 M 20 yes 2

F 26 yes 8 M 21 no 14 F 20 no 0

F 18 yes 3 M 25 yes 6 F 42 yes 1

F 24 yes 7 M 58 yes 27 M 19 yes 10

F 32 no 17 F 46 no 12 M 21 yes 4

F 26 no 3 M 22 no 35 F 19 yes 2

F 56 yes 11 F 41 no 15 M 25 no 1

M 25 yes 9 M 21 no 8 M 19 yes 11

M 37 no 34 F 22 yes 8 F 23 yes 5

;

proc genmod;

class gender(ref="F") firsttime(ref="yes");

model sets=gender age firsttime/dist=negbin;
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run;

Log Likelihood -97.8206

Analysis Of Maximum Likelihood Parameter Estimates
Parameter Estimate Pr > ChiSq
Intercept 0.9316 0.0603
gender M 0.8250 0.0082
age 0.0278 0.0474
�rsttime no 0.2596 0.4021
Dispersion 0.5446

proc genmod;

model sets=/dist=negbin;

run;

Log Likelihood -102.1982

data deviance_test;

deviance=-2*(-102.1982-(-97.8206));

pvalue=1-probchi(deviance,3);

run;

proc print noobs;

run;

deviance pvalue
8.7552 0.032729

The estimates of the parameters in the model are λ̂ = exp{0.9316 + 0.8250 ·
male + 0.0278 · age + 0.2596 · notfirsttime} and r̂ = 1/0.5446 = 1.8362.
The model �ts the data well since the p -value of the deviance test is below
0.05. The signi�cant predictors are gender and age. The estimated average
number of sets of laps swam by a male is exp{0.8250} · 100% = 228.19% of
that for a female. For every one-year increase in age, the estimated average
number of sets increases by (exp{0.0278} − 1) · 100% = 2.82%.

Suppose that we would like to predict the number of lap sets that a 20-year-
old female student who has never participated in the 20-mile swim challenge
would swim during the �rst week. Calculated by hand, the predicted num-
ber of lap sets is exp{0.9316 + 0.0278 · 20} = 4.4264. The same prediction is
produced by SAS when running the following statements:
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data prediction;

input gender$ age firsttime$;

cards;

F 20 yes

;

data swim;

set swim prediction;

run;

proc genmod;

class gender firsttime;

model sets=gender age firsttime/dist=negbin;

output out=outdata p=pred_sets;

run;

proc print data=outdata(firstobs=31) noobs;

var pred_sets;

run;

pred_sets
4.42282

The R script and output for this example are below.

swim.data<-read.csv(file="./Example6.1Data.csv",

header=TRUE, sep=",")

#specifying reference category

firsttime.rel<- relevel(swim.data$firsttime, ref="yes")

#fitting negative binomial model

library(MASS)

summary(fitted.model <- glm.nb(sets ~ gender + age + firsttime.rel,

data=swim.data))

Coe�cients:
Estimate Pr(>|z|)

(Intercept) 0.93159 0.06034
genderM 0.82503 0.00784
age 0.02776 0.04222
�rsttime.relno 0.25961 0.39579
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Theta: 1.836

#checking model fit

null.model<- glm.nb(sets ~ 1, data=swim.data)

print(deviance<- -2*(logLik(null.model)-logLik(fitted.model)))

8.755082

print(p.value<- pchisq(deviance, df=3, lower.tail=FALSE))

0.03273083

#using fitted model for prediction

print(predict(fitted.model, data.frame(gender="F", age=20,

firsttime.rel="yes"), type="response"))

4.422816

2

6.2 Zero-truncated Negative Binomial Regres-

sion Model

6.2.1 Model De�nition

When a response variable y is a count variable that assumes only positive
values and is overly dispersed, then a zero-truncated negative binomial regres-
sion model 2 maybe be appropriate. For predictors x1, . . . , xk, the probability
distribution function of the response variable y is modeled as a negative bi-
nomial truncated at zero:

P(Y = y) =

(
r

r+λ

)r
Γ(r+y)
y! Γ(r)

(
λ
r+λ

)y
1−

(
r

r+λ

)r , y = 1, 2, . . . ,

where λ = exp
{
β0 + β1 x1 + · · · + βk xk

}
, and r is a positive integer. This

model is not a generalized linear regression. Even though the distribution
is a representative of the exponential family of distributions, the expected
value of y is

E(y) =
λ

1−
(

r
r+λ

)r , (6.3)

thus, the log link function relates lambda but not the expected value of y to
the linear regression.

2First considered in Gurmu, S. (1991). �Tests for detecting overdispersion in the positive
Poisson regression model�. Journal of Business and Economic Statistics, 9(2): 215 � 222.
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6.2.2 Fitted Model

In a �tted zero-truncated negative binomial regression model, the parameter
estimates are λ̂ = exp

{
β̂0 + β̂1 x1 + · · ·+ β̂k xk

}
, and r̂.

6.2.3 Interpretation of Estimated Regression Coe�cients

Since the mean of y, given in (6.3), describes a relatively complex relation
between the response and predictors, in this model, there is no easy interpre-
tation of the estimated regression coe�cients. Traditionally, interpretation
is omitted.

6.2.4 Predicted Response

Taking into account (6.3) and the above expression for the estimate of λ, for
a given set of predictors x0

1, x
0
2, . . . , x

0
k, the predicted response is computed as

y0 =
λ̂

1−
(

r̂

r̂+λ̂

)r̂ =
λ̂

1−
(
1 + λ̂/r̂

)−r̂
=

exp
{
β̂0 + β̂1 x

0
1 + · · ·+ β̂k x

0
k

}
1−

(
1 + exp

{
β̂0 + β̂1 x0

1 + · · ·+ β̂k x0
k

}
/r̂
)−r̂ .

6.2.5 SAS Implementation

A zero-truncated negative binomial model may be �tted by applying the fmm
procedure with the option dist=truncnegbin in the model statement.

• SAS produces the estimate 1/r̂, the reciprocal of the estimated dispersion
parameter. The term that SAS uses for its estimate is Scale Parameter.

6.2.6 R Implementation

The function vglm() in the library VGAM may be used to �t a zero-truncated
negative binomial regression model in R. The script is

summary(�tted.model.name<- vglm(response.name ∼ x1.name + · · ·
+ xk.name, data = data.name, family = posnegbinomial()))
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As part of the output, two intercepts are �tted, called (Intercept):1 and
(Intercept):2. The �rst one is the regression intercept β̂0, whereas the sec-
ond one is ln(r̂), the natural logarithm of the estimated dispersion parameter.

6.2.7 Example

Example 6.2. An assistant general manager of a luxury hotel is put in
charge of implementing budget-friendly new ideas to help reduce the number
of complaints by hotel guests. She collects data on a random sample of 28
guests who made at least one complaint, recording the number of complaints
made by the guest, the room �oor, whether the guest is an elite member,
and the duration of the stay (in days). SAS code and output are given below.

data hotel;

input ncomplaints floor member$ days@@;

cards;

2 6 no 3 1 7 no 12 3 6 no 7 3 7 yes 3

3 8 yes 2 9 3 no 4 1 8 no 4 2 6 yes 5

6 5 no 8 2 8 no 11 1 2 yes 5 2 3 no 3

2 4 no 8 2 3 no 6 7 4 yes 4 4 5 yes 5

8 2 yes 3 3 5 no 8 4 5 yes 4 4 2 no 3

1 2 yes 4 1 7 no 3 6 3 no 2 3 3 no 2

12 2 yes 4 2 6 no 1 1 6 no 3 5 3 no 8

;

proc format;

value $memberfmt "no"="ref" "yes"="member";

run;

proc fmm;

class member;

model ncomplaints=floor member days/dist=truncnegbin;

format member $memberfmt.;

run;

-2 Log Likelihood 108.6

Parameter Estimates for Truncated Negative Binomial Model
E�ect Estimate Pr > |z|
Intercept 1.9919 <.0001
�oor -0.2400 0.0076
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member member 0.3712 0.2560
member ref 0 .
days 0.006069 0.9319
Scale Parameter 0.2446

proc fmm;

model ncomplaints=/dist=trucnegbin;

run;

-2 Log Likelihood 118.1

data deviance_test;

deviance=118.1-108.6;

pvalue=1-probchi(deviance,3);

run;

proc print noobs;

run;

deviance pvalue
9.5 0.023331

The �tted model has parameter estimates λ̂ = exp
{

1.9919− 0.2400 · floor+
0.3712 ·member + 0.006069 · days

}
, and r̂ = 1/0.2446 = 4.0883. The model

has a decent �t since the p -value in the deviance test is smaller than 0.05.
In this model, the room �oor is the only signi�cant predictor at the 5% level.
As mentioned above, the estimated coe�cients do not yield a straightforward
interpretation.

To predict the number of complaints made by an elite member who stays for
two nights and whose room is on the fourth �oor, we compute:

y0 =
exp{1.9919− 0.2400 · 4 + 0.3712 + 0.006069 · 2}

1−
(
1 + exp{1.9919− 0.2400 · 4 + 0.3712 + 0.006069 · 2}/4.0883

)−4.0883

= 4.3707.

This is the same prediction as in SAS, which can be seen by running this code:

data prediction;

input floor member$ days;

cards;

4 yes 2

;
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data hotel;

set hotel prediction;

run;

proc fmm;

class member;

model ncomplaints=floor member days/dist=truncnegbin;

output out=outdata pred=p_ncomplaints;

run;

proc print data=outdata(firstobs=29) noobs;

var p_ncomplaints;

run;

p_ncomplaints
4.37130

The R code that reproduces the output in SAS is as follows:

hotel.data<-read.csv(file="./Example6.2Data.csv", header=TRUE, sep=",")

#fitting truncated negative binomial model

library(VGAM)

summary(fitted.model<- vglm(ncomplaints ~ floor + member + days,

data=hotel.data, family=posnegbinomial()))

Coe�cients:
Estimate Pr(>|z|)

(Intercept):1 1.991913 6.79e-05
(Intercept):2 1.408035 0.08584
�oor -0.239965 0.00523
memberyes 0.371197 0.24786
days 0.006074 0.93034

#checking model fit

null.model<- vglm(ncomplaints ~ 1, data=hotel.data, family=posnegbinomial())

print(deviance<- -2*(logLik(null.model)-logLik(fitted.model)))

9.489394

print(p.value<- pchisq(deviance, df=3, lower.tail=FALSE))
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0.02344446

#using fitted model for prediction

print(predict(fitted.model, data.frame(floor=4, member="yes", days=2),

type="response"))

4.371325

Note that since (Intercept):2 1.408035, the estimated dispersion param-
eter is r̂ = exp{1.408035} = 4.0879. 2

6.3 Zero-in�ated Negative Binomial Regression

Model

6.3.1 Model De�nition

A zero-in�ated negative binomial (ZINB) regression model 3 is used when
the response is a count variable that exhibits overdispersion and has a large
number of zeros that cannot be explained through chance alone. The ZINB
model better accounts for overdispersed characteristics than the zero-in�ated
Poisson regression. In the ZINB regression model, the response variable has
the probability mass function de�ned by:

P(Y = y) =


π + (1− π)

( r

r + λ

)r
, if y = 0,

(1− π)
( r

r + λ

)r Γ(r + y)

y! Γ(r)

( λ

r + λ

)y
, if y = 1, 2, . . . ,

where

π =
exp{β0 + β1 x1 + · · ·+ βm xm}

1 + exp{β0 + β1 x1 + · · ·+ βm xm}
, (6.4)

λ = exp
{
γ0 +γ1 xm+1 + · · ·+γk−m xk

}
, and r is a positive integer. (6.5)

The zero-in�ated negative binomial distribution is a mixture of two distribu-
tions and, thus, is not a member of the exponential family of distributions.
Consequently, the model doesn't belong to the class of generalized linear
models.

3Originally considered in Greene, W. H. (1994). �Some Accounting for Excess Zeros
and Sample Selection in Poisson and Negative Binomial Regression Models�. Working

Paper EC-94-10: Department of Economics, New York University.
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6.3.2 Fitted Model

By (6.4) and (6.5), the �tted zero-in�ated negative binomial model has the
estimated parameters of the form:

π̂ =
exp{β̂0 + β̂1 x1 + · · ·+ β̂m xm}

1 + exp{β̂0 + β̂1 x1 + · · ·+ β̂m xm}
, (6.6)

λ̂ = exp
{
γ̂0 + γ̂1 xm+1 + · · ·+ γ̂k−m xk

}
, and r̂. (6.7)

6.3.3 Interpretation of Estimated Regression Coe�cients

The mean of the response is (show it!) E(y) = (1 − π)λ, thus the inter-
pretation of the estimated regression coe�cients coincides with that in the
ZIP model (see Subsection 5.3.3), that is, the estimated beta coe�cients
are interpreted as in a binary logistic model, whereas the estimated gamma
coe�cients are interpreted as in the Poisson model.

6.3.4 Predicted Response

Making use of the formula for the mean response E(y) = (1 − π)λ, and ex-
pressions (6.6) and (6.7), we see that for some concrete values of predictors
x0

1, . . . , x
0
k, the predicted response is calculated as:

y0 =
(

1− exp{β̂0 + β̂1 x
0
1 + · · ·+ β̂m x

0
m}

1 + exp{β̂0 + β̂1 x0
1 + · · ·+ β̂m x0

m}

)
exp

{
γ̂0+γ̂1 x

0
m+1+· · ·+γ̂k−m x0

k

}
=

exp
{
γ̂0 + γ̂1 x

0
m+1 + · · ·+ γ̂k−m x

0
k

}
1 + exp{β̂0 + β̂1 x0

1 + · · ·+ β̂m x0
m}

.

6.3.5 SAS Implementation

The genmod procedure with the option dist=zinb and zeromodel statement
�ts a zero-in�ated negative binomial regression. The syntax is:

proc genmod data=data name;
class <list of categorical predictors>;

model response name=<list of predictors>/dist=zinb;
zeromodel <list of predictors of structural zeros>;

run;
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• SAS outputs the estimate of the dispersion parameter (called Dispersion)
that is equal to 1/r̂.

6.3.6 R Implementation

The function zeroinfl() in the library pscl may be used to �t a zero-
in�ated negative binomial regression in R. The syntax for this function is

summary(�tted.model.name<- zeroinfl(response.name ∼ x{m+1}.name
+ · · · + xk.name|x1.name + · · · + xm.name, data = data.name,
dist = "negbin")

• R prints the estimate of the dispersion parameter r and terms it Theta.

6.3.7 Example

Example 6.3. Sixty Californian weather stations with continuous records
between 1965 and 2014 were randomly chosen for the analysis. For each
station, its elevation (in meters), average annual temperature (in Fahrenheit),
and the number of years when it snowed were considered. The number of
snowy years ranged between 0 and 50, with 26 stations having zero years of
snow. We �t the zero-in�ated negative binomial regression with the elevation
as the predictor of π, and the average annual temperature as the predictor
of λ. The SAS code is presented below.

data weather;

input elevation avgtemp snowyears @@;

cards;

131.1 72.6 0 81.7 68.7 0 602 65.4 2

1338.1 58.8 50 18.3 67.0 2 310.3 64.6 1

18.3 67.5 2 182.9 67.9 0 1444.4 54.5 44

1278.6 57.0 27 1389.9 57.7 49 1295.4 59.9 21

712.6 62.2 7 256.0 69.2 0 27.4 65.4 0

974.8 56.3 44 271.3 70.7 0 381.9 63.9 26

71.0 68.9 0 1088.1 66.8 12 3.7 70.9 0

28.0 73.1 0 520.6 65.4 6 2139.7 60.1 24

974.8 59.1 44 18.3 67.6 0 18.0 67.7 0

101.5 70.3 2 44.2 68.2 0 327.7 68.0 6

125.0 68.0 0 999.7 62.1 50 146.3 67.4 0

77.4 66.6 1 146.3 68.7 0 240.8 69.9 0

391.7 65.4 0 222.5 66.9 0 1165.9 63.1 22

132.6 65.8 0 483.4 65.0 1 712.6 64.7 7

847.6 61.7 45 725.4 66.5 16 36.6 65.9 0
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81.7 68.6 0 6.1 69.1 0 73.8 67.4 0

1516.4 55.5 50 1160.7 61.5 50 111.3 67.9 1

21.0 67.6 1 12.2 66.2 0 83.8 66.2 0

1160.7 62.5 50 576.4 67.2 0 398.4 64.2 4

1431.0 59.6 41 41.5 67.9 7 1179.6 64.0 49

;

proc genmod;

model snowyears=avgtemp/dist=zinb;

zeromodel elevation;

run;

Log Likelihood -151.5915

Analysis Of Maximum Likelihood Parameter Estimates
Parameter Estimate Pr > ChiSq
Intercept 19.0986 <.0001
avgtemp -0.2593 <.0001
Dispersion 0.7447

Analysis Of Maximum Likelihood Zero In�ation Parameter Estimates
Parameter Estimate Pr > ChiSq
Intercept 1.2623 0.0228
elevation -0.0056 0.0054

proc genmod;

model snowyears=/dist=zinb;

zeromodel;

run;

Log Likelihood -178.2204

data deviance_test;

deviance=-2*(-178.2204-(-151.5915));

pvalue=1-probchi(deviance,2);

run;

proc print noobs;

run;

deviance pvalue
53.2578 2.724E-12
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The �tted model has parameter estimates π̂ = exp{1.2623−0.0056·elevation}/
(1 + exp{1.2623− 0.0056 · elevation}), λ̂ = exp{19.0986− 0.2593 · avgtemp},
and r̂ = 1/0.7447 = 1.3428. The model has a good �t as judged by the tiny
p -value for the goodness-of-�t test. Both average annual temperature and
elevation are signi�cant predictors in this model. For a one-meter increase
in elevation, the estimated odds in favor of zero years with snow change by
(exp{−0.0056} − 1) · 100% = −0.56%, that is, decrease by 0.56%. For a
one-degree increase in average annual temperature, the estimated average
number of snowy years changes by (exp{−0.2593} − 1) · 100% = −22.84%,
or decreases by 22.84%.

Consider the station at the elevation of 1,165.9 meters where the average an-
nual temperature is 63.1 degrees Fahrenheit. The observed number of years
when it snowed is 22. The value predicted by the model is found as

y0 =
exp{19.0986− 0.2593 · 63.1}

1 + exp{1.2623− 0.0056 · 1165.9}
= 15.3578.

The same predicted value is outputted by SAS if we run these statements:

data prediction;

input elevation avgtemp;

cards;

1165.9 63.1

;

data weather;

set weather prediction;

run;

proc genmod;

model snowyears=avgtemp/dist=zinb;

zeromodel elevation;

output out=outdata p=p_snowyears;

run;

proc print data=outdata(firstobs=61) noobs;

var p_snowyears;

run;

p_snowyears
15.3545
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The R code that produces matching output is below.

weather.data<-read.csv(file="./Example6.3Data.csv",

header=TRUE, sep=",")

#fitting zero-inflated negative binomial model

library(pscl)

summary(fitted.model<- zeroinfl(snowyears ~ avgtemp|elevation,

data = weather.data, dist = "negbin"))

Count model coe�cients (negbin with log link):
Estimate Pr(>|z|)

(Intercept) 19.09858 4.04e-09
avgtemp -0.25931 5.23e-07

Zero-in�ation model coe�cients (binomial with logit link):
Estimate Pr(>|z|)

(Intercept) 1.262349 0.02124
elevation -0.005642 0.00349

Theta = 1.3428

#checking model fit

null.model<- zeroinfl(snowyears ~ 1, data=weather.data, dist="negbin")

print(deviance<- -2*(logLik(null.model)-logLik(fitted.model)))

53.25778

print(p.value<- pchisq(deviance, df=2, lower.tail=FALSE))

2.724081e-12

#using fitted model for prediction

print(predict(fitted.model,

data.frame(elevation=1165.9, avgtemp=63.1)))

15.35455

2
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6.4 Hurdle Negative Binomial Regression Model

6.4.1 Model De�nition

For a count response variable with overdispersion, zeros may be modeled in-
dependently of positive responses. The hurdle negative binomial regression
model 4 accomplishes just that. In this model, assuming x1, . . . , xk are the
predictors, the response variable y has the probability distribution function

P(Y = y) =


π, if y = 0,

(1− π)

(
r

r+λ

)r
Γ(r+y)
y! Γ(r)

(
λ
r+λ

)y
1−

(
r

r+λ

)r , if y = 1, 2, . . . ,

where

π =
exp{β0 + β1 x1 + · · ·+ βm xm}

1 + exp{β0 + β1 x1 + · · ·+ βm xm}
, (6.8)

λ = exp
{
γ0 +γ1 xm+1 + · · ·+γk−m xk

}
, and r is a positive integer. (6.9)

This model is not a generalized linear model, since the distribution is a
mixture distribution.

6.4.2 Fitted Model

From (6.8) and (6.9), in the �tted hurdle negative binomial regression model,
the estimated parameters take the form

π̂ =
exp{β̂0 + β̂1 x1 + · · ·+ β̂m xm}

1 + exp{β̂0 + β̂1 x1 + · · ·+ β̂m xm}
, (6.10)

λ̂ = exp
{
γ̂0 + γ̂1 xm+1 + · · ·+ γ̂k−m xk

}
, and r̂. (6.11)

6.4.3 Interpretation of Estimated Regression Coe�cients

The estimated beta coe�cients are interpreted as in the logistic regression,
in terms of the odds in favor of zero. Also, it can be shown (do it!) that the
expected response depends on the parameters via the relation

E(y) = (1− π)
λ

1−
(

r
r+λ

)r = (1− π)
λ

1−
(

1 + λ/r
)−r .

4First studied in Mullahy, J. (1986). �Speci�cation and testing of some modi�ed count
data models�. Journal of Econometrics, 33(3): 341 � 365.
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This relation is too complex to yield an easy interpretation of the estimated
gamma regression coe�cients.

6.4.4 Predicted Response

In view of the above expression for the expected value of y, and also (6.10)
and (6.11), the predicted value y0, when predictor variables assume certain
�xed values x0

1, . . . , x
0
k, can be found as

y0 =
(

1 − exp{β̂0 + β̂1 x
0
1 + · · ·+ β̂m x

0
m}

1 + exp{β̂0 + β̂1 x0
1 + · · ·+ β̂m x0

m}

)
×

×
exp

{
γ̂0 + γ̂1 x

0
m+1 + · · ·+ γ̂k−m x

0
k

}
1−

(
1 + exp

{
γ̂0 + γ̂1 x0

m+1 + · · ·+ γ̂k−m x0
k

}
/r̂
)−r̂

=

(
1 + exp{β̂0 + β̂1 x

0
1 + · · ·+ β̂m x

0
m}
)−1

exp
{
γ̂0 + γ̂1 x

0
m+1 + · · ·+ γ̂k−m x

0
k

}
1−

(
1 + exp

{
γ̂0 + γ̂1 x0

m+1 + · · ·+ γ̂k−m x0
k

}
/r̂
)−r̂ .

6.4.5 SAS Implementation

Invoking the fmm procedure with the dist=truncnegbin option in the model
statement �ts the hurdle negative binomial model. The complete syntax
follows.

proc fmm data=data name;
class <list of categorical predictors>;

model response name=<list of predictors>/dist=truncnegbin;
model + /dist=constant;

probmodel <list of predictors of zeros>;
output out=outdata name pred=predicted response name;

run;

• As explained in Subsection 5.4.5, when writing down the �tted model, the
estimated regression coe�cients in π̂ have to be taken with the opposite sign.
• SAS estimates the inverse of the dispersion parameter r, and terms it Scale
Parameter.
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6.4.6 R Implementation

The function hurdle() in the library pscl may be used to �t a hurdle neg-
ative binomial model in R. The syntax in this case is

summary(�tted.model.name<- hurdle(response.name ∼ x{m+1}.name + · · ·
+ xk.name |x1.name + · · · + xm.name, data=data.name, dist="negbin",

zero.dist= "binomial", link="logit"))

• R prints the estimate of the dispersion parameter. The name for the quan-
tity is Theta.
• Similar to SAS, R evaluates 1− π, and therefore, the estimated regression
coe�cients for π have to be taken with the opposite sign.

6.4.7 Example

Example 6.4. A bank wants to estimate the risk of delinquent credit card
accounts for new applicants. A random sample of 35 applicants is drawn.
The selected variables are the number of previously delinquent credit card
accounts, age, gender, current income (high/low), and the total number of
years ever unemployed. The conjecture is that age could account for zero
delinquent accounts, whereas gender, income, and the number of unemployed
years might be associated with positive responses. The code that �ts a hurdle
negative binomial model is as follows:

data creditcards;

input ndelinqaccounts age gender$ income$ nunemplyears @@;

cards;

12 53 M Low 8 0 26 F Low 4 16 49 M Low 8 0 23 M Low 5

7 28 F High 6 2 44 M Low 2 11 49 F Low 7 4 43 M Low 4

0 25 M Low 0 0 28 M High 5 4 25 M High 1 5 40 M High 6

1 37 M Low 3 0 48 M High 1 7 36 F Low 5 0 48 M Low 4

13 56 M Low 10 0 22 M Low 0 7 36 F High 4 3 35 M Low 1

7 35 F High 0 0 42 F Low 0 1 56 M Low 4 5 22 M Low 0

0 38 F Low 7 4 52 M High 5 1 30 F Low 6 0 27 M High 1

0 32 F High 3 4 46 F Low 1 2 32 M Low 2 7 26 F Low 6

0 23 M Low 5 3 30 M High 2 0 25 M Low 3

;

proc fmm;

class gender income;
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model ndelinqaccounts=gender income

nunemplyears/dist=truncnegbin;

model+/dist=constant;

probmodel age;

run;

-2 Log Likelihood 144.5

Parameter Estimates for Truncated Negative Binomial Model
E�ect gender income Estimate Pr > |z|
Intercept 0.7462 0.0153
gender F 0.2343 0.3352
gender M 0 .
income High 0.1526 0.5687
income Low 0 .
nunemplyears 0.1740 <.0001
Scale Parameter 0.09103

Parameter Estimates for Mixing Probabilities
E�ect Estimate Pr > |z|
Intercept -2.3203 0.1006
age 0.08147 0.0442

proc fmm;

model ndelinqaccounts=/dist=truncnegbin;

model+/dist=constant;

probmodel;

run;

-2 Log Likelihood 161.4

data deviance_test;

deviance=161.4-144.5;

pvalue=1-probchi(deviance,4);

run;

proc print noobs;

run;

deviance pvalue
16.9 0.002021359

168



In the �tted model, the estimated parameters are π̂ =
exp{2.3203− 0.08147 · age}

1 + exp{2.3203− 0.08147 · age}
,

λ̂ = exp{0.7462+0.2343·female+0.1526·highincome+0.1740·nunemplyears},
and r̂ = 1/0.09103 = 10.9854. This model �ts the data well, as demonstrated
by a small p -value in the deviance test. Age is a signi�cant predictor of π,
whereas the number of unemployed years is the only signi�cant predictor
of λ. For a one-year increase in age, the estimated odds in favor of zero
delinquent accounts change by (exp{−0.08147} − 1) · 100% = −7.82% or is
reduced by 7.82%. Further, due to the complexity of the model, we will not
attempt to interpret the estimated gamma regression coe�cients.

To predict the number of delinquent accounts for a 45-year-old male with
high income and zero years of unemployment, we compute

y0 =
exp{0.7462 + 0.1526}

(
1 + exp{2.3203− 0.08147 · 45}

)−1

1−
(

1 + exp{0.7462 + 0.1526}/10.9854
)−10.9854 = 2.1878.

The same value is outputted in SAS:

data prediction;

input age gender$ income$ nunemplyears;

cards;

45 M High 0

;

data creditcards;

set creditcards prediction;

run;

proc fmm;

class gender income;

model ndelinqaccounts=gender income

nunemplyears/dist=truncnegbin;

model +/dist=constant;

probmodel age;

output out=outdata pred=p_ndelinqaccounts;

run;

proc print data=outdata(firstobs=36) noobs;

var p_ndelinqaccounts;

run;
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p_ndelinqaccounts
2.18752

The script and output in R are given below.

creditcards.data<-read.csv(file="./Example6.4Data.csv",

header=TRUE, sep=",")

#specifying reference categories

gender.rel<- relevel(creditcards.data$gender, ref="M")

income.rel<- relevel(creditcards.data$income, ref="Low")

#fitting hurdle negative binomial model

library(pscl)

summary(fitted.model<- hurdle(ndelinqaccounts ~ gender.rel

+ income.rel + nunemplyears|age, data=creditcards.data,

dist="negbin", zero.dist="binomial", link="logit"))

Count model coe�cients (truncated negbin with log link):
Estimate Pr(>|z|)

(Intercept) 0.74619 0.0153
gender.relF 0.23427 0.3352
income.relHigh 0.15257 0.5687
nunemplyears 0.17401 7.51e-05

Zero hurdle model coe�cients (binomial with logit link):
Estimate Pr(>|z|)

(Intercept) -2.32034 0.1006
age 0.08147 0.0442

Theta: count = 10.9851

#checking model fit

null.model<- hurdle(ndelinqaccounts ~ 1, data=creditcards.data,

dist="negbin", zero.dist="binomial", link="logit")

print(deviance<- -2*(logLik(null.model)-logLik(fitted.model)))

16.80772

print(p.value<- pchisq(deviance, df=4, lower.tail=FALSE))

0.002106471
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#using fitted model for prediction

print(predict(fitted.model, data.frame(age=45, gender.rel="M",

income.rel="High", nunemplyears=0)))

2.187517

2

Exercises for Chapter 6

Exercise 6.1. Consider a random experiment consisting of a sequence of
independent trials each with outcomes of success or failure. And let p denote
the probability of success.
(a) Argue that X, the number of successes observed until the rth failure, is
a negative binomial random variable with the probability mass function

P (X = x) =

(
x+ r − 1

x

)
px (1− p)r, x = 0, 1, 2, . . . .

Show that for a �xed r, this distribution is a special case of the exponential
family of distributions, that is, it can be written in the form (1.3) where
θ = ln p and φ = 1.

(b) Using the substitution p =
λ

r + λ
, rewrite the probability mass function

in part (a) as

P (X = x) =
( r

r + λ

)r Γ(r + x)

x! Γ(r)

( λ

r + λ

)x
, x = 0, 1, 2, . . . .

Derive that E(X) = λ and Var(X) = λ+λ2/r. Hint: Use the fact that for a
negative binomial random variable with a mass function de�ned in part (a),

the mean is
pr

1− p
, and variance is

pr

(1− p)2
.

(c) Suppose the parameter r goes to in�nity, but the mean λ is constant.
Show that the limiting probability mass function is that of a Poisson distri-
bution, that is, prove that

lim
r→∞

( r

r + λ

)r Γ(r + x)

x! Γ(r)

( λ

r + λ

)x
=
λx

x!
lim
r→∞

Γ(r + x)

Γ(r) (r + λ)x

(
1 +

λ

r

)−r
=
λx

x!
e−λ, x = 0, 1, 2, . . . .
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Exercise 6.2. Graduate students in marine biology conducted an experi-
ment on mussel Mytilus californicus survival. They prepared 24 cages with
50 mussels each and placed them in various plots in tidal areas along the
shoreline. The food was supplied daily at high, medium, or low levels. Max-
imum and minimum daily temperatures were logged by an automatic data
recorder positioned in each cage. The number of mussels that died in each
cage was recorded two weeks later. The data are:

Max Min Feeding N dead Max Min Feeding N dead
temp temp level mussels temp temp level mussels

77 60 high 0 83 62 med 8
88 59 high 1 75 63 med 3
78 62 high 1 76 61 med 2
85 60 high 2 86 62 med 1
78 61 high 0 92 62 low 2
89 63 high 0 89 64 low 3
92 62 high 2 96 68 low 19
75 58 high 0 86 62 low 7
80 59 med 1 74 61 low 3
90 61 med 2 88 62 low 12
74 63 med 4 97 63 low 9
92 62 med 6 91 61 low 7

(a) Model mussel mortality via the negative binomial regression. Present
the �tted model. What predictors turn out to be signi�cant at the 5% level?
(b) How good it the model �t?
(c) How would you interpret the estimated signi�cant coe�cients?
(d) Predict the number of dead mussels that were fed a high level of food,
and were located in an area with a maximum temperature of 75 degrees and
minimum temperature of 60 degrees.

Exercise 6.3. Researchers in K-12 education are conducting a study on a
daily allowance that high-school students receive from their parents. They
randomly select 30 students and record their age, gender, whether they have
had a job during the past summer, and an approximate weekly allowance (in
units of $5). The data are:
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Age Gender Job Allowance Age Gender Job Allowance

15 M yes 0 15 M no 0
18 F yes 3 15 M no 12
18 M yes 3 18 M no 3
14 F no 6 15 M no 4
16 F yes 2 18 M yes 0
17 F yes 1 15 F no 8
18 F yes 1 15 M no 5
15 F no 4 15 M no 5
16 M yes 1 14 M no 4
16 F no 9 16 F yes 3
16 M no 3 17 M no 2
16 M no 10 18 M yes 2
16 F yes 0 17 F yes 11
14 M no 9 15 M no 6
17 M yes 1 16 M no 12

(a) Is the negative binomial regression appropriate in modeling the amount
of weekly allowance? Fit the model and discuss the signi�cance of the pre-
dictor variables.
(b) How good is the model �t?
(c) Interpret the estimated signi�cant regression coe�cients.
(d) Predict the amount of weekly allowance for a male student, age 16, who
hasn't held a summer job.

Exercise 6.4. A state park is interested in proper allocation of recreational
resources. As part of the analysis, data were collected on 30 randomly chosen
kayak rentals. The number of kayaks rented, party size, length of route (in
hours), and whether the party camped overnight (and returned kayaks the
next day). Note that some parties owned some number of kayaks and rented
just a few, so party size is not necessarily linearly proportional to the number
of rented kayaks. In addition, rented kayaks could be two- or three-seaters.
The data are given below.
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N rented Party Route Camped N rented Party Route Camped
kayaks size length overnight kayaks size length overnight

6 12 1 yes 7 14 3 no
2 4 3 yes 2 7 12 no
3 7 12 no 2 6 12 yes
2 6 3 no 3 18 6 yes
1 3 2 no 2 4 1 yes
2 7 6 yes 2 4 4 yes
2 4 2 no 4 9 12 yes
1 3 6 yes 3 10 2 no
3 9 12 yes 1 2 3 no
5 10 4 no 12 12 4 no
1 2 1 no 10 12 12 yes
2 6 12 no 2 7 6 yes
4 9 4 no 3 8 12 no
1 3 2 no 7 14 3 no
3 7 2 no 1 3 6 yes

(a) Argue that a zero-truncated negative binomial regression would be ap-
propriate to model the number of rented kayaks. Fit the model. Discuss the
signi�cance of predictors.
(b) Discuss model �t.
(c) Interpret the estimated signi�cant regression coe�cients, whatever are
possible to interpret.
(d) Predict the number of rented kayaks for a party of 5 people who plan to
take a 6-hour route and to camp overnight.

Exercise 6.5. A sociologist is studying the popularity of YouTube vlogs.
He selects a random sample of 40 video channels and records the number of
new videos posted in the past month, the total number of videos posted by
the vlogger, the number of subscribers (in thousands), the number of views
(in thousands), and the type of videos (comedy, fashion, life advice, news,
popular science, or new products and brands). The data are summarized in
the following table.
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N new Num Num Num Video N new Num Num Num Video
videos videos subscr views type videos videos subscr views type

3 81 3.9 205.8 life advice 3 212 1.3 121.1 products
4 188 27.0 213.6 fashion 4 86 4.2 160.2 fashion
1 55 10.1 176.8 products 12 517 85.4 163.7 life advice
4 123 14.4 59.7 science 7 100 8.0 91.5 news
1 65 5.0 508.7 life advice 9 130 2.8 38.9 life advice
2 118 3.5 280.6 comedy 2 34 2.4 151.9 fashion
3 119 4.7 25.7 fashion 30 396 7.6 118.4 comedy
1 47 4.4 135.8 products 12 52 0.9 617.2 life advice
2 405 58.0 423.6 comedy 9 43 7.7 542.6 comedy
4 160 10.9 212.8 science 22 304 2.6 150.5 news
4 123 1.3 204.1 fashion 10 430 1.4 242.1 comedy
1 96 1.1 449.0 comedy 2 76 15.2 106.7 fashion
2 44 2.7 217.7 fashion 2 53 3.6 121.1 fashion
1 71 8.0 12.3 life advice 9 98 1.0 160.2 news
4 190 6.7 433.3 life advice 19 56 4.7 163.7 news
1 59 9.5 90.4 science 4 102 0.9 91.5 fashion
1 36 9.2 423.9 products 2 43 0.5 38.9 fashion
3 511 92.5 158.4 products 14 81 3.2 151.9 products
2 112 4.2 225.7 products 4 86 3.2 118.4 products
4 156 32.4 140.8 comedy 10 90 2.6 617.2 products

(a) Run the zero-truncated negative binomial model to regress the number
of new videos on the other variables. Write the predicted model. What pre-
dictors turn out to be signi�cant at the 5% level?
(b) Does the model have a good �t?
(c) Interpret estimated signi�cant regression coe�cients, if possible.
(d) Find the predicted number of new videos for a vlogger who posted a to-
tal of 87 videos on popular science, has 50,000 subscribers, and has 254,000
views.

Exercise 6.6. A large insurance company that o�ers a range of insurance
policies would like to model the number of insurance claims submitted within
�ve years. The data are retrieved for a random sample of 40 policyholders
who have been with the company for at least ten years. The data include
the number of claims made in the past �ve years, the number of claims made
during the previous �ve years, current age, and gender of each policyholder.
The data are given in the table below.
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N claims N claims
Age Gender

N claims N claims
Age Genderpast previous past previous

5 years 5 years 5 years 5 years

1 1 39 M 8 3 69 F
1 2 66 M 0 2 70 M
7 0 56 M 7 2 70 M
3 4 43 F 3 1 54 F
4 1 42 F 2 1 38 M
4 2 52 M 3 1 50 F
0 0 39 F 0 1 62 M
4 6 68 M 8 2 54 M
6 1 41 F 0 0 59 M
0 1 54 F 0 1 61 F
4 2 50 F 0 0 69 F
6 4 57 M 8 3 57 F
5 4 47 F 0 0 57 M
1 2 43 M 12 5 72 F
1 1 36 M 0 2 42 M
1 2 55 F 6 2 42 F
5 5 57 F 7 2 66 M
8 5 53 M 7 4 53 M
0 1 72 M 6 0 52 M
0 1 67 F 3 3 57 F

(a) Fit a zero-in�ated negative binomial regression to model the number of
claims made in the past �ve years. Model the probability of structural ab-
sence of claims as a function of the number of claims made in the previous
�ve years. Model the positive responses as related to age and gender. What
predictors are signi�cant at the 5% level?
(b) Interpret the estimated signi�cant coe�cients.
(c) How good is the model �t? Give a quantitative answer.
(d) What is the predicted number of claims made in the past �ve years by a
55-year-old female policyholder who has made no claims in the previous �ve
years?

Exercise 6.7. The aim of the study conducted by dental researchers is to
model decayed, missing, and �lled teeth (DMFT) index data. They consid-
ered dental records for 38 randomly selected patients and picked age, gender,
and oral hygiene as predictors. The data are presented in the table below.
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DMFT
Age Gender

Oral DMFT
Age Gender

Oral
index hygiene index hygiene

0 28 F high 11 29 M low
2 30 F med 0 20 F high
0 26 F high 0 25 F high
15 55 M high 1 22 F high
8 40 F med 7 37 M med
2 19 M med 2 56 F med
0 24 F med 15 63 M high
8 77 F low 0 21 M med
5 48 F high 5 55 F high
3 21 F med 0 25 F high
11 59 M med 2 68 M low
9 50 M high 4 25 M med
1 24 F med 6 59 F low
0 26 M med 9 58 F med
1 23 F high 0 37 M med
2 24 F med 0 18 M high
1 21 M low 16 73 M med
2 40 M med 3 23 M med
0 31 F med 8 65 M med

(a) Fit a zero-in�ated negative binomial model, regressing the probability
of structural zeros of DMFT index on age. Regress positive observations of
DMFT index on gender and levels of oral hygiene. Write down the predicted
model. Discuss the signi�cance of predictors at the 5% signi�cance level.
(b) Analyze the �t of the model.
(c) Give interpretation of the estimated signi�cant coe�cients.
(d) Find the predicted value of the DMFT index for a man, aged 28, with a
high level of oral hygiene.

Exercise 6.8. Consider the data in Exercise 6.6.
(a) Fit a hurdle negative binomial regression to model the number of claims
made in the past �ve years. Model the probability of zero claims as a func-
tion of the number of claims made in the previous �ve years. Model the
positive responses as related to age and gender. Write down the �tted model
explicitly. What predictors are signi�cant at the 5% level?
(b) Discuss goodness-of-�t of the model.
(c) Interpret the estimated signi�cant coe�cients. What is the direction of
the relationships?
(d) Find the predicted number of claims made in the past �ve years by a
55-year-old female policyholder who has made no claims in the previous �ve
years.
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Exercise 6.9. Researchers in sports medicine are interested in modeling
the number of sport-related injuries a collegiate athlete has during games
throughout her/his career. They select 30 records that contain the total
number of injuries (major or minor), the athlete's gender, how many sports
the athlete has participated in, and the number of injuries during practice.
The researchers hypothesize that a lower number of injuries during practice
might help explain zero injuries during games, while a larger number of sports
might account for a larger number of injuries. They also hypothesize that
female athletes have fewer injuries than males. The data are:

N game
Gender N sports

N practice N game
Gender N sports

N practice
injuries injuries injuries injuries

0 M 2 2 2 F 2 0
0 M 1 1 0 F 2 0
1 F 2 3 1 F 2 2
1 F 1 0 2 M 2 3
2 F 1 1 0 M 1 0
0 F 2 1 3 M 2 4
0 M 1 0 5 F 1 4
6 M 2 3 0 M 2 0
7 M 1 5 7 M 3 4
2 M 2 4 7 F 2 3
8 M 3 1 3 F 3 4
10 M 2 2 8 M 1 2
4 M 1 7 3 F 3 5
0 F 1 1 7 M 3 6
2 M 2 2 12 M 2 5

(a) Fit a hurdle negative binomial regression model. Specify the �tted model.
Does it support the researchers' hypotheses? Discuss the signi�cance of pre-
dictor variables at the 5% signi�cance level.
(b) Analyze the model �t.
(c) Give an interpretation of the estimated signi�cant coe�cients.
(d) Calculate the predicted number of injuries for a male athlete who through-
out his college years has participated in two sports, and who has received one
minor injury during practice games.
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Chapter 7

Regression Models for Proportion

Response

Suppose the response variable y assumes continuous values in an interval
(0,1), where the endpoints may or may not be included. In this chapter,
we discuss four models that might be applied in this case: beta regression,
zero-in�ated beta regression (if zero is included in the range), one-in�ated
beta regression (if one is a possible observation), and zero-one-in�ated beta
regression (where both zero and one may be observed).

7.1 Beta Regression Model

7.1.1 Model De�nition

Consider a response variable y that represents a proportion of events of in-
terest (for instance, the proportion of books returned on-time in a library per
week). We will suppose that y assumes values that range continuously be-
tween zero and one, not including the endpoints. The beta regression model 1

with predictors x1, . . . , xk prescribes that y follows beta distribution with the
probability density function

f(y) =
yµφ−1 (1− y)(1−µ)φ−1

B(µφ, (1− µ)φ)
, 0 < y < 1, (7.1)

where the location parameter

µ =
exp{β0 + β1 x1 + · · ·+ βk xk}

1 + exp{β0 + β1 x1 + · · ·+ βk xk}
, (7.2)

1Originally proposed in Ferrari, S.L.P. and F. Cribari-Neto (2004). �Beta regression for
modelling rates and proportions.� Journal of Applied Statistics, 31(7): 799 � 815.
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and the dispersion (or scale) parameter φ is a positive real number. It
can be shown (see Exercise 7.1) that y has mean E(y) = µ and variance

Var(y) =
µ(1− µ)

1 + φ
.

7.1.2 Fitted Model

According to (7.2), the estimated parameters of the �tted model are

µ̂ =
exp{β̂0 + β̂1 x1 + · · ·+ β̂k xk}

1 + exp{β̂0 + β̂1 x1 + · · ·+ β̂k xk}
and φ̂. (7.3)

Technically speaking, the beta regression belongs to the class of generalized
linear models. After a proper re-parametrization, it can be shown that the
beta distribution belongs to the exponential family of distributions, and the
mean response µ is related to the predictors through the logit link function.

7.1.3 Interpretation of Estimated Regression Coe�cients

From (7.3),
µ

1− µ
= exp{β0 + β1 x1 + · · ·+ βk xk}. Thus,

• for a unit increase in a numerical predictor x1, the percent change in the

estimated ratio
µ̂

1− µ̂
=

Ê(y)

1− Ê(y)
is (exp{β̂1}− 1) · 100%, controlling for the

other predictors.
• If x1 is an indicator variable, then exp{β̂1} · 100% represents the percent

ratio of
µ̂

1− µ̂
for x1 = 1 and that for x1 = 0, keeping all the other predictors

�xed.

7.1.4 Predicted Response

Since the mean of the response y is µ and using (7.3), we see that for some
given predictors x0

1, . . . , x
0
k, the predicted response satis�es

y0 =
exp{β̂0 + β̂1 x

0
1 + · · ·+ β̂k x

0
k}

1 + exp{β̂0 + β̂1 x0
1 + · · ·+ β̂k x0

k}
. (7.4)
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7.1.5 SAS Implementation

In SAS, a beta regression is estimated via the glimmix procedure (which
stands for �generalized linear mixed� modeling). The syntax is:

proc glimmix data=data name;
class catpredictor1 name (ref="level name") catpredictor2 name

(ref="level name") . . . ;
model response name=<list of predictors>/dist=beta link=logit solution;

output out=outdata pred(ilink)=predicted name;
run;

• The option solution requests the estimates of the regression coe�cients.
• SAS outputs the value of φ̂, which is termed Scale.
• By default, SAS outputs the linear predictor β̂0 + β̂1 x

0
1 + · · ·+ β̂k x

0
k. The

option (ilink) (stands for �inverse link�) computes the predicted value of
the response according to the formula (7.4).

7.1.6 R Implementation

The function betareg() in the library betareg �ts the beta regression model.
The syntax is

summary(�tted.model.name<- betareg(response.name∼x1.name+· · ·
+xk.name, data=data.name, link="logit"))

• In the output, the estimate of the dispersion parameter is termed (phi).

7.1.7 Example

Example 7.1. A professor of Library and Information Science has collected
a random sample of 28 libraries and recorded the total number of books each
library has (in thousands), number of card holders (in thousands), library
location (urban or rural), number of books checked out during one month,
and number of the books that were returned on-time, that is, on or before
the due date. The professor has calculated the proportion of books returned
on time as the ratio between the number of books returned on time and the
number of books checked out and is interested in studying associations be-
tween this proportion and the three predictor variables. The code below �ts
the beta regression model.
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data libraries;

input nbooks ncardholders location$ propontime @@;

cards;

9.8 0.7 rural 0.39 25.4 7.8 urban 0.81

14.7 1.7 urban 0.71 38.2 9.5 urban 0.85

35.5 5.8 urban 0.74 14.1 2.6 rural 0.47

16.3 2.9 rural 0.72 33.3 7.7 urban 0.83

19.9 3.1 rural 0.69 38.0 4.6 urban 0.76

44.1 8.3 urban 0.85 34.2 5.4 urban 0.86

12.7 2.7 rural 0.53 28.7 3.4 urban 0.78

9.5 1.0 rural 0.55 31.8 8.7 urban 0.78

21.1 6.2 urban 0.82 12.1 2.3 rural 0.42

26.3 0.9 rural 0.88 16.4 8.4 urban 0.88

11.8 1.6 rural 0.45 31.6 8.8 rural 0.64

24.6 4.5 rural 0.81 25.3 1.8 urban 0.73

12.4 1.9 rural 0.38 16.2 7.3 rural 0.66

13.7 6.2 urban 0.84 29.4 6.3 urban 0.72

;

proc glimmix;

class location(ref="rural");

model propontime=nbooks ncardholders location/

dist=beta link=logit solution;

run;

-2 Log Likelihood -53.40

Parameter Estimates
E�ect location Estimate Pr > |t|
Intercept -0.2058 0.3896
nbooks 0.02624 0.0480
ncardholders 0.04494 0.2999
location urban 0.5236 0.0316
location rural 0 .
Scale 20.6478

proc glimmix;

model propontime=/dist=beta link=logit;

run;

-2 Log Likelihood -30.66

data deviance_test;
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deviance=-30.66-(-53.40);

pvalue=1-probchi(deviance,3);

run;

proc print noobs;

run;

deviance pvalue
22.74 0.000045749

In the �tted model, the estimated mean has the form

µ̂ =
exp{−0.2058 + 0.02624 · nbooks+ 0.04494 · ncardholders+ 0.5236 · urban}

1 + exp{−0.2058 + 0.02624 · nbooks+ 0.04494 · ncardholders+ 0.5236 · urban}
,

and the estimated dispersion parameter is φ̂ = 20.6478. The model �ts the
data well since the p -value of the corresponding test is tiny. The number
of books and library location are signi�cant predictors of the proportion of
books returned on time at the 5% level. As the number of books increases by
one thousand, the estimated ratio of the mean proportion of books returned

on-time and the mean proportion of books not returned on-time,
µ̂

1− µ̂
, in-

creases by (exp{0.02624}− 1) · 100% = 2.66%. This ratio for urban libraries
is exp{0.5236} · 100% = 168.81% of that for rural libraries.

To illustrate the calculations required for prediction, suppose we would like
to predict the proportion of books that are returned on time for a library in
a rural area with 15,000 books and 2,500 card holders. We have

y0 =
exp{−0.2058 + 0.02624 · 15 + 0.04494 · 2.5}

1 + exp{−0.2058 + 0.02624 · 15 + 0.04494 · 2.5}

=
exp{0.30015}

1 + exp{0.30015}
= 0.57448.

The same prediction can be computed in SAS by typing:

data prediction;

input nbooks ncardholders location$;

cards;

15 2.5 rural

;

data libraries;
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set libraries prediction;

run;

proc glimmix;

class location;

model propontime=nbooks ncardholders location/dist=beta

link=logit solution;

output out=outdata pred(ilink)=p_propontime;

run;

proc print data=outdata (firstobs=29) noobs;

var p_propontime;

run;

p_propontime
0.57447

The R code and output for this example are:

libraries.data<-read.csv(file="./Example7.1Data.csv",

header=TRUE, sep=",")

#specifying reference category

location.rel<- relevel(libraries.data$location, ref="rural")

#fitting beta regression model

library(betareg)

summary(fitted.model<- betareg(propontime ~ nbooks + ncardholders

+ location.rel, data=libraries.data, link="logit"))

Estimate Pr(>|z|)
(Intercept) -0.20579 0.3729
nbooks 0.02624 0.0447
ncardholders 0.04494 0.2960
location.relurban 0.52357 0.0239
(phi) 20.648

#checking model fit

null.model<- betareg(propontime ~ 1, data=libraries.data, link="logit")

print(deviance<- -2*(logLik(null.model)-logLik(fitted.model)))

22.73631
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print(p.value<- pchisq(deviance, df=3, lower.tail=FALSE))

4.582989e-05

#using fitted model for prediction

print(predict(fitted.model, data.frame(nbooks=15, ncardholders=2.5,

location.rel="rural")))

0.5744721

2

7.2 Zero-in�ated Beta Regression Model

7.2.1 Model De�nition

When zero is a regular observation for the modeled proportion, a zero-in�ated
beta regression may be used. In this model, the response variable y has a
mixture of a beta distribution and a point mass at zero. That is, the distri-
bution function is modeled as

f(y) =

π0, if y = 0,

(1− π0)
yµφ−1 (1− y)(1−µ)φ−1

B(µφ, (1− µ)φ)
, if 0 < y < 1,

(7.5)

where the probability of zero

π0 =
exp{β0 + β1 x1 + · · ·+ βm xm}

1 + exp{β0 + β1 x1 + · · ·+ βm xm}
, (7.6)

the location parameter

µ =
exp{γ0 + γ1 xm+1 + · · ·+ γk−m xk}

1 + exp{γ0 + γ1 xm+1 + · · ·+ γk−m xk}
, (7.7)

and the dispersion parameter φ is a positive real number. Being a mixture
of beta distribution and a degenerate distribution at zero, this distribution
doesn't belong to the exponential family, and thus the model is not a gener-
alized linear model.

7.2.2 Fitted Model

By (7.6) and (7.7), the �tted model has the estimated parameters of the form:

π̂0 =
exp{β̂0 + β̂1 x1 + · · ·+ β̂m xm}

1 + exp{β̂0 + β̂1 x1 + · · ·+ β̂m xm}
, (7.8)
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µ̂ =
exp{γ̂0 + γ̂1 xm+1 + · · ·+ γ̂k−m xk}

1 + exp{γ̂0 + γ̂1 xm+1 + · · ·+ γ̂k−m xk}
, and φ̂. (7.9)

7.2.3 Interpretation of Estimated Regression Coe�cients

If the two sets of predictor variables are di�erent, the estimated beta and
gamma coe�cients yield the following interpretation. Estimated beta coe�-
cients are interpreted as in the binary logistic regression in terms of odds in
favor of observing a zero proportion (see Subsection 3.1.3). As for estimated
gamma coe�cients, for �xed values of x1, . . . , xk, we can assume that π0 is
a constant, and, so µ can be viewed as the conditional mean response given
that observation is strictly above zero, that is, µ = E(y|y > 0) (prove it!).
Thus, assuming all the other x variables are unchanged,
• for a unit increase in a continuous xm+1, the quantity (exp{γ̂1}− 1) · 100%

represents percent change in the estimated ratio
µ̂

1− µ̂
=

Ê(y|y > 0)

1− Ê(y|y > 0)
.

• If xm+1 is an indicator variable, then exp{γ̂1} · 100% is interpreted as the

estimated percent ratio of
µ̂

1− µ̂
for xm+1 = 1 and that for xm+1 = 0.

7.2.4 Predicted Response

Since E(y) = (1 − π0)µ (show it!), and using (7.8) and (7.9), we see that
for a �xed set x0

1, . . . , x
0
k, the predicted response y0 is found according to the

formula:

y0 =
(

1− exp{β̂0 + β̂1 x
0
1 + · · ·+ β̂m x

0
m}

1 + exp{β̂0 + β̂1 x0
1 + · · ·+ β̂m x0

m}

) exp{γ̂0 + γ̂1 x
0
m+1 + · · ·+ γ̂k−m x

0
k}

1 + exp{γ̂0 + γ̂1 x0
m+1 + · · ·+ γ̂k−m x0

k}

=
(

1+exp{β̂0+β̂1 x
0
1+· · ·+β̂m x0

m}
)−1 exp{γ̂0 + γ̂1 x

0
m+1 + · · ·+ γ̂k−m x

0
k}

1 + exp{γ̂0 + γ̂1 x0
m+1 + · · ·+ γ̂k−m x0

k}
.

(7.10)

7.2.5 SAS Implementation

There is currently no ready procedure that would �t a zero-in�ated beta re-
gression in SAS. One would need to use the nlmixed procedure (�non-linear
mixed�) that allows to specify any log-likelihood function of the response vari-
able. In this procedure, all predictors must be either numeric or 0 -1 variables.
We express the log-likelihood function in terms of the natural logarithm of

186



the gamma function lgamma, that is, we write the log-likelihood function
as: for y = 0, log-likelihood= lnπ0, and, for 0 < y < 1, log-likelihood=

ln
[

(1−π0)
yµφ−1 (1− y)(1−µ)φ−1

B(µφ, (1− µ)φ)

]
= ln

[
(1−π0)

Γ(φ)

Γ(µφ)Γ((1− µ)φ)
yµφ−1 (1−

y)(1−µ)φ−1
]

= ln(1−π0)+ln Γ(φ)− ln Γ(µφ)− ln Γ((1−µ)φ)+(µφ−1) ln y+

((1− µ)φ− 1) ln(1− y).

The syntax for �tting the zero-in�ated beta regression and predicting re-
sponse is below. It is assumed that the last row in the data set contains the
values for prediction.

proc nlmixed data=data name;
parms b0=init value . . . bm=init value g0=init value . . .

g{k-m}=init value phi=init value;
pi0 = exp(b0+b1*x1 name+. . . +bm*xm name)/

(1 + exp(b0+b1*x1 name +. . . +bm*xm name));
mu = exp(g0+g1*x{m+1} name+. . . +g{k-m}*xk name)/

(1 + exp(g0+g1*x{m+1} name+. . . +g{k-m}*xk name));
if (response name=0) then loglikelihood name=log(pi0);
else loglikelihood name =log(1-pi0)+lgamma(phi)-lgamma(mu*phi)

-lgamma((1-mu)*phi)+(mu*phi-1)*log(response name)
+((1-mu)*phi-1)*log(1-response name);

model response name ∼ general(loglikelihood name);
predict (1-pi0)*mu out=outdata name;

run;

• In the parms statement, the initial values for the variables b0,..., bm,

g0,..., g{k-m}, and phi can be chosen arbitrarily.
• The predicted response can be found in the last row of the data set
outdata name.

7.2.6 R Implementation

In R, the function gamlss() in the library gamlss can be applied to �t a
zero-in�ated beta regression. Here �gamlss� stands for �generalized additive
models for location, scale, and shape�. R uses the term mu for the location
parameter µ, nu for the probability of zero π0, and sigma for the log of the
dispersion parameter φ, that is, sigma= lnφ. The syntax is

summary(�tted.model.name<- gamlss(response.name ∼ x{m+1}.name + · · ·
+ xk.name, mu.link="logit", nu.formula=∼ x1.name + · · · + xm.name,
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nu.link="logit", data=data.name, family=BEZI))

If one wishes to predict a response for a new data point, the quickest way to
do that is to use function predictAll() as shown below:

parampred.name<- predictAll(�tted.model, newdata

=data.frame(catpredictor1.name="value", . . . ,
numpredictork.name=value), type="response")

The parampred.name contains predicted values for parameters mu and nu,
thus the predicted response can be retrieved by specifying the expression

print(pred.name<- (1-parampred.name$nu)*parampred.name$mu)

• It is important to know that the variables in newdata must match the
variables in the original data data name. It means that prior to running the
function gamlss(), all the predictor variables that are computed or modi-
�ed must be added to the data set data.name. This can be accomplished by
giving them names that reference the data set, data.name$variable.name.

7.2.7 Example

Example 7.2. A college Parking and Transportation Services conducted
a survey regarding the mode of transportation to campus in the past four
weeks. For this analysis, a strati�ed sample of 60 respondents was drawn to
oversample people who sometimes bike to campus. The variables recorded are
the number of trips to campus in the past four weeks, the number of times the
respondent biked to campus, the respondent's status (student/faculty/sta�),
the respondent's gender (F/M), duration of parking permit (6, 9, or 12-
month, modeled as a continuous variable), and distance to campus. The
code below �ts a zero-in�ated beta regression to the proportion of time a
respondent biked to campus. Gender and distance to campus were used as
predictors of π0, whereas status and duration of parking permit were used to
model µ.

data transport;

input ntrips nbiked status$ gender$ parking distance @@;

propbiked=nbiked/ntrips;

faculty=(status="faculty");

staff=(status="staff");

male=(gender="M");
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cards;

26 6 student F 6 7 13 0 faculty M 9 15 17 0 faculty M 9 31

15 0 faculty M 9 9 17 0 student M 6 34 20 13 staff F 6 3

17 0 student F 9 17 14 0 faculty F 9 10 26 7 student M 6 3

8 5 faculty F 12 3 17 0 student F 12 22 18 0 student M 12 8

15 0 staff F 12 4 17 7 faculty F 12 5 20 15 staff M 9 6

8 0 student F 6 5 26 9 student M 9 3 12 11 faculty F 6 12

13 5 student M 9 7 8 6 faculty M 9 5 9 0 student M 9 7

12 2 faculty F 9 8 11 0 student F 6 13 8 1 staff F 9 16

14 0 faculty M 12 35 9 2 staff F 12 8 19 12 student M 6 5

20 0 faculty M 12 60 28 11 staff M 9 1 10 0 faculty F 6 30

14 4 staff M 12 4 8 5 student F 6 2 9 0 staff F 12 16

12 0 faculty M 12 15 12 0 student F 9 25 21 19 faculty M 9 3

23 22 faculty F 6 14 27 22 faculty M 9 6 14 3 student F 6 12

15 9 faculty M 12 3 8 2 student F 9 6 15 5 faculty F 12 6

12 10 student F 6 3 8 5 faculty M 9 4 14 4 student F 6 2

15 0 student M 6 10 12 7 student F 6 6 23 7 staff M 12 2

18 13 student F 6 2 9 0 student M 6 16 10 9 faculty M 9 6

8 1 staff M 12 7 12 2 student F 6 12 14 0 staff M 12 7

8 7 student F 12 12 16 14 student M 6 2 11 4 faculty F 12 5

10 0 faculty F 12 22 16 0 staff M 12 4 10 0 faculty M 12 11

;

proc nlmixed;

parms b0=0.1 b1=0.1 b2=0.1 g0=0.1 g1=0.1 g2=0.1 g3=0.1 phi=0.1;

pi0=exp(b0+b1*male+b2*distance)/(1+exp(b0+b1*male+b2*distance));

mu=exp(g0+g1*faculty+g2*staff+g3*parking)/(1+

exp(g0+g1*faculty+g2*staff+g3*parking));

if (propbiked=0) then loglikelihood=log(pi0);

else loglikelihood=log(1-pi0)+lgamma(phi)-lgamma(mu*phi)

-lgamma((1-mu)*phi)+(mu*phi-1)*log(propbiked)

+((1-mu)*phi-1)*log(1-propbiked);

model propbiked ~ general(loglikelihood);

run;

-2 Log Likelihood 33.3

Parameter Estimates
Parameter Estimate Pr > |t|
b0 -4.4897 0.0006
b1 1.7728 0.0484
b2 0.3396 0.0009
g0 1.1040 0.0665
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g1 1.0635 0.0127
g2 0.03280 0.9455
g3 -0.1638 0.0475
phi 3.9871

proc nlmixed;

parms b0=0.1 g0=0.1 phi=0.1;

pi0=exp(b0)/(1+exp(b0));

mu=exp(g0)/(1+exp(g0));

if (propbiked=0) then loglikelihood=log(pi0);

else loglikelihood=log(1-pi0)+lgamma(phi)-lgamma(mu*phi)

-lgamma((1-mu)*phi)+(mu*phi-1)*log(propbiked)

+((1-mu)*phi-1)*log(1-propbiked);

model propbiked ~ general(loglikelihood);

run;

-2 Log Likelihood 77.5

data deviance_test;

deviance=77.5-33.3;

pvalue=1-probchi(deviance,5);

run;

proc print noobs;

run;

deviance pvalue
44.2 2.1095E-8

In the �tted model, the estimates of the parameters are

π̂0 =
exp{−4.4897 + 1.7728 ·male+ 0.3396 · distance}

1 + exp{−4.4897 + 1.7728 ·male+ 0.3396 · distance}
,

µ̂ =
exp{1.1040 + 1.0635 · faculty + 0.03280 · staff − 0.1638 · parking}

1 + exp{1.1040 + 1.0635 · faculty + 0.03280 · staff − 0.1638 · parking}
,

and φ̂ = 3.9871. The model �ts the data well as evidenced by a tiny p -value in
the deviance test. At the 5% signi�cance level, male and distance are signi�-
cant predictors of π0, whereas faculty and parking signi�cantly predict µ. The
estimated odds in favor of not biking to campus for males are exp{1.7728} ·
100% = 588.73% of those for females, and for a one-mile increase in distance,
these estimated odds increase by (exp{0.3396} − 1) · 100% = 40.44%. The

estimated ratio
µ̂

1− µ̂
for faculty is exp{1.0635} ·100% = 289.65% of that for
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students. For a one-month increase in the duration of parking permit, the
estimated ratio changes by (exp{−0.1638} − 1) · 100% = −15.11%, that is,
it decreases by 15.11%.

To predict the response for a female student who lives 3 miles away from
campus and who purchases a parking permit for 6 months during a year.
Utilizing (7.10), we have

y0 =
(

1+exp{−4.4897+0.3396·3}
)−1 exp{1.1040− 0.1638 · 6}

1 + exp{1.1040− 0.1638 · 6}
= 0.5143.

In SAS, the following lines of code produce the same predicted value. We
present only the relevant quantities in the output.

data prediction;

input parking distance faculty staff male;

cards;

6 3 0 0 0

;

data transport;

set transport prediction;

run;

proc nlmixed;

parms b0=0.1 b1=0.1 b2=0.1 g0=0.1 g1=0.1 g2=0.1

g3=0.1 phi=0.1;

pi0=exp(b0+b1*male+b2*distance)/(1+

exp(b0+b1*male+b2*distance));

mu=exp(g0+g1*faculty+g2*staff+g3*parking)/(1+

exp(g0+g1*faculty+g2*staff+g3*parking));

if (propbiked=0) then loglikelihood=log(pi0);

else loglikelihood=log(1-pi0)+lgamma(phi)-lgamma(mu*phi)

-lgamma((1-mu)*phi)+(mu*phi-1)*log(propbiked)

+((1-mu)*phi-1)*log(1-propbiked);

model propbiked ~ general(loglikelihood);

predict (1-pi0)*mu out=outdata;

run;

proc print data=outdata (firstobs=61) noobs;

var Pred;

run;
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Pred
0.51433

Finally, the script and relevant output in R are given below.

transport.data<- read.csv(file="./Example7.2Data.csv", header=TRUE,

sep=",")

#computing new variables and making them part of the original data set

transport.data$propbiked<- transport.data$nbiked/transport.data$ntrips

transport.data$faculty<-ifelse(transport.data$status=="faculty",1,0)

transport.data$staff<- ifelse(transport.data$status=="staff",1,0)

transport.data$male<- ifelse(transport.data$gender=="M",1,0)

#fitting zero-inflated beta regression model

library(gamlss)

summary(fitted.model<- gamlss(propbiked ~ faculty + staff + parking,

mu.link="logit", nu.formula= ~ male + distance, nu.link="logit",

data=transport.data, family=BEZI))

Mu link function: logit
Mu Coe�cients:

Estimate Pr(>|t|)
(Intercept) 1.10390 0.0673
faculty 1.06338 0.0131
sta� 0.03265 0.9458
parking -0.16374 0.0482

Sigma link function: log
Sigma Coe�cients:

Estimate
(Intercept) 1.3831

Nu link function: logit
Nu Coe�cients:

Estimate Pr(>|t|)
(Intercept) -4.48970 0.000699
male 1.77277 0.049067
distance 0.33957 0.000960

#checking model fit

null.model<- gamlss(propbiked ~ 1, mu.link="logit", nu.formula= ~ 1,

nu.link="logit", data=transport.data, family=BEZI)

print(deviance<- -2*(logLik(null.model)-logLik(fitted.model)))
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44.18192

print(p.value<- pchisq(deviance, df=5, lower.tail=FALSE))

2.127389e-08

#using fitted model for prediction

param.pred<- predictAll(fitted.model, newdata

=data.frame(parking=6, distance=3, faculty=0, staff=0,

male=0), type="response")

print((1-param.pred$nu)*param.pred$mu)

0.5143409

2

7.3 One-in�ated Beta Regression Model

7.3.1 Model De�nition

Suppose y variable assumes values in the interval (0,1], that is, 1 is a possible
observation. Then the data may be modeled by a one-in�ated beta regres-
sion. In this model, the response variable y has a mixture beta distribution
with a point mass at one. That is, the distribution function of y is

f(y) =

(1− π1)
yµφ−1 (1− y)(1−µ)φ−1

B(µφ, (1− µ)φ)
, if 0 < y < 1,

π1, if y = 1.

Here the probability of one

π1 =
exp{β0 + β1 x1 + · · ·+ βm xm}

1 + exp{β0 + β1 x1 + · · ·+ βm xm}
, (7.11)

the location parameter

µ =
exp{γ0 + γ1 xm+1 + · · ·+ γk−m xk}

1 + exp{γ0 + γ1 xm+1 + · · ·+ γk−m xk}
, (7.12)

and the dispersion parameter φ is a positive real number.

Analogously to zero-in�ated beta regression, since the underlying distribu-
tion is a mixture distribution, this model is not a generalized linear regression
model.
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7.3.2 Fitted Model

In view of expressions (7.11) and (7.12), the �tted model has the estimated
parameters

π̂1 =
exp{β̂0 + β̂1 x1 + · · ·+ β̂m xm}

1 + exp{β̂0 + β̂1 x1 + · · ·+ β̂m xm}
, (7.13)

µ̂ =
exp{γ̂0 + γ̂1 xm+1 + · · ·+ γ̂k−m xk}

1 + exp{γ̂0 + γ̂1 xm+1 + · · ·+ γ̂k−m xk}
, and φ̂. (7.14)

7.3.3 Interpretation of Estimated Regression Coe�cients

The estimated beta coe�cients are interpreted as in the logistic regression in
terms of odds in favor of observing a one (see Subsection 3.1.3). As concerns
the estimated gamma coe�cients, for �xed values of x1, . . . , xm, we can as-
sume π1 is a constant, and so, µ represents the conditional mean response
given that an observation is below one; that is, µ = E(y|y < 1) (show it!).
Therefore, under the assumption that all the other predictors stay �xed,
• when a continuous xm+1 increases by one unit, the percent change in the

estimated ratio
µ̂

1− µ̂
=

Ê(y|y < 1)

1− Ê(y|y < 1)
is (exp{γ̂1} − 1) · 100%.

• For an indicator variable xm+1, the quantity exp{γ̂1} · 100% represents the

percent ratio of
µ̂

1− µ̂
for x1 = 1 and that for x1 = 0.

7.3.4 Predicted Response

It can be proven (do it!) that E(y) = π1 + (1− π1)µ. Thus, utilizing (7.13)
and (7.14), we �nd that for given x0

1, . . . , x
0
k, the predicted response y0 satis-

�es:

y0 =
exp{β̂0 + β̂1 x

0
1 + · · ·+ β̂m x

0
m}

1 + exp{β̂0 + β̂1 x0
1 + · · ·+ β̂m x0

m}
+
(

1− exp{β̂0 + β̂1 x
0
1 + · · ·+ β̂m x

0
m}

1 + exp{β̂0 + β̂1 x0
1 + · · ·+ β̂m x0

m}

)
×

×
exp{γ̂0 + γ̂1 x

0
m+1 + · · ·+ γ̂k−m x

0
k}

1 + exp{γ̂0 + γ̂1 x0
m+1 + · · ·+ γ̂k−m x0

k}
=
(

1+exp{β̂0+β̂1 x
0
1+· · ·+β̂m x0

m}
)−1

×

×
(

exp{β̂0 + β̂1 x
0
1 + · · ·+ β̂m x

0
m}+

exp{γ̂0 + γ̂1 x
0
m+1 + · · ·+ γ̂k−m x

0
k}

1 + exp{γ̂0 + γ̂1 x0
m+1 + · · ·+ γ̂k−m x0

k}

)
.

(7.15)
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7.3.5 SAS Implementation

The procedure nlmixed is used to �t a one-in�ated beta regression. The
syntax is:
proc nlmixed data=data name;

parms b0=init value . . . bm=init value g0=init value . . .
g{k-m}=init value phi=init value;

pi1 = exp(b0+b1*x1 name+. . . +bm*xm name)/
(1 + exp(b0+b1*x1 name +. . . +bm*xm name));

mu = exp(g0+g1*x{m+1} name+. . . +g{k-m}*xk name)/
(1 + exp(g0+g1*x{m+1} name+. . . +g{k-m}*xk name));

if (response name=1) then loglikelihood name=log(pi1);
else loglikelihood name =log(1-pi1)+lgamma(phi)-lgamma(mu*phi)

-lgamma((1-mu)*phi)+(mu*phi-1)*log(response name)
+((1-mu)*phi-1)*log(1-response name);

model response name ∼ general(loglikelihood name);
predict pi1+(1-pi1)*mu out=outdata name;

run;

7.3.6 R Implementation

In R, the function gamlss() in the library gamlss �ts a one-in�ated beta re-
gression. In the output, mu is the location parameter µ, nu is the probability
of one π1, and sigma= lnφ. The syntax is
summary(�tted.model.name<- gamlss(response.name ∼ x{m+1}.name + · · ·
+ xk.name, mu.link="logit", nu.formula=∼x1.name+· · · +xm.name,
nu.link="logit", data =data.name, family=BEOI))

parampred.name<- predictAll(�tted.model, newdata

=data.frame(catpredictor1.name="value", . . . ,
numpredictork.name=value), type="response")

print(parampred.name$nu+(1-parampred.name$nu)*parampred.name$mu)

• Variables listed in newdata must be contained in the original data set
data name.

7.3.7 Example

Example 7.3. A medical student is studying medication adherence in pa-
tients with high cholesterol. He collects data on patients' age (in years),
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gender (M/F), depression (1=yes/0=no), diabetes (1=yes/0=no), and total
number of medications taken daily. In addition, he obtains pharmaceutical
records and calculates the proportion of days covered (pdc) for cholesterol-
lowering medication, that is, the proportion of days that the patient has
taken the medication. For patients who consistently adhere to their medica-
tion regimen, the proportion of days covered is equal to one, and therefore
�tting one-in�ated regression would be appropriate. Below are the state-
ments and outputs in SAS. In what follows π1 is regressed on diabetes and
the number of medications, whereas µ is modeled as a function of age, gen-
der, and depression.

data medadherence;

input age gender$ depression diabetes nmeds pdc@@;

female=(gender="F");

cards;

62 M 0 1 2 1.00 73 M 1 0 5 0.96 56 M 0 0 5 0.08

58 M 0 0 4 0.32 56 F 0 0 3 1.00 62 F 0 0 4 0.86

31 F 0 1 5 0.62 59 M 0 0 5 0.23 64 M 0 1 3 0.56

67 F 0 0 4 0.91 59 F 0 0 3 0.39 90 M 1 0 4 0.86

83 M 0 1 2 1.00 70 F 0 0 2 0.41 58 M 1 0 6 0.36

61 F 0 0 2 0.85 70 F 1 1 4 0.87 56 M 0 0 3 0.28

67 F 0 0 3 0.80 60 F 0 0 3 0.16 67 M 0 1 3 1.00

67 M 1 0 3 0.24 71 M 1 0 2 0.64 67 F 1 1 2 1.00

46 M 0 0 3 0.48 62 F 0 0 6 0.32 63 M 0 1 1 0.27

67 F 0 1 4 0.92 83 M 0 0 2 0.83 62 M 0 1 4 0.47

71 F 0 1 3 1.00 49 F 1 0 5 0.26 66 M 0 0 1 1.00

61 M 0 0 4 0.51 66 F 0 0 4 0.66 71 M 0 0 5 0.82

58 F 0 0 3 0.40 70 F 0 1 4 0.88 83 M 0 1 2 1.00

64 M 0 0 5 0.39

;

proc nlmixed;

parms b0=0.1 b1=0.1 b2=0.1 g0=0.1 g1=0.1 g2=0.1 g3=0.1 phi=0.1;

pi1=exp(b0+b1*diabetes+b2*nmeds)/(1+exp(b0+b1*diabetes+b2*nmeds));

mu=exp(g0+g1*age+g2*female+g3*depression)/(1+

exp(g0+g1*age+g2*female+g3*depression));

if (pdc=1) then loglikelihood=log(pi1);

else loglikelihood =log(1-pi1)+lgamma(phi)-lgamma(mu*phi)

-lgamma((1-mu)*phi)+ (mu*phi-1)*log(pdc)

+((1-mu)*phi-1)*log(1-pdc);

model pdc ~ general(loglikelihood);

run;
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-2 Log Likelihood 6.4

Parameter Estimates
Parameter Estimate Pr > |t|
b0 1.5679 0.3348
b1 2.4896 0.0327
b2 -1.4320 0.0214
g0 -3.9846 0.0041
g1 0.06073 0.0045
g2 0.7162 0.0281
g3 0.1210 0.7489
phi 4.5022

proc nlmixed;

parms b0=0.1 g0=0.1 phi=0.1;

pi1=exp(b0)/(1+exp(b0));

mu=exp(g0)/(1+exp(g0));

if (pdc=1) then loglikelihood=log(pi1);

else loglikelihood=log(1-pi1)+lgamma(phi)-lgamma(mu*phi)

-lgamma((1-mu)*phi)+(mu*phi-1)*log(pdc)+((1-mu)*phi-1)*log(1-pdc);

model pdc ~ general(loglikelihood);

run;

-2 Log Likelihood 36.4

data deviance_test;

deviance=36.4-6.4;

pvalue=1-probchi(deviance,5);

run;

proc print noobs;

run;

deviance pvalue
30 0.000014749

The parameters of the �tted model are

π̂1 =
exp{1.5679 + 2.4896 · diabetes− 1.4320 · nmeds}

1 + exp{1.5679 + 2.4896 · diabetes− 1.4320 · nmeds}
,

µ̂ =
exp{−3.9846 + 0.06073 · age+ 0.1210 · depression+ 0.7162 · female}

1 + exp{−3.9846 + 0.06073 · age+ 0.7162 · female+ 0.1210 · depression}
,
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and φ̂ = 4.5022. This model has a good �t due to a low p -value in the
goodness-of-�t test. Diabetes and the number of medications are signi�-
cant predictors of the probability of one, whereas age and female are sig-
ni�cant predictors of µ, at the 0.05 level of signi�cance. For patients with
diabetes, the estimated odds in favor of perfect medication adherence are
(exp{2.4896}) · 100% = 1, 205.65% of those without diabetes. If the num-
ber of medications increases by one, the estimated odds in favor of 100%-
adherence change by (exp{−1.4320} − 1) · 100% = −76.12%, that is, de-
creases by 76.12%. When age increases by one year, the estimated ratio

µ̂

1− µ̂
=

Ê(y|y < 1)

1− Ê(y|y < 1)
increases by (exp{0.06073} − 1) · 100% = 6.26%.

For females, this estimated ratio is exp{0.7162} ·100% = 204.66% of that for
males.

Further, according to (7.15), the predicted proportion of days covered for a
77-year-old female patient who has no depression but has diabetes and who
takes a total of three medications is computed as

y0 =
(

1 + exp{1.5679 + 2.4896− 1.4320 · 3}
)−1

×

×
(

exp{1.5679+2.4896−1.4320·3}+ exp{−3.9846 + 0.06073 · 77 + 0.7162}
1 + exp{−3.9846 + 0.06073 · 77 + 0.7162}

)
= 0.8900.

SAS calculates the same predicted value by running the following statements.

data prediction;

input age female depression diabetes nmeds;

cards;

77 1 0 1 3

;

data medadherence;

set medadherence prediction;

run;

proc nlmixed;

parms b0=0.1 b1=0.1 b2=0.1 g0=0.1 g1=0.1

g2=0.1 g3=0.1 phi=0.1;

pi1=exp(b0+b1*diabetes+b2*nmeds)/(1+

exp(b0+b1*diabetes+b2*nmeds));

mu=exp(g0+g1*age+g2*female+g3*depression)/(1+
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exp(g0+g1*age+g2*female+g3*depression));

if (pdc=1) then loglikelihood=log(pi1);

else loglikelihood=log(1-pi1)+lgamma(phi)-lgamma(mu*phi)

-lgamma((1-mu)*phi)+(mu*phi-1)*log(pdc)+((1-mu)*phi-1)*log(1-pdc);

model pdc ~ general(loglikelihood);

predict pi1+(1-pi1)*mu out=outdata;

run;

proc print data=outdata (firstobs=41) noobs;

var Pred;

run;

Pred
0.89003

The R script and output for this example are presented below.

medadherence.data<-read.csv(file="./Example7.3Data.csv",

header=TRUE, sep=",")

#computing new variable and making it part of the original data set

medadherence.data$female<- ifelse(medadherence.data$gender=="F",1,0)

#fitting one-inflated beta regression model

library(gamlss)

summary(fitted.model<- gamlss(pdc ~ age + female + depression,

mu.link="logit", nu.formula= ~ diabetes + nmeds, nu.link="logit",

data=medadherence.data, family=BEOI))

Mu link function: logit
Mu Coe�cients:

Estimate Pr(>|t|)
(Intercept) -3.97514 0.00469
age 0.06058 0.00511
female 0.71620 0.02951
depression 0.12123 0.74883

Sigma link function: log
Sigma Coe�cients:

Estimate
(Intercept) 1.504
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Nu link function: logit
Nu Coe�cients:

Estimate Pr(>|t|)
(Intercept) 1.5679 0.3362
diabetes 2.4896 0.0342
nmeds -1.4320 0.0227

#checking model fit

null.model<- gamlss(pdc ~ 1, mu.link="logit", nu.formula= ~ 1,

nu.link="logit", data=medadherence.data, family=BEOI)

print(deviance<- -2*(logLik(null.model)-logLik(fitted.model)))

29.97312

print(p.value<- pchisq(deviance, df=5, lower.tail=FALSE))

1.492935e-05

#using fitted model for prediction

param.pred<- predictAll(fitted.model, newdata=data.frame(age=77,

female=1, depression=0, diabetes=1, nmeds=3), type="response")

print(param.pred$nu+(1-param.pred$nu)*param.pred$mu)

0.889879

2

7.4 Zero-one-in�ated Beta Regression Model

7.4.1 Model De�nition

In the zero-one-in�ated beta regression model, the response variable y changes
according to a distribution with the density:

f(y) =


π0, if y = 0,

(1− π0 − π1) yµφ−1 (1−y)(1−µ)φ−1

B(µφ, (1−µ)φ)
, if 0 < y < 1,

π1, if y = 1.

Here the parameters depend on predictors x1, . . . , xk via the following rela-
tions:

µ =
exp{β0 + β1 x1 + · · ·+ βm xm}

1 + exp{β0 + β1 x1 + · · ·+ βm xm}
, (7.16)
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π0 =
ν

1 + ν + τ
, and π1 =

τ

1 + ν + τ
, (7.17)

where

ν = exp{γ0+γ1 xm+1+· · ·+γl−m xl} and τ = exp{ζ0+ζ1 xl+1+· · ·+ζk−l xk},
(7.18)

and the dispersion parameter φ is a positive constant. Note that the proba-
bilities of zero and one cannot be modeled completely independently of each
other, and the given parametrization makes the regression parameters es-
timable.

Also, similarly to zero- and one-in�ated beta regressions, in this situation the
distribution of the response is a mixture distribution, and thus, the regression
doesn't belong to the class of generalized linear models.

7.4.2 Fitted Model

Taking into account (7.16)-(7.18), the estimated parameters in the �tted
model can be written as:

µ̂ =
exp{β̂0 + β̂1 x1 + · · ·+ β̂m xm}

1 + exp{β̂0 + β̂1 x1 + · · ·+ β̂m xm}
, (7.19)

π̂0 =
ν̂

1 + ν̂ + τ̂
, and π̂1 =

τ̂

1 + ν̂ + τ̂
, (7.20)

where

ν̂ = exp{γ̂0 + γ̂1 xm+1 + · · ·+ γ̂l−m xl}, τ̂ = exp{ζ̂0 + ζ̂1 xl+1 + · · ·+ ζ̂k−l xk},
(7.21)

and the estimated dispersion parameter is φ̂.

7.4.3 Interpretation of Estimated Regression Coe�cients

It can be shown (do it!) that if π0 and π1 are �xed, then µ is the conditional
expectation of y given 0 < y < 1, i.e., µ = E(y|0 < y < 1). Therefore,

• if x1 is a continuous predictor, then (exp{β̂1}− 1) · 100% gives the percent

change in the estimated ratio
µ̂

1− µ̂
=

Ê(y|0 < y < 1)

1− Ê(y|0 < y < 1)
for a one-unit in-

crease in x1, provided all the other predictors stay unchanged.
• If x1 is an indicator variable, then exp{β̂1} · 100% represents the percent

ratio of
µ̂

1− µ̂
for x1 = 1 and that for x1 = 0.
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Further, the parameters for this model are chosen in such a way (prove it!)

that ν =
π0

1− π0 − π1

=
P(y = 0)

P(0 < y < 1)
and τ =

π1

1− π0 − π1

=
P(y = 1)

P(0 < y < 1)
.

That means that ν represents the odds in favor of y = 0 versus 0 < y < 1,
and τ represents the odds of y = 1 against 0 < y < 1. Consequently,
estimated gamma coe�cients are interpreted as in the logistic regression (see
Subsection 3.1.3) in terms of odds of observing y = 0 versus 0 < y < 1,
and estimated zeta coe�cients are interpreted as in the logistic regression in
terms of odds of observing y = 1 against 0 < y < 1.

7.4.4 Predicted Response

The mean of y in this model is equal to (show it!)

E(y) = π1 + (1− π0 − π1)µ =
τ + µ

1 + ν + τ
,

and thus, in view of (7.19)-(7.21), the predicted response for given values of
x variables, x0

1, x
0
2, . . . , x

0
k, may be found through the formula

y0 =
(

exp{ζ̂0 + ζ̂1 x
0
l+1 + · · ·+ ζ̂k−l x

0
k}+

exp{β̂0 + β̂1 x
0
1 + · · ·+ β̂m x

0
m}

1 + exp{β̂0 + β̂1 x0
1 + · · ·+ β̂m x0

m}

)
×
(

1+exp{γ̂0 + γ̂1 x
0
m+1 + · · ·+ γ̂l−m x

0
l }+exp{ζ̂0 + ζ̂1 x

0
l+1 + · · ·+ ζ̂k−l x

0
k}
)−1

.

7.4.5 SAS Implementation

Zero-one-in�ated beta regression model can be programmed into SAS, using
the nlmixed procedure. The general syntax is:

proc nlmixed data=data name;
parms b0=init value <...> bm=init value g0=init value <...>
g{l-m}=init value z0=init value <...> z{k-l}=init value phi=init value;

mu = exp(b0+b1*x1 name+· · · +bm*xm name)/(1+exp(b0+b1*x1 name
+· · · +bm*xm name));

nu = exp(g0+g1*x{m+1} name+· · · +g{l-m}*xl name);
tau = exp(z0+z1*x{l+1} name+z2*· · · +z{k-l}*xk name);

pi0=nu/(1+nu+tau);

pi1=tau/(1+nu+tau);

if (response name=0) then loglikelihood name=log(pi0);
if (response name=1) then loglikelihood name=log(pi1);

if (response name >0 and response name <1) then
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loglikelihood name=log(1-pi0-pi1)+lgamma(phi)-lgamma(mu*phi)
-lgamma((1-mu)*phi)+(mu*phi-1)*log(response name)
+((1-mu)*phi-1)*log(1-response name);

model response name ∼ general(loglikelihood name);
predict pi1+(1-pi0-pi1)*mu out=outdat name;

run;

proc print data=outdata;

run;

7.4.6 R Implementation

In R, zero-one-in�ated beta regression is �tted via function gamlss() in the
library gamlss. The syntax is

�tted.model.name<- gamlss(response.name∼x1.name+· · · +xm.name, mu.link="logit",

nu.formula=∼x{m+1}.name+· · · +xl.name, nu.link="log", tau.formula=∼x{l+1}.name+· · ·
+xk.name, tau.link="log", data =data.name, family=BEINF)

parampred.name<- predictAll(�tted.model, newdata=data.frame(catpredictor1.name
="value", . . . , numpredictork.name=value), type="response")

print((parampred.name$tau+parampred.name$mu)/(1+parampred.name$nu
+parampred.name$tau))

• In this model, the parameter Sigma is related to φ as Sigma2 =
1

1 + φ
.

Moreover, R outputs the value of (Intercept) that relates to Sigma via a
logit link function. Thus, to recover the estimate of φ from (Intercept), we
use the formula

φ̂ =
1− Sigma2

Sigma2
=

1−
(

exp{(Intercept)}/(1 + exp{(Intercept)})
)2

(
exp{(Iintercept)}/(1 + exp{(Iintercept)})

)2 .

• Variables listed in newdata must be contained in the original data set
data name.
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7.4.7 Example

Example 7.4. As an experiment, a school district has implemented an
online math coaching program in a single K-8 school. Administrators are
interested in �nding out what factors predict the completion of weekly as-
signments. The data are collected on students' grade level (5, 6, 7, or 8, �tted
as a continuous variable), gender (M/F), score in math class (in percent, can
exceed 100 due to extra credit), and proportion of solved exercises in a certain
weekly online assignment. Since some students may not have completed any
exercises, a zero is a possible response. On the other hand, some students
might have completed all of the exercises, so one is also a plausible response.
The proportion of completed exercises for all other students would be be-
tween zero and one. The setting calls for a zero-one-in�ated beta regression,
which is �tted below. Here, the parameter µ is regressed on gender, ν on
mathscore, and τ on grade.

data assignment;

input grade gender$ mathscore propassign @@;

female=(gender="F");

cards;

5 M 87.5 0.62 7 F 68.4 0.00 8 F 100.0 0.95 6 M 84.5 0.50

7 F 76.1 1.00 5 M 87.3 0.32 6 M 66.9 0.80 5 F 91.5 1.00

7 M 90.6 0.45 6 M 85.9 0.27 7 M 97.1 0.55 6 F 104.9 0.85

8 F 98.2 1.00 5 F 103.8 0.95 5 F 80.2 0.97 8 M 56.1 0.00

7 M 68.1 0.00 7 M 76.3 0.70 6 M 97.3 0.30 8 F 66.3 1.00

7 M 79.0 0.00 6 M 73.9 0.46 8 M 77.3 0.22 7 M 80.2 0.72

7 M 77.1 1.00 8 F 103.1 1.00 7 M 104.8 1.00 7 F 55.7 0.00

7 M 69.4 0.67 5 F 83.6 0.68 8 F 81.4 1.00 7 M 84.7 0.59

6 F 92.1 0.51 5 M 97.8 0.65 7 M 88.2 0.00 8 F 69.5 0.96

6 M 94.8 0.21 7 M 84.7 0.35 5 M 67.7 0.00 7 F 100.3 1.00

8 M 104.2 0.92 7 F 77.2 0.20 7 M 70.9 0.73 6 M 96.7 0.62

;

proc nlmixed;

parms b0=0.1 b1=0.1 g0=0.1 g1=0.1 z0=0.1 z1=0.1 phi=0.1;

mu=exp(b0+b1*female)/(1+exp(b0+b1*female));

nu=exp(g0+g1*mathscore);

tau=exp(z0+z1*grade);

pi0=nu/(1+nu+tau);

pi1=tau/(1+nu+tau);

if (propassign=0) then loglikelihood=log(pi0);

if (propassign=1) then loglikelihood=log(pi1);
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if (propassign >0 and propassign <1) then

loglikelihood =log(1-pi0-pi1)+lgamma(phi)-lgamma(mu*phi)

-lgamma((1-mu)*phi)+(mu*phi-1)*log(propassign)

+((1-mu)*phi-1)*log(1-propassign);

model propassign ~ general(loglikelihood);

run;

2 Log Likelihood 47.8

Parameter Estimates
Parameter Estimate Pr > |t|
b0 0.1299 0.5070
b1 1.1173 0.0064
g0 10.4743 0.0159
g1 -0.1532 0.0098
z0 -7.8921 0.0280
z1 0.9879 0.0491
phi 4.1694

proc nlmixed;

parms b0=0.1 g0=0.1 z0=0.1 phi=0.1;

mu=exp(b0)/(1+exp(b0));

nu=exp(g0);

tau=exp(z0);

pi0=nu/(1+nu+tau);

pi1=tau/(1+nu+tau);

if (propassign=0) then loglikelihood=log(pi0);

if (propassign=1) then loglikelihood=log(pi1);

if (propassign >0 and propassign <1) then

loglikelihood=log(1-pi0-pi1)+lgamma(phi)-lgamma(mu*phi)

-lgamma((1-mu)*phi)+(mu*phi-1)*log(propassign)

+((1-mu)*phi-1)*log(1-propassign);

model propassign ~ general(loglikelihood);

run;

2 Log Likelihood 73.3

data deviance_test;

deviance=73.3-47.8;

pvalue=1-probchi(deviance,3);

run;

proc print noobs;

run;
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deviance pvalue
25.5 0.000012136

The estimated parameters of the �tted model are

µ̂ =
exp{0.1299 + 1.1173 · female}

1 + exp{0.1299 + 1.1173 · female}
, π̂0 =

ν̂

1 + ν̂ + τ̂
, and π̂1 =

τ̂

1 + ν̂ + τ̂
,

where

ν̂ =
P̂(y = 0)

P̂(0 < y < 1)
= exp{10.4743− 0.1532 ·mathscore},

and

τ̂ =
P̂(y = 1)

P̂(0 < y < 1)
= exp{−7.8921 + 0.9879 · grade},

and φ̂ = 4.1694. This model �ts the data well since the p -value in the
goodness-of-�t test is way below 0.05. All three predictors are signi�cant at
the 5% level.

For females, the estimated ratio
µ̂

1− µ̂
=

Ê(y|0 < y < 1)

1− Ê(y|0 < y < 1)
is exp{1.1173}·

100% = 305.66% of that for males. For a one-point increase in math score, the
estimated odds in favor of y = 0 against 0 < y < 1 change by (exp{−0.1532}−
1) · 100% = −14.20%, that is, decrease by 14.20%. As grade increases by
one, the estimated odds in favor of y = 1 against 0 < y < 1 increase by
(exp{0.9879} − 1) · 100% = 168.56%.

Now we estimate the proportion of completed exercises for an 8th-grade boy
with 101% in math class. To this end, we compute

y0 =
(

exp{−7.8921 + 0.9879 · 8}+
exp{0.1299}

1 + exp{0.1299}

)
×

×
(

1 + exp{10.4743− 0.1532 · 101}+ exp{−7.8921 + 0.9879 · 8}
)−1

= 0.7649.

The SAS code for the prediction follows.

data prediction;

input grade mathscore female;

cards;

8 101 0

;
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data assignment;

set assignment prediction;

run;

proc nlmixed;

parms b0=0.1 b1=0.1 g0=0.1 g1=0.1 z0=0.1 z1=0.1 phi=0.1;

mu=exp(b0+b1*female)/(1+exp(b0+b1*female));

nu=exp(g0+g1*mathscore);

tau=exp(z0+z1*grade);

pi0=nu/(1+nu+tau);

pi1=tau/(1+nu+tau);

if (propassign=0) then loglikelihood=log(pi0);

if (propassign=1) then loglikelihood=log(pi1);

if (propassign >0 and propassign <1) then

loglikelihood=log(1-pi0-pi1)+lgamma(phi)-lgamma(mu*phi)-lgamma((1-mu)*phi)+

(mu*phi-1)*log(propassign)+((1-mu)*phi-1)*log(1-propassign);

model propassign ~ general(loglikelihood);

predict (tau+mu)/(1+nu+tau) out=outdata;

run;

proc print data=outdata (firstobs=45) noobs;

var Pred;

run;

Pred
0.76493

The R script and output are below.

assignment.data<-read.csv(file="./Example7.4Data.csv",

header=TRUE, sep=",")

#computing new variable and making it part of the original data set

assignment.data$female<- ifelse(assignment.data$gender=="F",1,0)

#fitting zero-one-inflated beta regression model

library(gamlss)

summary(fitted.model<- gamlss(propassign~ female, mu.link="logit",

nu.formula=~ mathscore, nu.link="log", tau.formula=~ grade,

tau.link="log", data=assignment.data, family=BEINF))
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Mu link function: logit
Mu Coe�cients:

Estimate Pr(>|t|)
(Intercept) 1.2467 0.000782
female 1.1169 0.006916

Sigma link function: logit
Sigma Coe�cients:

Estimate
(Intercept) -0.2418

Note that φ̂ =
1−

(
exp{−0.2418}/(1 + exp{−0.2418})

)2

(
exp{−0.2418}/(1 + exp{−0.2418})

)2 = 4.168981674.

Nu link function: log
Nu Coe�cients:

Estimate Pr(>|t|)
(Intercept) 10.47368 0.0163
mathscore -0.15321 0.0101

Tau link function: log
Tau Coe�cients:

Estimate Pr(>|t|)
(Intercept) -7.8920 0.0290
grade 0.9879 0.0502

#checking model fit

null.model<- gamlss(propassign ~ 1, mu.link="logit", nu.formula=~ 1,

nu.link="log", tau.formula=~ 1, tau.link="log",

data=assignment.data, family=BEINF)

print(deviance<- -2*(logLik(null.model)-logLik(fitted.model)))

25.51013

print(p.value<- pchisq(deviance, df=3, lower.tail=FALSE))

1.207707e-05

#using fitted model for prediction

param.pred<- predictAll(fitted.model, newdata

=data.frame(grade=8, mathscore=101, female=0), type="response")

print((param.pred$tau+param.pred$mu)/(1+param.pred$nu+param.pred$tau))

0.7649165

2
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Exercises for Chapter 7

Exercise 7.1. Prove that for the beta regression de�ned by (7.1) and (7.2),

the mean of y is E(y) = µ, and the variance of y is Var(y) =
µ(1− µ)

1 + φ
.

Exercise 7.2. Ornithologists have collected data on migration of birds.
They ringed 20 �ocks of migratory birds before migration and recorded for
each �ock the number of ringed birds, average mass (in grams), and average
wingspan (in cm). The ringed �ocks were observed later at the wintering
grounds and the number of successfully migrated birds was counted. The
distances traveled (in km) were also observed. The data are presented below.

Mass Wingspan Distance
N birds N birds
ringed migrated

811 67 1680 70 8
261 33 2137 113 75
398 48 2159 100 51
114 56 1204 145 113
119 53 1673 72 28
151 30 543 87 71
176 70 1414 116 109
184 45 2296 90 68
250 42 1511 52 42
505 24 741 74 63
551 17 1434 114 105
716 51 2116 98 58
735 119 2171 98 35
1233 108 2442 69 13
1315 98 2061 61 38
1633 72 1955 81 24
1736 119 1297 71 70
2019 101 930 112 105
2476 100 2312 95 37

(a) Model the proportion of birds per �ock that successfully reach the win-
ter grounds. To avoid small estimates of the regression coe�cients, convert
mass into kilograms, wingspan into meters, and the distance, into thousands
of kilometers. Write out the �tted model explicitly. Which predictors are
signi�cant at the 5% level?
(b) Analyze the model �t.
(c) Give an interpretation of the estimated signi�cant parameters.
(d) Predict the number of birds that successfully reach the winter grounds
for a �ock of 70 birds with an average mass of 600 grams, an average wingspan
of 65 centimeters, that travel a distance of 1650 kilometers.
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Exercise 7.3. The department of Health Care Administration is analyzing
the utilization of hospital resources. They retrieve data on 30 randomly cho-
sen U.S. hospitals and are looking at the percent of emergency room (ER)
patients who were hospitalized, hospital location (urban or rural), hospital
type (public or private), and hospital size by the number of beds. The data
are:

Percent Hosp Hosp
N beds

Percent Hosp Hosp
N beds

hospzd loc type hospzd loc type

17 rural private 56 4 urban public 91
39 rural public 144 6 urban public 77
38 urban public 61 39 urban private 237
48 rural public 186 41 urban private 56
30 rural private 132 45 rural public 43
25 urban private 589 13 urban public 64
5 urban public 53 42 rural public 193
4 rural private 73 28 urban private 363
48 rural private 154 31 urban public 600
4 urban public 38 48 rural public 468
26 rural private 318 41 rural public 311
15 urban public 35 9 urban public 65
28 urban private 184 13 urban private 44
34 urban private 173 44 urban public 479
31 urban public 63 16 rural public 72

(a) Model the proportion of hospitalized ER patients. Write down the �tted
model. What factors are signi�cant predictors? Use α = 0.05.
(b) How good is the model �t?
(c) Interpret estimated signi�cant regression coe�cients.
(d) Give the predicted proportion of hospitalized ER patients for a rural
public hospital with 50 beds.

Exercise 7.4. In commercial �shing, an issue of concern is a large per-
cent of by-catch, an unwanted marine life caught along with intended �sh.
An analyst at a tuna �shery collected data on a randomly chosen sample of
catches made by 20 �shing vessels. The variables are the distance to shore (in
nautical miles), method of �shing (trawling, purse seining, or longline �sh-
ing), �shing depth (in meters), and the percentage of by-catch. The data are:
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Distance Fishing Fishing Percent Distance Fishing Fishing Percent
to shore method depth by-catch to shore method depth by-catch

120 trawl 250 14 115 trawl 300 8
115 trawl 150 6 160 trawl 200 10
70 trawl 300 24 160 trawl 200 10
130 trawl 150 6 50 trawl 150 15
90 seine 200 56 10 seine 150 16
15 seine 350 32 25 seine 200 22
15 seine 150 13 15 seine 300 21
20 seine 350 23 40 longline 100 21
15 longline 200 10 60 longline 200 4
40 longline 150 7 50 longline 150 17

(a) Use the beta regression to model the proportion of by-catch. Convert
depth to kilometers. Write down the �tted model.
(b) Discuss the signi�cance of predictor variables and model �t.
(c) Give an interpretation of the estimates of the regression coe�cients for
the signi�cant predictors.
(d) Find the predicted percent of by-catch for a trawler that �shes 80 nau-
tical miles o� shore at a depth of 250 meters.

Exercise 7.5. A real estate intern is interested in modeling the proportion
of houses that were sold in one month as having a beta distribution with
predictor variables: an average house price in subdivision (in thousands of
dollars), the number of houses in the subdivision, and age of the subdivision
(in years). The data for the past year on 30 randomly chosen subdivisions
were available. They are:
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Percent Average
N houses Age

Percent Average
N houses Age

sold price sold price

0 455 69 21 80 308 223 15
0 316 244 24 75 159 84 13

36.4 210 236 31 0 147 54 37
50 557 183 16 44.4 704 199 18
33.3 232 73 6 0 593 119 38
50 626 230 20 20 738 156 8
27.3 343 60 14 55.6 256 206 34
80 246 201 17 85.7 345 38 22
42.9 631 217 11 50 450 158 7
0 630 222 42 0 491 239 27

71.4 356 85 22 28.6 441 103 15
25 481 240 16 88.9 212 222 18
50 181 197 42 50 574 56 35
20 264 235 19 33.3 647 138 35
87.5 297 88 17 0 630 18 60

(a) Fit the zero-in�ated beta regression model to the proportion of houses.
Regress the probability of zero on the age of subdivision. To achieve model
convergence, normalize the average price and number of houses by a factor
of 100. Discuss the signi�cance of the predictors at the 5% level.
(b) Present the �tted model. Does this model have a decent �t?
(c) Interpret parameter estimates for statistically signi�cant predictors.
(d) What is the model prediction for the percent of houses sold for a sub-
division with 300 houses, built 50 years ago, and where houses are sold, on
average, for $450,000?

Exercise 7.6. Head instructors at a chain of traditional martial arts stu-
dios want to see if there is an association between the proportion of �rst-place
trophies a studio wins during a tournament and such predictors as the num-
ber of years a studio has been in existence, the number of pupils, and the
number of black-belt instructors. For each studio, the proportion of �rst-
place trophies is de�ned as the ratio of the number of �rst-place trophies to
the total number of trophies a studio wins. Data are collected from 26 studios.
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Trophies Firstplaces Years Blackbelts Pupils

21 7 5 1 96
12 3 5 2 59
21 10 5 2 71
23 4 3 2 94
11 1 1 3 53
20 9 6 4 52
15 4 6 2 61
28 16 13 5 104
19 8 3 4 95
4 0 1 1 27
6 0 1 1 45
19 12 7 5 42
21 7 4 3 86
32 24 11 6 151
5 0 3 1 78
23 9 5 2 81
8 0 3 2 35
21 13 15 3 89
12 3 6 3 39
11 0 3 2 40
12 7 5 2 81
22 13 7 4 148
10 3 8 3 128
20 0 2 2 42
19 2 3 1 39
14 2 2 3 105

(a) Model the proportion of �rst-place trophies using a zero-in�ated beta re-
gression. Use the number of pupils to predict the probability of zero. Specify
the �tted model. Use an alpha of 0.05 to determine the signi�cance of re-
gression coe�cients.
(b) Discuss the model �t. Present the �tted model.
(c) Interpret the estimates of signi�cant regression coe�cients.
(d) Predict the proportion of �rst-place trophies won by a studio that has
been around for 10 years, has 85 students, and has three black-belt instruc-
tors.

Exercise 7.7. Parks and Recreation Department is conducting a study on
the mortality of young trees planted in parks. Investigators have collected
data on the number of planted trees, the number of trees that survived for
two years, frequencies of pest control and soil fertilization, average annual
precipitation (in inches), and average annual wind speed (in miles per hour).
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The data are as follows:

N planted N survived Freq of Freq of
Precip

Wind
trees trees pest control fertilization speed

125 125 3 1 18 9.6
115 68 0 0 8 13.4
250 101 1 1 17 12.8
95 85 2 2 22 10.0
140 48 3 1 15 15.1
75 75 3 2 27 6.3
185 163 3 3 15 12.3
20 9 3 0 18 9.4
110 83 3 1 24 13.1
80 80 0 1 18 7.8
120 117 4 1 20 9.3
90 56 5 1 15 13.9
30 30 3 0 33 8.6
90 81 4 1 23 7.7
140 119 3 1 18 11.8
70 9 3 0 32 8.4
75 71 3 3 20 13.4
150 102 5 0 16 9.7
90 73 4 1 15 9.7
160 151 6 1 18 7.8
100 46 3 1 20 12.3
85 85 4 1 22 6.8
120 85 2 1 19 6.6
180 53 3 1 29 9.4
45 12 0 1 9 13.1
35 35 1 0 7 9.4

(a) Fit a one-in�ated beta regression to model the proportion of survived
trees. Regress the probability of one on the amount of precipitation and
wind speed. Discuss the signi�cance of the predictors at 5% and 10% signif-
icance levels.
(b) Present the �tted model and discuss its �t.
(c) Interpret the estimated signi�cant parameters.
(d) Parks and Recreation Department employees are considering planting
100 trees in a hard-to-reach area where neither pest control nor soil fertil-
ization would be feasible. They are trying to decide between an area with
lower precipitation (2 inches) and stronger winds (12.5mph), and an area
with higher precipitation (25 in) and lower winds (6 mph). Which of the two
areas would you recommend using based on the predicted proportion of trees
that would survive for two years?
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Exercise 7.8. A manager of a store that specializes in selling name-brand
travel luggage is interested in �nding out what characteristics of a salesperson
best predict the proportion of initiated sales that are completed. He looks up
records of the sales team members and collects the data on gender, years of
experience, amount of bonus received the previous year (in units of $1,000),
and the proportion of completed sales. The data are given in the table below.

Gender Expyr Bonus Propsales Gender Expyr Bonus Propsales

F 1 1.1 0.67 F 2 1.2 0.65
M 11 0.5 1.00 F 13 0.6 1.00
M 4 1.1 0.90 F 8 0.9 0.54
M 2 1.6 0.93 M 4 0.6 0.63
F 2 0.7 0.49 F 17 2.4 1.00
F 4 1.05 0.88 F 3 1.6 1.00
M 1 1.6 0.96 F 2 1.4 0.88
F 2 1.2 0.67 F 4 1.05 0.85
M 2 1.6 0.94 F 8 1.4 1.00
M 7 1.4 0.77 M 4 1.35 0.95
F 4 1.55 1.00 F 3 1 0.83
F 4 0.9 0.51 F 18 1.25 1.00
F 8 0.95 0.59 M 4 0.4 0.66

(a) Fit a one-in�ated beta regression to model the proportion of completed
sales, regressing the probability of one on the number of years of experience
a salesperson has accrued. Use the signi�cance level of 0.05. Write down the
�tted model.
(b) How good is the model �t?
(c) Interpret the estimated signi�cant regression coe�cients.
(d) Predict the proportion of completed sales for a salesman with 3 years of
work experience and who received $1,500 in bonuses the previous year.

Exercise 7.9. An agricultural laboratory is testing the germination of corn
seeds at various locations. The variables of interest are soil electrical conduc-
tivity (EC, in millisiemens per centimeter squared), mean soil temperature
(in degrees Fahrenheit), plot altitude (in feet), and rate of seed germination.
At some locations, seeds didn't germinate at all, whereas in some other lo-
cations, they germinated at a 100% rate. The data are provided below.

215



EC Soiltemp Altitude Germrate EC Soiltemp Altitude Germrate

2.7 67 4368 0.00 2.5 64 4229 0.17
1.1 67 1689 1.00 1.8 69 2933 0.47
1.8 69 3156 0.87 1.8 63 6110 0.32
1.6 67 4884 0.58 1.5 67 461 1.00
2.4 66 4926 0.00 2.5 67 5269 0.00
1.6 63 3854 0.23 1.7 74 197 1.00
2.3 67 5146 0.00 1.6 65 607 1.00
1.2 64 2202 0.48 2.6 67 5263 0.16
1.1 62 2759 0.82 1.2 69 651 1.00
1.9 62 2774 0.61 1.7 65 863 0.80
1.5 71 5927 0.19 1.5 62 4386 0.23
1.7 61 827 0.93 1.7 68 165 1.00
2.8 62 3631 0.00 1.7 62 234 0.73

(a) Fit the beta regression with in�ated zeros and ones to model the germi-
nation rate. Regress parameter µ on altitude normalized by a factor of 1000,
ν on EC, and τ on soil temperature. Specify the �tted model. Determine
the signi�cance of regression coe�cients at 5% and 10% levels.
(b) Discuss the model �t.
(c) Give an interpretation of the estimated signi�cant regression coe�cients.
(d) Use the �tted model to predict the germination rate for a plot with EC
of 1.5 mS/cm2, soil temperature of 68◦F , and altitude of 950 feet.

Exercise 7.10. A college football analytic team is trying to determine what
attributes of a player predict the proportion of games played in a season by
that player. They collect data retrospectively on BMI, forty-yard dash (in
seconds), vertical jump (in inches), broad jump (in inches), number of bench
press repetitions at 225 pounds, and proportion of games played. Some play-
ers went through the training but never played in big games, while some
others were very successful and played in every game. The data are given
below.
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BMI Fortyyd Vertical Broad Bench Propgames

31.1 4.58 35.0 108 20 0.00
28.5 4.70 30.5 115 21 1.00
32.4 4.39 36.0 116 18 0.00
30.8 4.67 33.0 121 15 0.87
29.6 4.41 33.0 116 26 0.47
30.0 4.56 38.0 122 21 0.80
31.3 4.50 35.0 119 29 0.80
29.4 4.49 31.5 115 18 0.33
28.1 4.37 34.5 130 21 0.53
31.0 4.52 33.5 128 25 0.87
29.7 4.57 31.5 124 18 0.73
27.6 4.62 38.5 118 15 1.00
29.5 4.60 32.0 121 15 0.47
30.7 4.40 34.5 113 22 0.47
29.4 4.73 34.0 114 15 0.60
29.1 4.57 35.0 111 19 0.87
30.6 4.60 30.5 114 24 0.47
29.3 4.55 36.0 115 17 0.87
28.1 4.59 35.5 109 14 0.87
31.7 4.62 37.0 121 19 0.80
29.7 4.73 34.0 118 21 1.00
30.7 4.80 34.0 114 15 0.33
28.8 4.37 36.0 121 19 0.73
30.7 4.68 34.0 105 14 0.00
30.7 4.64 33.0 116 21 0.47
30.3 4.50 35.5 115 25 0.60
30.0 4.48 34.0 119 20 0.67
28.6 4.59 36.0 123 17 1.00
30.8 4.43 34.0 117 18 0.53
27.7 4.51 33.0 117 20 0.73
30.7 4.50 38.0 114 18 1.00
28.1 4.59 36.0 115 17 0.93
29.3 4.61 32.0 113 20 0.00
27.9 4.64 33.0 118 23 1.00
29.7 4.67 41.0 124 21 1.00
29.9 4.48 35.0 111 18 0.00
32.0 4.51 33.5 116 25 0.67
29.6 4.37 37.0 115 24 0.93
32.9 4.55 33.0 122 27 0.47
27.6 4.67 33.5 118 26 1.00
30.4 4.55 32.0 109 17 0.73
31.4 4.50 38.0 121 18 0.67
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(a) Regress the proportion of games played, using the zero-one-in�ated beta
model. Regress µ on vertical jump and number of bench press repetitions, ν
on a broad jump, and τ on BMI and forty-yard dash. What predictors are
signi�cant at the 5% level?
(b) Analyze the �t of the model.
(c) Give an interpretation of the estimated signi�cant coe�cients.
(d) Predict the proportion of games that a new player will play if his BMI is
27.8 kg/m2, the forty-dash run is 4.67 seconds, the vertical jump is 32 inches,
the broad jump is 117 inches, and the bench press is 16 repetitions.
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Chapter 8

General Linear Regression Models

for Repeated Measures Data

In the previous chapters, observations for di�erent individuals were assumed
independent. In this chapter, we will consider cases when multiple observa-
tions are collected on the same individuals repeatedly over time, or space,
or under di�erent treatment conditions. Such observations are referred to
as repeated measures. In these models, observations for di�erent individu-
als are assumed uncorrelated. However, observations for each individual are
modeled as correlated. This potential correlation is included in the model
by introducing additive random terms. Thus, along with usual predictors
(termed �xed-e�ects predictors), the model also contains random variables
(called random-e�ects terms). Such a model is generally referred to as a
mixed-e�ects linear regression model 1 (or, simply, a mixed model).

A special case of repeated measures is longitudinal data, which are data col-
lected at several time points. Below we will give the theoretical framework
referring to longitudinal data and using variable time to index repeated ob-
servations. The speci�city of longitudinal data is that times between the
repeated measures are not necessarily equally distant.

8.1 Random Slope and Intercept Model

8.1.1 Model De�nition

Suppose data are collected longitudinally at times t1, . . . , ta. For each in-
dividual i, i = 1, . . . , n, at time tj, j = 1, . . . , a, the observations are

1Mixed-e�ect modeling was introduced in Laird, Nan M. and James H. Ware (1982).
�Random-E�ects Models for Longitudinal Data�. Biometrics, 38(4): 963 � 974.
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x1ij, . . . , xkij, yij. The random slope and intercept model is de�ned as

yij = β0 + β1 x1ij + · · ·+ βk xkij + βk+1 tj + u1i + u2i tj + εij (8.1)

where u1i's are independent N (0, σ2
u1

) random intercepts, u2i's are indepen-
dent N (0, σ2

u2
) random slopes, and εij's are independent N (0, σ2) errors that

are also independent of u1i's and u2i's. It is assumed that Cov(u1i, u2i) =
σu1u2 , and Cov(u1i, u2i′) = 0 for i 6= i′.

In this model, the predictor variables x1, . . . , xk have �xed e�ects, whereas
the random intercept u1 and slope u2 have random e�ects. It is also note-
worthy that the predictors x1, . . . , xk may vary with time.

It can be shown (see Exercise 8.1) that Cov(yij, yi′j′) = 0, i 6= i′, mean-
ing that the responses for di�erent individuals are uncorrelated for any time
points. It can also be shown that responses between di�erent time points for
the same individual may be correlated, since Cov(yij, yij′) = σ2

u1
+σu1u2 (tj +

tj′) + σ2
u2
tjtj′ , for j 6= j′. In addition, it can be veri�ed that the response

variable yij is normally distributed with the mean

E(y) = β0 + β1 x1 + · · ·+ βk xk + βk+1 t (8.2)

and variance Var(yij) = σ2
u1

+ 2σu1u2 tj + σ2
u2
t2j + σ2. Note that if there is

no random slope in the model (called the random intercept-only model), the
variance of the response variable is constant and doesn't variate with time.

8.1.2 Fitted Model

By (8.2), in the random slope and intercept model, the �tted mean response
can be expressed as

Ê(y) = β̂0 + β̂1 x1 + · · ·+ β̂k xk + β̂k+1 t. (8.3)

All beta parameters along with σ2
u1
, σu1u2 , σ

2
u2
, and σ2 are estimated by maxi-

mizing the likelihood function, or, alternatively, by maximizing the restricted
likelihood function. The restricted maximum likelihood (REML) method uti-
lizes a certain linear transformation of y, chosen in such a way that the
resulting likelihood function doesn't depend on β's. It is known that the
maximum likelihood estimators of the variances and covariance are biased,
whereas the REML method produces unbiased estimators.

8.1.3 Interpretation of Estimated Regression Coe�cients

Given (8.3), the �tted beta coe�cients are interpreted as in the general lin-
ear regression model (see Subsection 1.5), in terms of an average change in
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the mean response for a unit-increase in a continuous predictor, or as the
di�erence between mean responses for level 1 and level 0 for a 0 -1 predictor,
provided all the other predictors stay unchanged.

8.1.4 Model Goodness-of-Fit Check

To compare the �t of several models, the AIC, AICC, and BIC criteria may
be used.

To check the goodness-of-�t of a particular model, a chi-squared deviance test
is used (see Subsection 1.6). In this case, the null model has only �xed-e�ects
predictor variables. Since the random-e�ects terms bring three parameters
into the model (two variances and a covariance), this test has three degrees
of freedom.

8.1.5 Predicted Response

By (8.3), for a deterministic set of values x0
1, . . . , x

0
k, t

0, the predicted response

is y0 = β̂0 + β̂1 x
0
1 + · · ·+ β̂k x

0
k + β̂k+1 t

0.

8.1.6 SAS Implementation

Suppose the data set is given in the short-and-wide form, that is, it contains
n rows for the n individuals: one column for individual's id, k columns for
the variables x1, . . . , xk, and a columns for the responses at the a time points
y1, . . . , ya. Prior to �tting a mixed-e�ects model, a long-form data set must
be created, a data set that contains p rows for each individual, one row for
each time point. This can be done via the following data statement:

data longform data name;
set data name;
array time array name[a] (time1 name. . . timea name);
array response array name[a] y1 name. . . ya name;

do count variable name = 1 to a;
time name = time array name[count variable name];
response name = response array name[count variable name];
output;

end;

keep id name x1 name...xk name time name response name;
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run;

The procedure mixed �ts mixed-e�ects models on long-form data sets that
contain one row per individual per time point. The general statements are:

proc mixed data=longform data name covtest maxiter=number;
class <list of categorical predictors>;

model response name=<list of x predictors> time name/solution
outpm=outdata name;

random intercept time name/subject=id name type=un;

run;

• The option covetest requests p -values in the tests for signi�cance of the
variance-covariance parameters.
• SAS outputs estimates of the beta coe�cients only if the option solution

is speci�ed.
• The outpm= produces prediction of the response y for each row in the data
set. If a new prediction is desired, the case must be added to the data set.
• Speci�cation of type=un, an unstructured type of variance-covariance ma-
trix, requests an estimate of the covariance σu1u2 .
• In the output, the estimators of σ2

u1
, σu1u2 , σ

2
u2
, and σ2 are termed UN(1,1),

UN(2,1), UN(2,2) and Residual, respectively.
• As part of the output, SAS shows the results of the deviance test, calling it
Null Model Likelihood Ratio Test. The number of degrees of freedom,
chi-squared test statistic, and the p -value are displayed.

8.1.7 R Implementation

To create a long-form data set from a short-and-wide form data.name with
columns id.name, x1.name, ..., xk.name, y1.name, ..., ya.name, the function
melt() in the library reshape2 may be used. The script is as follows:

library(reshape2)

longform.data.name<- melt(data.name, id.vars=c("id.name", "x1.name",
..., "xk.name"), variable.name = "response.variables.name",
value.name="response.name")

Here the categorical variable response.variables.name contains the names of
the variables y1.name, ..., ya.name, whereas the variable response.name con-
tains the actual numeric responses.
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In a more general case, the short-and-wide data set might contain one pre-
dictor variable that varies with time, that is, the columns could be id.name,
x1.name, ..., x{k-1}.name, xk1.name, . . . , xka.name, y1.name, ..., ya.name.
A long-form data set then can be created by separating the response columns
from the rest of the data, turning the two �les into long form, and then merg-
ing them. The syntax is:

longform.data1.name<- melt(data.name[,c("id.name", "x1.name",
..., "x{k-1}.name", "xk1.name",..., "xka.name")], id.vars=c("id.name",
"x1.name", ..., "x{k-1}.name"), variable.name="xk.variables.name",
value.name="xk.name")

longform.data2.name<- melt(data.name[,c("y1.name", ..., "ya.name")],
variable.name="response.variables.name", value.name="response.name")

longform.data.name<- cbind(longform.data1.name, longform.data2.name)

If more than one predictor depends on time, then it would be necessary to
split the original data set into several data sets, transform them into long-
form, and then merge them.

Next, the variable response.variables.name has to be recoded into a numeric
variable that contains time values. This can be done as follows:

time.name<- ifelse(longform.data.name$response.variables.name=="y1.name",
time1.value, ifelse(longform.data.name$response.variables.name=="y2.name",
time2.value,..., ifelse(longform.data.name$response.variables.name=="y{a-
1}.name", time{a-1}.value, timea.value)))

Next, for the long-form data set, the function lme() in the library nlme �ts
the random slope and intercept model. The statements are as follows:

summary(�tted.model.name<- lme(response.name∼x1.name+· · · +xk.name+time.name,
random=∼ 1+time.name|id.name, control=lmeControl(opt="optim"),

data=longform.data.name))
intervals(�tted.model.name)

• The optional function lmeControl() aids in model convergence.
• R outputs estimated standard deviations and correlation coe�cient for the
random terms as opposed to SAS that outputs estimated variances and co-
variance.
• R doesn't conduct tests of signi�cance for the variance-covariance param-
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eters. The 95% con�dence intervals based on a normal approximation may
be requested by including the intervals() function.
• R outputs AIC and BIC values automatically. The AICC value has to be
computed as

print(AICC<- -2*logLik(�tted.model.name)+ 2*p*n/(n-p-1))

where n is the number of individuals and p is the total number of parameters
of the model.

• To check the goodness of �t of a model, the following syntax should be used:

null.model.name<- glm(response.name∼x1.name+· · · +xk.name+time.name,
data=longform.data.name)
print(deviance.name<- -2·(logLik(null.model.name)-logLik(�tted.model.name)))
print(p.value.name<- pchisq(deviance.name, df=value, lower.tail = FALSE))

• To obtain a predicted response value, use the function predict() with the
added argument level=0.

8.1.8 Example

Example 8.1. In a clinic, doctors are testing a certain cholesterol-lowering
medication. Patients' gender and age at the beginning of the study are
recorded for 27 patients. The low-density lipoprotein (LDL) cholesterol levels
are measured in all the patients at the baseline, and then at 6-, 9-, and 24-
month visits. The SAS code below creates a long-form data set.

data cholesterol;

input id gender$ age LDL0 LDL6 LDL9 LDL24 @@;

cards;

1 M 50 73 71 80 85 2 F 72 174 164 139 112

3 M 46 85 86 82 90 4 F 71 172 150 139 127

5 F 75 186 177 153 145 6 F 68 184 169 153 138

7 F 63 196 188 163 155 8 M 73 137 137 132 104

9 M 59 135 120 106 106 10 M 60 111 110 100 76

11 F 59 127 126 106 99 12 M 46 88 87 84 80

13 F 67 176 150 156 153 14 F 52 155 135 128 120

15 M 65 142 117 114 97 16 F 75 158 143 145 135

17 F 57 148 131 138 102 18 M 58 125 111 118 124

19 M 48 76 65 94 98 20 M 47 116 108 94 107

21 F 53 191 185 162 113 22 F 73 167 165 162 140

23 M 62 109 104 93 94 24 F 77 167 164 155 155
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25 M 55 103 94 75 78 26 F 74 122 126 105 111

27 F 79 203 204 178 145

;

data longform;

set cholesterol;

array m[4] (0 6 9 24);

array c[4] LDL0 LDL6 LDL9 LDL24;

do i=1 to 4;

month=m[i];

LDL=c[i];

output;

end;

keep id gender age month LDL;

run;

Next, we show that the variable LDL, which contains all the cholesterol mea-
surements, has a normal distribution. To this end, we construct a histogram
with a �tted bell-shaped curve and conduct normality testing.

proc univariate data=longform;

var LDL;

histogram LDL/normal;

run;

The output follows. Since the histogram resembles a normal density and all
the p -values exceed 0.05, we conclude that the response variable is normally
distributed.

Goodness-of-Fit Tests for Normal Distribution
Test p Value
Kolmogorov-Smirnov >0.150
Cramer-von Mises 0.126
Anderson-Darling 0.106

Our next step is to �t a random slope and intercept model, regressing LDL
on the other variables. The code and relevant output are given below.

proc mixed data=longform covtest;

class gender;

model LDL=gender age month/solution;

random intercept month/subject=id type=un;

run;

225



Figure 8.1: Histogram for LDL in SAS

Covariance Parameter Estimates
Cov Parm Estimate Pr Z
UN(1,1) 520.17 0.0013
UN(2,1) -16.3953 0.0087
UN(2,2) 0.7846 0.0028
Residual 69.8556 <.0001

Fit Statistics
AIC 870.3
AICC 870.7
BIC 875.5

Null Model Likelihood Ratio Test
DF Chi-Square Pr > ChiSq
3 72.86 <.0001

Solution for Fixed E�ects
E�ect gender Estimate Pr > |t|
Intercept 65.0163 0.0029
gender F 29.8105 <.0001
gender M 0 .
age 0.9203 0.0085
month -1.0957 <.0001

From the output, the variances of the random slope, intercept, and error, as
well as the covariance term, are all statistically signi�cant, which validates
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the use of all the random terms in the model. The null-model likelihood test
gives a small p -value, indicating a good �t. The �tted model can be written
as Ê(LDL) = 65.0163 + 29.8105 · female + 0.9203 ·age−1.0957 ·month, with
all predictors being signi�cant. For female patients, the estimated average
cholesterol is 29.8105 points higher than that for males. With a one-year
increase in age, the cholesterol level goes up, on average, by estimated 0.9203
points. As time increases by one month, the estimated average LDL mea-
surement decreases by 1.0957 points.

The values for the AIC, AICC, and BIC criteria that are included in the
above output will be used in Example 8.2.

To predict the LDL level at 3 months for a 48-year-old female patient, we
compute LDL0 = 65.0163 + 29.8105 + 0.9203 · 48− 1.0957 · 3 = 135.7141.

To produce the same result in SAS, we run the following statements:

data prediction;

input id gender$ age month;

cards;

28 F 48 3

;

data longform;

set longform prediction;

run;

proc mixed covtest;

class gender;

model LDL=gender age month/outpm=outdata;

random intercept month/subject=id type=un;

run;

proc print data=outdata (firstobs=109) noobs;

var Pred;

run;

Pred
135.716

The R script for this example is presented below.

227



Figure 8.2: Histogram for LDL in R

cholesterol.data<-read.csv(file="./Example8.1Data.csv",

header=TRUE, sep=",")

#creating long-form data set

library(reshape2)

longform.data<- melt(cholesterol.data, id.vars=c("id",

"gender", "age"), variable.name="LDLmonth", value.name="LDL")

#creating variable for time

month<- ifelse(longform.data$LDLmonth=="LDL0", 0,

ifelse(longform.data$LDLmonth=="LDL6", 6,

ifelse(longform.data$LDLmonth=="LDL9",9,24)))

#plotting histogram with fitted normal density

library(rcompanion)

plotNormalHistogram(longform.data$LDL)

#testing for normality of distribution

shapiro.test(longform.data$LDL)

Shapiro-Wilk normality test
W = 0.97668, p-value = 0.05449

#specifying reference categories
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gender.rel<- relevel(longform.data$gender, ref="M")

#fitting random slope and intercept model

library(nlme)

summary(fitted.model<- lme(LDL ~ gender.rel + age + month,

random=~ 1 + month|id, data=longform.data))

Linear mixed-e�ects model �t
AIC BIC

878.3294 899.4845

Random e�ects:
StdDev Corr

(Intercept) 22.8072879 (Intr)
month 0.8857844 -0.812
Residual 8.3579458

Fixed e�ects:
Value p-value

(Intercept) 65.01614 0.0014
gender.relF 29.81056 0.0003
age 0.92033 0.0116
month -1.09566 0.0000

intervals(fitted.model)

Random E�ects:
lower est. upper

sd((Intercept)) 16.4912656 22.8072879 31.542296
sd(month) 0.6229652 0.8857844 1.259483
cor((Intercept),month) -0.9325355 -0.8115565 -0.526760

Within-group standard error:
lower est. upper

6.921510 8.357946 10.092488

#computing AICC

n<- 108

p<- 8

print(AICC<- -2*logLik(fitted.model)+2*p*n/(n-p-1))

879.784
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#checking model fit

null.model<- glm(LDL ~ gender.rel + age + month, data=longform.data)

print(deviance<- -2*(logLik(null.model)-logLik(fitted.model)))

77.80585

print(p.value<- pchisq(deviance, df=3, lower.tail=FALSE))

9.069804e-17

#using fitted model for prediction

print(predict(fitted.model, data.frame(gender.rel="F",age=48, month=3),

level=0))

135.7156

2

8.2 Random Slope and Intercept Model with

Covariance Structure for Error

8.2.1 Model De�nition

In the random slope and intercept model introduced in (8.1), the variance-
covariance matrix for the error terms has a diagonal structure. It is of the
form σ2 I, where I denotes a na× na identity matrix, with ones on the main
diagonal and zeros everywhere else. This structure assumes that the errors
are independent, and thus is termed an independent structure.

The random slope and intercept models with other structures for the variance-
covariance matrix of the error terms can be considered. The most general is
an unstructured one with an na× na block-diagonal matrix with n identical
blocks of size a× a of the form:

σ2
1 σ12 σ13 . . . σ1a

σ12 σ2
2 σ23 . . . σ2a

σ13 σ23 σ2
3 . . . σ3a

. . . . . . . . . . . . . . .
σ1a σ2a σ3a . . . σ2

a

 .
This matrix has a symmetric structure with a variances and a(a − 1)/2 co-
variances, for a total of a(a+1)/2 parameters that have to be estimated from
the data. If the size of the data set permits, the model with an unstructured
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variance-covariance matrix of the error terms should be �tted. This model
doesn't make any assumptions regarding the structure and allows the esti-
mate of each parameter to take on a separate value.

If the size of the data set is too small to �t a general unstructured variance-
covariance matrix, there are several sparse but meaningful structures that
may be tried. Here we present the four most commonly used models.

• The �rst model has the blocks in the variance-covariance matrix that have
constant values on each of the descending diagonals, that is, the matrix has
the form: 

σ2 σ1 σ2 . . . σa−1

σ1 σ2 σ1 . . . σa−2

σ2 σ1 σ2 . . . σa−3

. . . . . . . . . . . . . . .
σa−1 σa−2 σa−3 . . . σ2

 .
Using this structure implies that observations that are the same number of
time points apart are equally correlated. There are a total of a unknown
parameters σ2, σ1, . . . , σa−1. This model is said to have the Toeplitz covari-
ance structure, which is sometimes referred to as an autoregressive-moving
average ARMA(1,1) structure.

• Another model with a useful structure of the variance-covariance matrix
relies on the fact that typically as time goes on, observations become less
correlated with the earlier ones. In this model, each block in the variance-
covariance matrix has σ2ρ|ti−tj | in the ij-th cell, i, j = 1, . . . , a, that is, it
looks like this:

σ2


1 ρ|t1−t2| ρ|t1−t3| . . . ρ|t1−ta|

ρ|t1−t2| 1 ρ|t2−t3| . . . ρ|t2−ta|

ρ|t1−t3| ρ|t2−t3| 1 . . . ρ|t3−ta|

. . . . . . . . . . . . . . .
ρ|t1−ta| ρ|t2−ta| ρ|t3−ta| . . . 1

 .

Here σ2 and ρ are the unknown constants, |ρ| < 1. Note that in this matrix
the entries decrease as the distance between times ti and tj increases. The
matrix of this form is termed a spatial power matrix, and hence the model
is said to have a spatial power variance-covariance structure of the error terms.

• A special case of this model is when the times are equal to 1, 2, 3, . . . , a.
Then the a× a blocks of the variance-covariance matrix become
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σ2


1 ρ ρ2 . . . ρa−1

ρ 1 ρ . . . ρa−2

ρ2 ρ 1 . . . ρa−3

. . . . . . . . . . . . . . .
ρa−1 ρa−2 ρa−3 . . . 1

 .
This model is said to have an autoregressive variance-covariance structure of
the error terms, referring to an AR(1) model, an autoregressive time series
model with lag one that has the same covariance structure. Note that the
autoregressive matrix is a special case of both Toeplitz and spatial power
matrices.

• The last model that we introduce here is the model with compound sym-
metric (or exchangeable) variance-covariance matrix of the error terms. In
this matrix, all variances are assumed to be equal to σ2, and all correlations
are assumed to be equal to ρ. That is, the matrix has the form:

σ2


1 ρ ρ . . . ρ
ρ 1 ρ . . . ρ
ρ ρ 1 . . . ρ
. . . . . . . . . . . . . . .
ρ ρ ρ . . . 1

 .
This variance-covariance structure better suits situations when repeated mea-
surements are taken under various treatment conditions rather than longitu-
dinally since all observations are assumed equally correlated.

8.2.2 Fitted Model, Interpretation of Estimated Regres-

sion Coe�cients, and Predicted Response

The �tted model has the same form as the �tted slope and intercept model
with independent covariance structure for errors (8.3). Estimated regression
coe�cients are interpreted the same way, and predicted responses for �xed
sets of predictors are computed similarly (see Subsections 8.1.2, 8.1.3, and
8.1.5).

8.2.3 Model Goodness-of-�t Check

Goodness-of-�t of several models are compared based on AIC, AICC, and
BIC criteria.
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For a given model, the goodness of �t may be veri�ed by carrying out the
chi-squared deviance test. In this case, there are no random-e�ects terms in
the null model, thus it has k+ 3 parameters: β0, . . . , βk+1, and σ. The �tted
model has k + 2 beta parameters, 3 random-e�ects parameters σ2

u1
, σu1u2 ,

and σ2
u2
, plus the number of parameters in the variance-covariance matrix

of error terms. Since the number of degrees of freedom is calculated as the
di�erence between the number of parameters in the �tted and null models,
the number of degrees of freedom is: for unstructured covariance matrix,

df = k + 5 +
a(a+ 1)

2
− (k + 3) =

a(a+ 1)

2
+ 2, for Toeplitz matrix, df =

k+5+a−(k+3) = a+2, and for spatial power, autoregressive, and compound
symmetric matrices, df = k + 5 + 2− (k + 3) = 4.

8.2.4 SAS Implementation

The random slope and intercept model with a certain covariance structure
for the error terms is �tted in SAS by running proc mixed described in
Subsection 8.1.6 with the repeated statement added as follows:

repeated / subject=id name type=covtype name r;

• Covariance structures in the option type= are un (unstructured), toep
(Toeplitz), sp(pow)(time name) (spatial power), ar(1) (autoregressive), or
cs (compound symmetric).
• By specifying the option r we request that SAS outputs an estimated in-
dividual block of the variance-covariance matrix of the error terms, labeling
it Estimated R Matrix for Subject 1.
• Estimated correlation coe�cient ρ in the output is labeled SP(POW) (spatial
power) and AR(1) (autoregressive).
• In the case of the compound symmetric covariance structure, SAS out-
puts two quantities: CS and Residual. The estimated individual block of
the variance-covariance matrix of the errors has the sum CS+Residual on
the main diagonal and CS o� the main diagonal. Thus, the estimate of σ2

is CS+Residual, and the estimated correlation coe�cient is ρ̂ = CS/(CS +
Residual).

8.2.5 R Implementation

The syntax for the random slope and intercept model with the independent
structure for errors (see Subsection 8.1.7) is valid for all the other structures.
• A structure can be speci�ed by adding correlation= to the syntax within
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the lme() function. The choices are:

corSymm() (unstructured),
corARMA(form=∼ 1|id.name, p=1, q=1) (Toeplitz),
corCAR1(form=∼1|id.name) (spatial power),
corAR1(form=∼1|id.name) (autoregressive),
and
corCompSymm(form=∼1|id.name) (compound symmetric).

• In the model with an unstructured variance-covariance matrix, by default,
R produces identical estimates of the variances. To lift this restriction, one
should add to the function lme() the argument weights=varIdent(form∼
id.name|time.name).
• A �tted individual block of the variance-covariance matrix can be viewed by
typing on a separate line getVarCov(�tted.model.name, type="conditional").
• In the models with spatial power and autoregressive variance-covariance
structures, the parameter ρ is termed �Phi� in the output.

8.2.6 Example

Example 8.2. In Example 8.1, we �tted random slope and intercept model
with the independent structure of the error terms. The outputted goodness-
of-�t statistics were AIC=870.3, AICC=870.7, and BIC=875.5. Below we
run models with the unstructured, Toeplitz, spatial power, autoregressive,
and compound symmetric structures, and compare their �t statistics.

/*fitting random slope and intercept model with

unstructured covariance matrix of error terms*/

proc mixed data=longform covtest;

class gender;

model LDL=gender age month/solution;

random intercept month/subject=id type=un;

repeated/subject=id type=un r;

run;

In this model, the estimated matrix entries are all di�erent:

Estimated R Matrix for Subject 1
Row Col1 Col2 Col3 Col4
1 398.30 339.18 189.07 101.14
2 339.18 355.61 190.89 90.9265
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3 189.07 190.89 222.62 141.82
4 101.14 90.9265 141.82 320.07

The variances and covariance of the random terms are given below. Note
that they are not statistically signi�cant at the 5% level.

Covariance Parameter Estimates
Cov Parm Estimate Pr Z
UN(1,1) 185.94 0.1593
UN(2,1) -5.2666 0.4776
UN(2,2) 0.02170 0.4757

The goodness-of-�t criteria values and the results for the asymptotic likeli-
hood ratio test are:

Fit Statistics
AIC 874.7
AICC 878.7
BIC 891.5

Null Model Likelihood Ratio Test
DF Chi-Square Pr > ChiSq
12 86.49 <.0001

The estimated coe�cients for the �xed-e�ects terms are:

Solution for Fixed E�ects
E�ect gender Estimate Pr > |t|
Intercept 60.6156 0.0039
gender F 28.5591 <.0001
gender M 0 .
age 0.9601 0.0049
month -1.0250 <.0001

/*fitting random slope and intercept model with

Toeplitz covariance matrix of error terms*/

proc mixed data=longform covtest;

class gender;

model LDL=gender age month/solution;

random intercept month/subject=id type=un;

repeated / subject=id type=toep r;

run;
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For each individual, the �tted variance-covariance block is:

Estimated R Matrix for Subject 1
Row Col1 Col2 Col3 Col4
1 89.3298 26.1821 -11.1480 38.7476
2 26.1821 89.3298 26.1821 -11.1480
3 -11.1480 26.1821 89.3298 26.1821
4 38.7476 -11.1480 26.1821 89.3298

Note that in this matrix the values on each descending diagonal are the same.

Further, the parameters for the random terms are statistically signi�cant
since the respective p -values are less than 0.05, as seen in the following out-
put:

Covariance Parameter Estimates
Cov Parm Estimate Pr Z
UN(1,1) 466.45 0.0016
UN(2,1) -13.9159 0.0206
UN(2,2) 0.6376 0.0239

The model �t results are given as:

Fit Statistics
AIC 871.2
AICC 872.3
BIC 880.2

Null Model Likelihood Ratio Test
DF Chi-Square Pr > ChiSq
6 78.03 <.0001

The estimated beta coe�cients for the �xed-e�ects terms are:

Solution for Fixed E�ects
E�ect gender Estimate Pr > |t|
Intercept 61.1870 0.0041
gender F 29.5657 <.0001
gender M 0 .
age 0.9662 0.0053
month -0.9946 <.0001
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/*fitting random slope and intercept model with

spatial power covariance matrix of error terms*/

proc mixed data=longform covtest;

class gender;

model LDL=gender age month/solution;

random intercept month/subject=id type=un;

repeated / subject=id type=sp(pow)(month) r;

run;

Each estimated block in the variance-covariance matrix is:

Estimated R Matrix for Subject 1
Row Col1 Col2 Col3 Col4
1 69.8556 3.14E-12 0 0
2 3.14E-12 69.8556 0.000015 0
3 0 0.000015 69.8556 0
4 0 0 0 69.8556

The random-e�ects parameters are estimated as:

Covariance Parameter Estimates
Cov Parm Estimate Pr Z
UN(1,1) 520.17 0.0013
UN(2,1) -16.3953 0.0087
UN(2,2) 0.7846 0.0028
SP(POW) 0.005962 0.9985
Residual 69.8556 <.0001

In this model, the correlation coe�cient ρ is statistically indistinguishable
from zero, since ρ̂ = SP(POW) = 0.005962 with the p -value= 0.9985 > 0.05.
The times of measurements are t1 = 0, t2 = 6, t3 = 9, and t4 = 24. The
di�erences between these times assume values 3, 6, 9, 15, 18, and 24, and
thus the o�-diagonal entries in the matrix are: σ̂ 2 ρ̂ 3, σ̂ 2 ρ̂ 6, σ̂ 2 ρ̂ 9, σ̂ 2 ρ̂ 15,
σ̂ 2 ρ̂ 18, σ̂ 2 ρ̂ 24, which are all estimated to be very close to zero. The quantity
on the main diagonal is the estimated σ2, that is, σ̂2 =Residual= 69.8556.

The summary of the model �t is given below.

Fit Statistics
AIC 872.3
AICC 872.9
BIC 878.8
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Null Model Likelihood Ratio Test
DF Chi-Square Pr > ChiSq
4 72.86 <.0001

The estimated regression coe�cients for the �xed-e�ects terms are:

Solution for Fixed E�ects
E�ect gender Estimate Pr > |t|
Intercept 65.0163 0.0029
gender F 29.8105 <.0001
gender M 0 .
age 0.9203 0.0085
month -1.0957 <.0001

/*fitting random slope and intercept model with

autoregressive covariance matrix of error terms*/

proc mixed data=longform covtest;

class gender;

model LDL=gender age month/solution;

random intercept month/subject=id type=un;

repeated / subject=id type=ar(1) r;

run;

Each estimated block in the variance-covariance matrix is:

Estimated R Matrix for Subject 1
Row Col1 Col2 Col3 Col4
1 157.02 87.6923 48.9756 27.3526
2 87.6923 157.02 87.6923 48.9756
3 48.9756 87.6923 157.02 87.6923
4 27.3526 48.9756 87.6923 157.02

The random-e�ects parameters are estimated as:

Covariance Parameter Estimates
Cov Parm Estimate Pr Z
UN(1,1) 388.12 0.0365
UN(2,1) -11.7246 0.0610
UN(2,2) 0.4812 0.0527
AR(1) 0.5585 0.0816
Residual 157.02 0.1019
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The estimates σ̂2 = Residual = 157.02 and ρ̂ = AR(1) = 0.5585. The entries
in the estimated matrix are σ̂2 = 157.02, σ̂2ρ̂ = (157.02)(0.5585) = 87.69,
σ̂2ρ̂2 = (157.02)(0.55852) = 48.97, and σ̂2ρ̂3 = (157.02)(0.55853) = 27.35.

The model �t statistics are given below.

Fit Statistics
AIC 869.6
AICC 870.2
BIC 876.0

Null Model Likelihood Ratio Test
DF Chi-Square Pr > ChiSq
4 75.63 <.0001

The estimated beta coe�cients for the �xed-e�ects terms are:

Solution for Fixed E�ects
E�ect gender Estimate Pr > |t|
Intercept 62.9465 0.0044
gender F 30.6095 <.0001
gender M 0 .
age 0.9378 0.0088
month -0.9640 <.0001

/*fitting random slope and intercept model with

compound symmetric covariance matrix of error terms*/

proc mixed data=longform covtest;

class gender;

model LDL=gender age month/solution;

random intercept month/subject=id type=un;

repeated / subject=id type=cs r;

run;

For each individual, the �tted block is:

Estimated R Matrix for Subject 1
Row Col1 Col2 Col3 Col4
1 102.03 32.1771 32.1771 32.1771
2 32.1771 102.03 32.1771 32.1771
3 32.1771 32.1771 102.03 32.1771
4 32.1771 32.1771 32.1771 102.03
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The estimates of the variance-covariance parameters for the random terms
are as follows:

Covariance Parameter Estimates
Cov Parm Estimate Pr Z
UN(1,1) 487.99 0.0024
UN(2,1) -16.3952 0.0087
UN(2,2) 0.7846 0.0028
CS 32.1771 <.0001
Residual 69.8558 <.0001

In the estimated R matrix, on the main diagonal we see the estimated σ2

which is σ̂2 = CS + Residual = 32.1771 + 69.8558 = 102.0329. O� the
main diagonal, the entries are identical and equal to CS= 32.1771. The esti-
mate of the correlation coe�cient is calculated as ρ̂ = CS/(CS+Residual) =
32.1771/102.0329 = 0.31536.

The goodness-of-�t related output is:

Fit Statistics
AIC 872.3
AICC 872.9
BIC 878.8

Null Model Likelihood Ratio Test
DF Chi-Square Pr > ChiSq
4 72.86 <.0001

The estimated regression coe�cients for the �xed-e�ects terms are:

Solution for Fixed E�ects
E�ect gender Estimate Pr > |t|
Intercept 65.0161 0.0029
gender F 29.8106 <.0001
gender M 0 .
age 0.9203 0.0085
month -1.0957 <.0001

To identify the best-�tted model, we compare the values for AIC, AICC, and
BIC criteria and identify the smallest ones. We summarize them here:

Ind Un Toep SpPow AR Exch
AIC 870.3 874.7 871.2 872.3 869.6 872.3

AICC 870.7 878.7 872.3 872.9 870.2 872.9
BIC 875.5 891.5 880.2 878.8 876.0 878.8
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According to AIC and AICC criteria, the model with autoregressive struc-
ture is optimal, whereas the BIC criterion dictates that the model with the
independent structure is better.

The �tted model with the autoregressive structure is Ê(LDL) = 62.9465 +
30.6095 · female+ 0.9378 · age− 0.9640 ·month. On average, the estimated
cholesterol level is 30.6095 points higher for females than for males. As age
increases by one year, the estimated mean LDL increases by 0.9378 points,
and it decreases by 0.9640 points for every additional month in the study.

To compute the predicted LDL level for a 48-year-old female patient three
months into the study, we write LDL0 = 62.9465 + 30.6095 + 0.9378 · 48 −
0.9640 · 3 = 135.6784. SAS outputs the same result:

data prediction;

input id gender$ age month;

cards;

28 F 48 3

;

data longform;

set longform prediction;

run;

proc mixed covtest;

class gender;

model LDL=gender age month/outpm=outdata;

random intercept month/subject=id type=un;

repeated/subject=id type=ar(1);

run;

proc print data=outdata (firstobs=109) noobs;

var Pred;

run;

Pred
135.678

The R codes and outputs for the long-form data set in this example follow.

#fitting random slope and intercept model with unstructured covariance

#matrix of error terms
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library(nlme)

summary(un.fitted.model<-lme(LDL ~ gender.rel + age + month,

random = ~ 1 + month|id, data=longform.data,

correlation=corSymm(), weights=varIdent(form = ~ id|month)))

getVarCov(un.fitted.model, type="conditional")

AIC BIC
882.703 927.6576

Random e�ects:
StdDev Corr

(Intercept) 22.1065205 (Intr)
month 0.8202094 -0.767

Fixed e�ects:
Value p-value

(Intercept) 60.61574 0.0020
gender.relF 28.55931 0.0003
age 0.96009 0.0072
month -1.02503 0.0000

Conditional variance-covariance matrix
1 2 3 4

1 95.5290 57.655 -35.968 8.6119
2 57.6550 56.814 -11.431 -46.5200
3 -35.9680 -11.431 22.571 -25.3850
4 8.6119 -46.520 -25.385 133.0400

# computing AICC

n<- 108

p<- 17

print(AICC<- -2*logLik(un.fitted.model)+2*p*n/(n-p-1))

889.503

#checking model fit

summary(null.model<- glm(LDL ~ gender.rel + age + month,

data=longform.data))

print(deviance<- -2*(logLik(null.model)-logLik(un.fitted.model)))

91.43229

print(p.value<- pchisq(deviance, df=12, lower.tail=FALSE))
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2.605906e-14

#fitting random slope and intercept model with Toeplitz covariance

#matrix of error terms

summary(toep.fitted.model<- lme(LDL ~ gender.rel + age + month,

random = ~ 1 + month|id, data=longform.data,

correlation=corARMA(form = ~ 1|id, p=1, q=1)))

getVarCov(toep.fitted.model, type="conditional")

AIC BIC
877.5213 903.9653

Random e�ects:
StdDev Corr

(Intercept) 21.0541831 (Intr)
month 0.7154187 -0.813

Fixed e�ects:
Value p-value

(Intercept) 61.41936 0.0024
gender.relF 30.11579 0.0002
age 0.95896 0.0091
month -0.95868 0.0000

Conditional variance-covariance matrix
1 2 3 4

1 101.4400 35.200 -10.762 3.2906
2 35.2000 101.440 35.200 -10.7620
3 -10.7620 35.200 101.440 35.2000
4 3.2906 -10.762 35.200 101.4400

#computing AICC

p<- 11

print(AICC<- -2*logLik(toep.fitted.model)+2*p*n/(n-p-1))

882.2713

#checking model fit

print(deviance<- -2*(logLik(null.model)-logLik(toep.fitted.model)))

82.61391

print(p.value<- pchisq(deviance, df=6, lower.tail=FALSE))
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1.029563e-15

#fitting random slope and intercept model with spatial power

#covariance matrix of error terms

summary(sppow.fitted.model<- lme(LDL ~ gender.rel + age + month,

random = ~ 1 + month|id, data=longform.data,

correlation=corCAR1(form = ~ month|id)))

getVarCov(sppow.fitted.model, type="conditional")

AIC BIC
880.3294 904.1289

Random e�ects:
StdDev Corr

(Intercept) 22.8068074 (Intr)
month 0.8857947 -0.812
Residual 8.3578134

Parameter estimate:
Phi

0.005521199

Fixed e�ects:
Value p-value

(Intercept) 65.01447 0.0014
gender.relF 29.81150 0.0003
age 0.92035 0.0116
month -1.09566 0.0000

Conditional variance-covariance matrix
1 2 3 4

1 6.9853e+01 1.9787e-12 3.3303e-19 4.4977e-53
2 1.9787e-12 6.9853e+01 1.1757e-05 1.5878e-39
3 3.3303e-19 1.1757e-05 6.9853e+01 9.4338e-33
4 4.4977e-53 1.5878e-39 9.4338e-33 6.9853e+01

#computing AICC

p<- 9

print(AICC<- -2*logLik(sppow.fitted.model)+2*p*n/(n-p-1))

882.1661

#checking model fit

print(deviance<- -2*(logLik(null.model)-logLik(sppow.fitted.model)))
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77.80585

print(p.value<- pchisq(deviance, df=4, lower.tail=FALSE))

5.077837e-16

#fitting random slope and intercept model with autoregressive

#covariance matrix of error terms

summary(ar1.fitted.model<- lme(LDL ~ gender.rel + age + month,

random = ~ 1 + month|id, data=longform.data,

correlation=corAR1(form = ~ 1|id)))

getVarCov(ar1.fitted.model, type="conditional")

AIC BIC
877.5555 901.355

Random e�ects:
StdDev Corr

(Intercept) 19.7010538 (Intr)
month 0.6936938 -0.858
Residual 12.5304689

Parameter estimate:
Phi

0.5584911

Fixed e�ects:
Value p-value

(Intercept) 62.94677 0.0023
gender.relF 30.60932 0.0003
age 0.93779 0.0120
month -0.96402 0.0000

Conditional variance-covariance matrix
1 2 3 4

1 157.010 87.690 48.974 27.352
2 87.690 157.010 87.690 48.974
3 48.974 87.690 157.010 87.690
4 27.352 48.974 87.690 157.010

#computing AICC

p<- 9

print(AICC<- -2*logLik(ar1.fitted.model)+2*p*n/(n-p-1))
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879.3922

#checking model fit

print(deviance<- -2*(logLik(null.model)-logLik(ar1.fitted.model)))

80.57979

print(p.value<- pchisq(deviance, df=4, lower.tail=FALSE))

1.312697e-16

#fitting random slope and intercept model with compound symmetric

#covariance matrix of error terms

summary(cs.fitted.model<- lme(LDL ~ gender.rel + age + month,

random = ~ 1 + month|id, data=longform.data,

correlation=corCompSymm(form = ~ 1|id)))

getVarCov(cs.fitted.model, type="conditional")

AIC BIC
880.3294 904.1289

Parameter estimate:
Rho
0

Random e�ects:
StdDev Corr

(Intercept) 22.8072879 (Intr)
month 0.8857844 -0.812
Residual 8.3579458

Fixed e�ects:
Value p-value

(Intercept) 65.01614 0.0014
gender.relF 29.81056 0.0003
age 0.92033 0.0116
month -1.09566 0.0000

Conditional variance-covariance matrix
1 2 3 4

1 69.855 0.000 0.000 0.000
2 0.000 69.855 0.000 0.000
3 0.000 0.000 69.855 0.000
4 0.000 0.000 0.000 69.855
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#computing AICC

p<- 9

print(AICC<- -2*logLik(cs.fitted.model)+2*p*n/(n-p-1))

882.1661

#checking model fit

print(deviance<- -2*(logLik(null.model)-logLik(cs.fitted.model)))

77.80585

print(p.value<- pchisq(deviance, df=4, lower.tail=FALSE))

5.077834e-16

Next, we summarize the �t statistics to decide which model is optimal.

Ind Un Toep SpPow AR Exch
AIC 878.3 882.7 877.5 880.3 877.6 880.3

AICC 879.8 889.5 882.3 882.2 879.4 882.2
BIC 899.5 927.7 904.0 904.1 901.4 904.1

Here we make the same conclusion as in SAS: AIC and AICC criteria choose
the autoregressive structure, while the independent structure is better ac-
cording to the BIC criterion.

Finally, similar to the analysis done in SAS, we use the model with the au-
toregressive covariance structure for prediction. The script and output follow.

#using AR fitted model for prediction

print(predict(ar1.fitted.model, data.frame(gender.rel="F",

age=48, month=3), level=0))

135.6782

2

8.3 Generalized Estimating Equations Model

8.3.1 Model De�nition

So far in this chapter we considered modeling data with repeated measures
by a random slope and intercept model with a speci�ed structure of the
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variance-covariance matrix of the error terms. Another way to model re-
peated measures data is to use a Generalized Estimating Equations 2 (GEE)
approach. In the GEE model, there are no random-e�ects terms. Instead, the
response variable relates to the predictors via the generalized linear regression
model with only �xed-e�ects terms, and the variance-covariance structure of
the response variable itself is speci�ed, rather than that for the error terms.

Suppose that for each individual i, i = 1, . . . , n, at time tj, j = 1, . . . , a,
the observations are x1ij, . . . , xkij, yij. Denote by µij = E(yij), the mean
response, and assume that g(µij) = β0 +β1 x1ij + · · ·+βk xkij +βk+1 tj where
g(·) is the link function.

Next, we write the variance of yij as a function of µij, Var(yij) = V (µij).
The function V (·) is termed the variance function.

Further, we model the covariance structure of correlated responses for a given
individual i, i = 1, . . . , n. Observations between individuals are assumed in-
dependent. Let Ai denote a a× a diagonal matrix

Ai =


V (µi1) 0 . . . 0

0 V (µi2) . . . 0
. . . . . . . . . . . .
0 0 . . . V (µia)

 .
Also, let Ri(α) be the working correlation matrix of the repeated responses
for the i-th individual, where α denotes a vector of unknown parameters
which are the same for all individuals. The working covariance matrix for
yi = (yi1, yi2, . . . , yia)

′ is then

Vi(α) = A
1/2
i Ri(α)A

1/2
i .

The regression coe�cients β's and the vector of parameters α are the only un-
knowns of the GEE model and must be estimated from the data. Five struc-
tures are commonly used for the working correlation matrixRi(α). They are:

• unstructured (with all di�erent o�-diagonal entries, a total of a(a − 1)/2
unknown parameters)

2Originally discussed in Liang, K.-Y. and S.L. Zeger (1986). �Longitudinal Data Anal-
ysis Using Generalized Linear Models�. Biometrika, 73(1): 13 � 22, and in Zeger, S.L. and
K.-Y. Liang (1986). �Longitudinal Data Analysis for Discrete and Continuous Outcomes�.
Biometrics, 42(1): 121 � 130.
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Ri(α) =


1 α12 α13 . . . α1a

α12 1 α23 . . . α2a

α13 α23 1 . . . α3a

. . . . . . . . . . . . . . .
α1a α2a α3a . . . 1

 ,
• Toeplitz (with identical entries on each descending diagonal, a total of a−1
unknown parameters)

Ri(α) =


1 α1 α2 . . . αa−1

α1 1 α1 . . . αa−2

α2 α1 1 . . . αa−3

. . . . . . . . . . . . . . .
αa−1 αa−2 αa−3 . . . 1

 ,
• autoregressive (with α|i−j| in the ij-th position, a total of one unknown
parameter)

Ri(α) =


1 α α2 . . . αa−1

α 1 α . . . αa−2

α2 α 1 . . . αa−3

. . . . . . . . . . . . . . .
αa−1 αa−2 αa−3 . . . 1

 ,

• compound symmetric or exchangeable (with all identical o�-diagonal ele-
ments, a total of one unknown parameter)

Ri(α) =


1 α α . . . α
α 1 α . . . α
α α 1 . . . α
. . . . . . . . . . . . . . .
α α α α 1

 ,

• independent (identity matrix, no unknown parameters)

Ri(α) =


1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 1

 .
The GEE estimate of β = (β0, β1, . . . , βk+1)′ is the solution of the generalized
estimating equations:
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n∑
i=1

(∂µi

∂β

)
(k+2)×a

[
Vi(α̂)

]−1

a×a

(
yi − µi

)
a×1

= 0(k+2)×1

where µi = (µi1, . . . , µia)
′ is the vector of mean responses, and the estimator

α̂ is the method of moments estimator of the vector of parameters.

8.3.2 Fitted Model, Interpretation of Estimated Regres-

sion Coe�cients, and Predicted Response

In this chapter we consider the GEE model with a normally distributed
response, hence, the link function is the identity function, E(yij) = β0 +
β1 x1ij + · · · + βk xkij + βk+1 tj. The �tted model, interpretation of beta
estimates, and prediction are the same as in the random slope and intercept
model (see Subsections 8.1.2, 8.1.3, and 8.1.5).

8.3.3 Model Goodness-of-Fit Check

The quasi-likelihood under the independence (QIC) model criterion statistic3

is used as the goodness-of-�t measure. It is based on the quasi-likelihood
function Q de�ned as follows:

Q =
n∑
i=1

a∑
j=1

∫ µij

yij

yij − u
V (u)

du.

The QIC is used to select the best-�tted working correlation structure. The
one with the smallest value wins.

8.3.4 SAS Implementation

To �t a GEE model, one can use the genmod procedure with the repeated

statement. The syntax is below.

proc genmod data=longform data name;
class <list of categorical predictors>;
model response name=<list of x predictors> time name/

dist=normal link=identity;

output out=outdata name p=predicted response name;
repeated subject=id name/type=corrtype name corrw;

3Introduced in Pan, W. (2001). �Akaike's Information Criterion in Generalized Esti-
mating Equations�. Biometrics, 57(1): 120 � 125.
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run;

• The option dist=normal link=identity is a default in this procedure
and may be omitted.
• The types of the working correlation matrix are un for unstructured, ar for
autoregressive, cs or exch for compound symmetric (or exchangeable), and
ind for independent.
• For a Toeplitz working correlation matrix, specify mdep(m) with m ≤ a−1
where a is the number of time points or repeated observations. This will
correspond to an m-dependent Toeplitz matrix, for which correlations that
are more than m units apart are assumed equal to zero. One can try to run
the model with m = a− 1 �rst, and if it doesn't converge, decrease the value
of m, so that the peripheral descending diagonals are set to contain all zeros.
• Specifying the option corrw produces the estimated working correlation
matrix for a single individual.

8.3.5 R Implementation

Function geeglm() in package geepack may be employed to �t a GEE model
with the speci�ed underlying distribution. In this chapter, we model only
the normally distributed response. Other distributions will be considered in
the next chapter. This function should be run on a long-form data set that
is sorted by individuals' IDs. The syntax for sorting is:

longform.data.name<- longform.data.name[order(longform.data.name$id.name),]

The syntax for �tting GEE models is as follows:

summary(�tted.model.name<- geeglm(response.name ∼ x1.name + · · ·
+ xk.name + time.name, data=longform.data.name, id=id.name,
family=gaussian(link="identity"), corstr="corr.structure.name"))

• R doesn't automatically �t models with the Toeplitz correlation matrix.
The choices for the correlation structures are unstructured, ar1, exchangeable,
and independence.
• To request the value of QIC, one should type QIC(�tted.model.name), pre-
liminary installing the package MuMIn, which performs multi-model inference.
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8.3.6 Example

Example 8.3. We will use the data in Example 8.1 to �t GEE models with
various working correlation matrices and select the best-�tted one. The SAS
code and relevant outputs follow.

/*fitting GEE model with unstructured working correlation matrix */

proc genmod data=longform;

class id gender;

model ldl=gender age month/dist=normal link=identity;

repeated subject=id/type=un corrw;

run;

WARNING: Iteration limit exceeded.

Working Correlation Matrix
Col1 Col2 Col3 Col4

Row1 1.0000 0.9810 0.9810 0.8160
Row2 0.9810 1.0000 0.9810 0.7583
Row3 0.9810 0.9810 1.0000 0.6895
Row4 0.8160 0.7583 0.6895 1.0000

GEE Fit Criteria
QIC 144.1917

Analysis Of GEE Parameter Estimates
Parameter Estimate Pr > |Z|
Intercept 403.9145 0.0763
gender F -163.042 0.0354
gender M 0.0000 .
age -2.7167 0.4942
month -1.5905 <.0001

Note that the algorithm doesn't converge, and therefore we eliminate this
model from the list of candidates.

/*fitting GEE model with Toeplitz working correlation matrix */

proc genmod data=longform;

class id gender;

model ldl=gender age month/dist=normal link=identity;

repeated subject=id /type=mdep(3) corrw;

run;
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Working Correlation Matrix
Col1 Col2 Col3 Col4

Row1 1.0000 0.7536 0.4798 0.3084
Row2 0.7536 1.0000 0.7536 0.4798
Row3 0.4798 0.7536 1.0000 0.7536
Row4 0.3084 0.4798 0.7536 1.0000

GEE Fit Criteria
QIC 119.1042

Analysis Of GEE Parameter Estimates
Parameter Estimate Pr > |Z|
Intercept 54.1516 0.0028
gender F 36.0994 <.0001
gender M 0.0000 .
age 1.0174 0.0010
month -0.8347 <.0001

/*fitting GEE model with autoregressive working correlation matrix*/

proc genmod data=longform;

class id gender;

model ldl=gender age month/dist=normal link=identity;

repeated subject=id /type=ar corrw;

run;

Working Correlation Matrix
Col1 Col2 Col3 Col4

Row1 1.0000 0.7523 0.5659 0.4257
Row2 0.7523 1.0000 0.7523 0.5659
Row3 0.5659 0.7523 1.0000 0.7523
Row4 0.4257 0.5659 0.7523 1.0000

GEE Fit Criteria
QIC 119.4599

Analysis Of GEE Parameter Estimates
Parameter Estimate Pr > |Z|
Intercept 54.0026 0.0036
gender F 36.3525 <.0001
gender M 0.0000 .
age 1.0274 0.0012
month -0.9119 <.0001
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/*fitting GEE model with compound symmetric working correlation matrix*/

proc genmod data=longform;

class id gender;

model ldl=gender age month/dist=normal link=identity;

repeated subject=id /type=cs corrw;

run;

Working Correlation Matrix
Col1 Col2 Col3 Col4

Row1 1.0000 0.5743 0.5743 0.5743
Row2 0.5743 1.0000 0.5743 0.5743
Row3 0.5743 0.5743 1.0000 0.5743
Row4 0.5743 0.5743 0.5743 1.0000

GEE Fit Criteria
QIC 120.8579

Analysis Of GEE Parameter Estimates
Parameter Estimate Pr > |Z|
Intercept 51.5122 0.0122
gender F 37.4045 <.0001
gender M 0.0000 .
age 1.0692 0.0024
month -1.0957 <.0001

/*fitting GEE model with independent working correlation matrix*/

proc genmod data=longform;

class id gender;

model ldl=gender age month/dist=normal link=identity;

repeated subject=id /type=ind corrw;

run;

Working Correlation Matrix
Col1 Col2 Col3 Col4

Row1 1.0000 0.0000 0.0000 0.0000
Row2 0.0000 1.0000 0.0000 0.0000
Row3 0.0000 0.0000 1.0000 0.0000
Row4 0.0000 0.0000 0.0000 1.0000

GEE Fit Criteria
QIC 120.8579
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Analysis Of GEE Parameter Estimates
Parameter Estimate Pr > |Z|
Intercept 51.5122 0.0122
gender F 37.4045 <.0001
gender M 0.0000 .
age 1.0692 0.0024
month -1.0957 <.0001

The model with the Toeplitz correlation structure has the smallest QIC value
and thus it is optimal according to this criterion. All the predictors are sig-
ni�cant, and the predicted model has the form Ê(LDL) = 54.1516+36.0994·
female + 1.0174 · age− 0.8347 ·month. The estimated mean LDL level for
females exceeds that for males by 37.5045 points. When age increases by
one year, the estimated average cholesterol level increases by 1.0174 points.
As estimated, the mean LDL level decreases by 0.8347 points for every one-
month increase in time.

Predicted response at 3 months for a 48-year-old female patient is calculated
as LDL0 = 54.1516 + 36.0994 + 1.0174 · 48 − 0.8347 · 3 = 136.5821. SAS
outputs the same predicted value:

data prediction;

input id gender$ age month;

cards;

28 F 48 3

;

data longform;

set longform prediction;

run;

proc genmod;

class id gender;

model ldl=gender age month/dist=normal link=identity;

output out=outdata p=pred_ldl;

repeated subject=id/type=mdep(3);

run;

proc print data=outdata (firstobs=109) noobs;

var pred_ldl;

run;

pred_ldl
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136.580

The R script that �ts the GEE models to the long-form dataset and the
related output are given below.

cholesterol.data<- read.csv(file="C:/./Example8.1Data.csv",

header=TRUE, sep=",")

#creating longform data set

library(reshape2)

longform.data<- melt(cholesterol.data, id.vars=c("id", "gender", "age"),

variable.name = "LDLmonth", value.name="LDL")

#sorting data by id

longform.data<- longform.data[order(longform.data$id),]

#creating numeric variable for time

month<- ifelse(longform.data$LDLmonth=="LDL0", 0,

ifelse(longform.data$LDLmonth=="LDL6", 6,

ifelse(longform.data$LDLmonth=="LDL9",9,24)))

#fitting GEE model with unstructured working correlation matrix

library(geepack)

library(MuMIn)

summary(un.fitted.model<- geeglm(LDL ~ gender.rel + age + month,

data=longform.data, id=id, family=gaussian(link="identity"),

corstr="unstructured"))

Coe�cients:
Estimate Pr(>|W|)

(Intercept) 49.487 0.0061
gender.relF 34.315 1.3e-07
age 1.008 0.0006
month -0.479 0.2396

Estimated Correlation Parameters:
Estimate

alpha.1:2 1.138
alpha.1:3 0.644
alpha.1:4 0.142
alpha.2:3 0.608
alpha.2:4 0.153
alpha.3:4 0.427
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QIC(un.fitted.model)

QIC
656.1

Note that the estimated correlation matrix is not reliable because one of the
estimates is larger than one. Therefore, we will omit this model from further
consideration.

#fitting GEE model with autoregressive working correlation matrix

summary(ar.fitted.model<- geeglm(LDL ~ gender.rel + age + month,

data=longform.data, id=id, family=gaussian(link="identity"),

corstr="ar1"))

Coe�cients:
Estimate Pr(>|W|)

(Intercept) 53.708 0.0042
gender.relF 36.463 1.5e-07
age 1.032 0.0012
month -0.926 9.3e-08

Estimated Correlation Parameters:
Estimate

alpha 0.701

QIC(ar.fitted.model)

QIC
650

#fitting GEE model with compound symmetric (exchangeable)

#working correlation matrix

summary(cs.fitted.model<- geeglm(LDL ~ gender.rel + age+ month,

data=longform.data, id=id, family=gaussian(link="identity"),

corstr="exchangeable"))

Coe�cients:
Estimate Pr(>|W|)

(Intercept) 51.512 0.0122
gender.relF 37.405 3.0e-07
age 1.069 0.0024
month -1.096 7.5e-09
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Estimated Correlation Parameters:
Estimate

alpha 0.582

QIC(cs.fitted.model)

QIC
651

#fitting GEE model with independent working correlation matrix

summary(ind.fitted.model<- geeglm(LDL ~ gender.rel + age + month,

data=longform.data, id=id, family=gaussian(link="identity"),

corstr="independence"))

Coe�cients:
Estimate Pr(>|W|)

(Intercept) 51.512 0.0122
gender.relF 37.405 3.0e-07
age 1.069 0.0024
month -1.096 7.5e-09

QIC(ind.fitted.model)

QIC
651

The QIC-optimal model is the one with an autoregressive working correlation
matrix. The statement below computes the predicted response based on this
model.

#using autoregressive fitted model for prediction

print(predict(ar.fitted.model, data.frame(gender.rel="F", age=48,

month=3)))

136.9

2
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Exercises for Chapter 8

Exercise 8.1. Show that in the random slope and intercept model de�ned
in (8.1),
(a) For any i 6= i′, Cov(yij, yi′j′) = 0. Note: j may be equal to j′.
(b) For any given i and j 6= j′, Cov(yij, yij′) = σ2

u1
+σu1u2 (tj + tj′)+σ2

u2
tjtj′ .

(c) The response variable yij has a normal distribution with the mean E(yij) =
β0 + β1 x1ij + · · ·+ βk xkij + βk+1 tj and variance Var(yij) = σ2

u1
+ 2σu1u2 tj +

σ2
u2
t2j + σ2.

Exercise 8.2. A new manager in a department store wants to introduce
a new incentive compensation program for the �oor employees. She looks at
the historical data on the yearly bonuses in the past three years, and such
characteristics of each employee as the number of years with the company
and the current employment status (full- or part-time). The data for 15 em-
ployees are:

ID
Total

Status
Bonus Bonus Bonus

Years 2018 2019 2020

1 16 full 1482 1508 1543
2 7 part 673 710 895
3 11 full 933 1351 1440
4 8 part 844 958 1196
5 6 part 564 790 815
6 5 full 601 708 780
7 6 part 775 822 902
8 17 full 1209 1297 1475
9 12 full 929 1008 1255
10 9 full 983 1013 1111
11 11 full 909 1004 1084
12 6 part 387 853 999
13 4 part 476 530 627
14 6 full 780 843 925
15 10 full 717 1200 1399

(a) Carry out tests for normality of the bonus and plot the histogram. Is
this variable normally distributed?
(b) Fit a random slope and intercept model regressing bonus on years with
the company, status, and year (scaled by a factor of 10). Does the model �t
the data well?
(c) Write down the �tted model, specifying all estimated parameters. What
predictors are signi�cant at the 5% signi�cance level?
(d) Give the interpretation of the estimated signi�cant regression coe�-
cients.
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(e) According to the �tted model, what is the predicted bonus in 2021 for a
full-time employee who has been with the company for 7 years?

Exercise 8.3. In order to improve the quality of medical service, an ortho-
pedic clinic conducts a survey of its patients. After each visit, patients �ll out
a questionnaire, scoring the quality of service on a 0 to 10 continuous scale
(larger values indicate better quality). The data for two doctors (referred
to as A and B) are available. The variables are patient ID, gender, age (in
years), the doctor visited (A or B), length of the visit (in minutes) for three
visits, and scores patients gave to these visits. The data on 35 patients are:
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ID Gender Age Doctor Length1 Length2 Length3 Score1 Score2 Score3

101 F 78 A 25 20 25 7.1 7.5 7.6
102 F 63 A 30 30 40 5.5 5.8 6.1
103 F 62 A 10 15 10 10.0 10.0 9.8
104 F 71 B 15 15 40 7.8 7.3 7.5
105 M 68 A 40 60 40 3.5 3.5 3.0
106 F 63 A 25 15 20 8.5 8.7 8.8
107 F 60 B 25 35 25 6.7 5.7 6.5
108 F 70 A 20 20 20 9.0 8.3 8.2
109 F 57 A 30 20 15 8.4 7.8 8.1
110 F 59 B 25 30 15 7.1 7.4 7.9
111 M 62 A 50 30 70 3.0 3.2 2.6
112 M 58 A 20 15 45 6.1 6.8 6.9
113 M 75 A 25 35 30 5.7 5.6 4.7
114 M 76 B 35 50 25 4.9 5.4 5.2
115 F 75 A 15 20 25 8.2 8.9 8.2
116 M 57 A 45 30 40 4.6 3.9 3.2
117 F 68 A 35 25 40 3.8 4.8 5.3
118 M 65 B 40 40 25 3.9 3.9 4.7
119 F 67 B 20 15 30 6.5 7.2 6.6
120 F 60 B 25 15 15 7.3 7.1 7.8
121 F 67 A 15 20 15 7.7 8.0 8.3
122 F 57 B 10 15 15 9.8 9.2 8.6
123 M 62 B 55 60 75 3.4 2.7 2.3
124 M 71 A 20 30 25 7.1 6.6 7.4
125 M 71 B 15 15 20 8.8 9.1 9.3
126 M 64 A 25 30 30 5.6 6.3 6.3
127 M 51 A 35 40 30 5.1 4.6 3.9
128 F 70 B 35 25 15 6.8 7.1 7.6
129 M 61 A 35 40 50 5.5 5.2 4.8
130 M 62 B 60 40 65 3.7 3.4 2.4
131 F 68 A 20 35 35 5.3 5.6 4.9
132 F 68 B 35 30 15 7.2 6.2 5.6
133 M 64 B 40 20 30 5.4 4.9 4.5
134 F 76 B 30 45 25 5.5 4.7 4.6
135 F 78 B 25 20 15 7.6 8.3 9.2

(a) Create a long-form data set.
(b) Con�rm that the quality of service is normally distributed by plotting a
histogram and conducting normality tests.
(c) Fit a random slope and intercept model to regress the quality of service
scores on all the predictor variables. Discuss the model �t.
(d) What parameters of the random terms are signi�cant at the 5% level?
Are the scores for each patient correlated?
(e) What �xed-e�ects variables are signi�cant predictors at the 5% signi�-

261



cance level? Write down the �tted model.
(f) Interpret the estimates of the signi�cant regression coe�cients.
(g) Predict the quality of service score that would be given by a 55-year-old
male patient on his fourth visit to Dr. A with a 30-minute appointment.

Exercise 8.4. Measurements were taken on 20 people involved in a physi-
cal �tness course. The data below contain participants' gender, age, oxygen
intake (in ml per kg body weight per minute), run time (time to run 1 mile,
in minutes), and pulse (average heart rate while running). The running was
done under three di�erent conditions: the �rst one on a treadmill, the second
one on an indoor running track, and the third one on an outdoor running
track. The data are summarized in the table below.

ID Gender Age Oxgn1 Rtime1 Pulse1 Oxgn2 Rtime2 Pulse2 Oxgn3 Rtime3 Pulse3

1 F 39 37.4 11.4 151 36.6 17.8 158 36.1 15.4 152
2 M 42 60.1 11.5 121 59.0 9.6 131 58.2 9.0 143
3 F 34 44.6 9.6 138 39.8 9.3 148 38.8 9.1 144
4 M 36 51.9 10.5 125 53.4 9.8 135 50.4 9.6 163
5 F 45 40.8 13.1 142 39.5 12.4 151 38.5 12.7 133
6 M 37 45.4 10.3 133 40.6 11.9 145 40.2 11.2 141
7 F 49 45.3 13.1 135 40.6 12.1 148 39.7 11.5 157
8 F 47 44.8 12.1 135 40.1 12.3 148 39.0 11.9 151
9 M 50 48.7 12.6 131 42.3 11.0 143 44.3 10.5 150
10 M 34 45.8 10.8 132 40.9 11.8 144 41.1 11.1 160
11 M 35 50.4 9.6 129 45.9 10.4 137 44.8 10.4 138
12 M 48 50.5 12.9 125 48.6 10.3 135 49.0 9.8 132
13 F 50 44.8 14 135 40.3 13.1 148 39.5 12.6 163
14 F 53 39.4 12.7 145 39.3 14.1 154 37.0 12.8 148
15 M 44 46.1 11.0 132 40.9 11.3 144 41.1 10.8 148
16 F 32 39.2 9.1 146 38.7 9.7 158 36.7 10.2 170
17 M 39 54.3 9.4 123 55.1 9.7 132 57.4 9.4 162
18 F 33 39.4 11.6 144 39.4 12.7 154 37.4 12.7 155
19 M 33 47.9 10.1 132 42.2 11.2 143 42.6 10.6 140
20 M 46 49.2 11.2 130 43.9 10.8 141 44.7 10.5 142

(a) Check that pulse has a normal distribution. Construct a histogram and
conduct normality tests.
(b) Run a random slope and intercept regression model for pulse. Discuss
the model �t.
(c) Specify the �tted model. What parameters of the random-e�ects terms
are signi�cant at the 5% level? At the 10% level? What �xed-e�ects terms
are signi�cant at the 5% level?
(d) Interpret the estimated regression coe�cients for the signi�cant �xed-
e�ects terms.
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(e) Predict an average heart rate for a 36-year-old woman who is running
on a treadmill, if her oxygen intake is 40.2 units, and her run time is 10.3
minutes per mile.

Exercise 8.5. A health center conducted a study on the e�cacy of an in-
tervention on weight loss. The intervention consisted of a lecture on proper
nutrition and the importance of exercising, followed by a cooking class. The
study had a waitlist control group. For each of the 34 study participants, the
investigators recorded the group (intervention or control), gender (F/M), the
typical length of daily exercise in the past week (in minutes), and BMI (in
kg/m2) at the beginning of the study, and 1 and 3 months afterward. The
data are as follows:

ID Group Gender aExercise aBMI bExercise bBMI cExercise cBMI

1 Int F 0 42.4 50 40.0 120 36.8
2 Int F 15 32.9 20 30.6 25 28.6
3 Int M 10 32.0 30 30.8 30 26.1
4 Int M 20 26.1 80 25.5 80 21.1
5 Int F 0 27.5 20 26.4 20 22.5
6 Int F 30 40.4 75 38.3 180 32.1
7 Int M 15 33.5 50 28.2 50 25.8
8 Int F 15 35.2 35 34.8 90 30.6
9 Int F 0 39.5 55 37.1 50 35.3
10 Int M 20 27.3 30 26.3 30 22.6
11 Int M 0 46.9 50 43.5 50 40.3
12 Int M 20 34.4 80 32.2 85 28.1
13 Int F 0 34.2 60 31.0 65 26.8
14 Int F 45 26.5 30 24.6 30 20.8
15 Int F 0 29.6 20 28.2 20 24.9
16 Int F 10 31.2 80 29.3 50 28.6
17 Cnt F 0 29.3 25 28.9 30 26.3
18 Cnt M 20 45.9 10 43.1 15 42.9
19 Cnt M 0 41.5 20 38.8 30 39.9
20 Cnt F 30 33.3 25 33.4 35 33.2
21 Cnt M 15 31.1 35 30.9 0 30.9
22 Cnt F 10 43.3 35 43.6 30 44.5
23 Cnt M 15 35.5 0 36.5 5 35.3
24 Cnt F 10 42.4 15 43.4 50 42.3
25 Cnt F 20 37.0 30 36.6 45 35.5
26 Cnt M 0 37.8 30 35.7 45 34.3
27 Cnt F 20 23.7 10 23.1 0 23.7
28 Cnt F 10 38.7 15 20.4 25 20.1

(Continues on the next page)
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(Continued from the previous page)

ID Group Gender aExercise aBMI bExercise bBMI cExercise cBMI

29 Cnt F 0 41.2 15 41.2 55 39.7
30 Cnt F 30 30.2 35 29.9 5 29.4
31 Cnt M 10 38.4 20 38.1 30 37.0
32 Cnt F 10 37.5 15 37.4 5 36.8
33 Cnt M 30 34.5 10 34.4 20 33.9
34 Cnt M 15 37.6 35 36.2 25 36.0

(a) Verify the normality of the response variable BMI by plotting the his-
togram and carrying out normality tests.
(b) Fit the random slope and intercept model. How good is the model �t?
(c) Present the �tted model and specify all estimated parameters. Discuss
the signi�cance of the parameters at the 5% signi�cance level.
(d) Give an interpretation of the estimated signi�cant beta coe�cients. Is
the intervention e�cient?
(e) Compute the predicted BMI at 3 months for an intervention group fe-
male participant, if she exercises for 1 hour every day.

Exercise 8.6. Consider the data in Exercise 8.2. Answer the questions
below.
(a) Fit random slope and intercept models with unstructured, Toeplitz, spa-
tial power, autoregressive, compound symmetric, and independent covariance
matrices for error terms. Present the AIC, AICC, and BIC criteria values for
those models that converge. If the random slope and intercept model doesn't
converge, try to �t a random intercept-only model.
(b) Find the optimal model with respect to the AIC, AICC, and BIC crite-
ria, and answer questions (c)-(e) in Exercise 8.2, using the best-�tted model.

Exercise 8.7. For the data in Exercise 8.3,
(a) Fit random slope and intercept models with unstructured, Toeplitz, spa-
tial power, autoregressive, compound symmetric, and independent covariance
matrices for error terms, whichever converge. Try to �t a random intercept-
only model if convergence criteria are not met.
(b) Which of the �tted models has the best �t according to the AIC, AICC,
and BIC criteria?
(c) Answer parts (e)-(g) in Exercise 8.3 as applied to the best �tted model.

Exercise 8.8. Use the data in Exercise 8.4 to do the following analysis:
(a) Output AIC, AICC, and BIC values for random slope and intercept (or
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random intercept-only) models with unstructured, Toeplitz, spatial power,
autoregressive, compound symmetric, and independent covariance structures
for the error terms.
(b) Find the best-�tted model according to the AIC, AICC, and BIC crite-
ria.
(c) Answer questions (c)-(e) in Exercise 8.4 for the model that �ts the data
the best.

Exercise 8.9. Take the data presented in Exercise 8.5.
(a) For BMI, �t the random slope and intercept regression models (or ran-
dom intercept-only models) with unstructured, Toeplitz, spatial power, au-
toregressive, compound symmetric, and independent covariance structures
for the error terms.
(b) Which of the models has the best �t according to AIC, AICC, and BIC
criteria?
(c) For the best-�tted model, do the analysis for questions (c) through (e)
in Exercise 8.5.

Exercise 8.10. Returning to the data in Exercise 8.2, answer the following
questions:
(a) Fit the GEE models with unstructured, Toeplitz (in SAS only), autore-
gressive, compound symmetric, and independent working correlation matri-
ces.
(b) Find the best model using the QIC criterion.
(c) For the model that �ts the data the best, answer questions (c)-(e) in
Exercise 8.2.

Exercise 8.11. For the data in Exercise 8.3,
(a) Fit the generalized estimating equations models with unstructured, Toeplitz
(if using SAS), autoregressive, compound symmetric, and independent work-
ing correlation matrices.
(b) Which of the �tted models has the best �t according to the QIC crite-
rion?
(c) Answer parts (e)-(g) in Exercise 8.3 in relation to the best-�tted model.

Exercise 8.12. Consider the data in Exercise 8.4.
(a) Run the generalized estimating equations models with unstructured,
Toeplitz (only in SAS), autoregressive, compound symmetric, and indepen-
dent working correlation matrices for the pulse.
(b) Compare the QIC values for the �tted models and choose the optimal
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one.
(c) For the optimal model, do questions (c)-(e) in Exercise 8.4.

Exercise 8.13. For the data given in Exercise 8.5, do the following ques-
tions:
(a) Fit the GEE models with unstructured, Toeplitz (only in SAS), autore-
gressive, compound symmetric, and independent working correlation matri-
ces of the response variable BMI.
(b) Choose the best-�tted model with respect to the QIC criterion.
(c) For the best-�tted model, do parts (c)-(e) in Exercise 8.5.
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Chapter 9

Generalized Linear Regression

Models for Repeated Measures

Data

Generalized linear mixed-e�ects and GEE models are regression models that
extend the classes of random slope and intercept (Section 8.1) and GEE
(Section 8.3) models for normally distributed response variables, respec-
tively. Generalized models can be used to model repeated measures data
with skewed, categorical, or count responses.

Random slope and intercept models with covariance structure for errors that
we considered in Section 8.2 are not applicable in this case, because the
models for data with non-normally distributed responses don't contain error
terms.

9.1 Generalized Random Slope and Intercept

Model

9.1.1 Model De�nition

A generalized random slope and intercept model (also termed the general-
ized linear mixed model) is a generalization of the linear mixed-e�ects model
introduced in (8.1) to any distribution of the response variable in the ex-
ponential family of distributions, and the corresponding link function. In
this chapter, we talk about the models considered earlier: gamma (in Sec-
tion 2.2), binary logistic (in Section 3.1), Poisson (in Section 5.1), negative
binomial (in Section 6.1), and beta (in Section 7.1). In the setting of each
regression, we assume that the data were collected longitudinally at times
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t1, . . . , ta, and that for the i-th individual at time tj the observations are
x1ij, . . . , xkij, and yij where i = 1, ..., n, and j = 1, ..., a, and yij's have one
of the aforementioned distributions. The generalized mixed-e�ects model in
each case has two random additive terms in the linear regression expression:
β0 + β1 x1ij + · · ·+ βk xkij + βk+1 tj + u1i + u2i tj where u1i's are independent
N (0, σ2

u1
) random intercepts, u2i's are independent N (0, σ2

u2
) random slopes,

Cov(u1i, u2i) = σu1u2 , and Cov(u1i, u2i′) = 0 for i 6= i′.

A simpler model that contains only the random intercept may be considered
if the model with random slope and intercept is not estimable.

Remark. Fitting a negative binomial regression might not be necessary as
the random-e�ects terms in a Poisson model will take care of overdispersion
in the count data.

9.1.2 Fitted Model, Interpretation of Estimated Regres-

sion Coe�cients, Model Goodness-of-Fit Check,

and Predicted Response

Fitted generalized random slope and intercept model has the form

g
(
Ê(y)

)
= β̂0 + β̂1 x1 + · · ·+ β̂k xk + β̂k+1 t

where g(·) is the link function that corresponds to the underlying distribution.

Interpretation of the estimated beta coe�cients and computation of pre-
dicted response for a �xed set of predictors are done the same way as in the
appropriate regression model (gamma, binary logistic, Poisson, or beta).

The goodness-of-�t test is the standard deviance test where the null model
contains only �xed-e�ects terms.

9.1.3 SAS Implementation

The procedure glimmix, employed in Section 7.1 for �tting a beta regression,
can handle generalized linear mixed-e�ects models if the random statement
is added. The general statements should be:

proc glimmix data=data name method=Laplace;

class catpredictor1 name (ref="level name") catpredictor2 name
(ref="level name") . . . ;
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model response name=<list of predictors>/dist=dist name link=link type
solution;

output out=outdata pred(ilink)=predicted name;
random intercept time name/subject=id name type=un;

covtest/wald;

run;

• The option method=Laplace speci�es the method of parameter estimation,
in which the output contains the values of -2*log-likelihood. This value is
needed for the computation of model deviance and carrying out the test of
model �t.
• The choices for the distributions and corresponding links are: dist=gamma
link=log, dist=binomial link=logit, dist=poisson link=log, dist=nb
link=log, and dist=beta link=logit.
• Along with speci�c values for all predictors, the row for prediction must
contain a hypothesized value for id name.
• The statement covtest/wald should be added to request the Wald z-test
results for the parameters of the random-e�ects terms.
• In the output for gamma regression, the estimate of parameter α is called
Residual.
• In the output for negative binomial regression, the estimate of r is called
Scale.

9.1.4 R Implementation

To �t a generalized random slope and intercept gamma, logistic, or Poisson
model in R , the function glmer() in the library lme4 is used. The data set
must be in the long form. The general script is:

summary(�tted.model.name<- glmer(response.name ∼ x1.name + · · ·
+ xk.name + time.name + (1 + time.name|id.name), control=glmerControl(),

data=longform.data.name, family=dist.name(link="link.type")))

• The distribution names and the link types can be speci�ed as Gamma(link="log"),
binomial(link="logit"), or poisson(link="log").
• In the output for gamma regression, the estimate of parameter α is called
Residual.
• The optional function glmerControl() aids in model convergence.
• Currently there is no built-in procedure to carry out tests of signi�cance for
the variance-covariance parameters, but R outputs the estimates and their
standard errors. Thus, the two-sided z-test may be conducted by hand.
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• To output the predicted value of the response variable for a �xed set of
predictors, the function predict() should be used with the following syntax:

predict(�tted.model.name, data.frame(catpredictor1.name="value", . . . ,
numpredictork.name=value, time.name=value), re.form=NA, type="response")

The argument re.form=NA requests a predicted response not conditioned on
any values of the random-e�ects terms.

To �t a negative binomial model with random-e�ects terms, one can use
the function glmer.nb() in the library lme4, with the distribution and link
function speci�ed as family=negative.binomial(link="log"). The out-
put contains the exponentiated dispersion parameter exp{r}.

To �t a beta regression model with random-e�ects terms, the function glmmTMB()
can be employed in the library glmmTMB which stands for �generalized linear
mixed models using Template Model Builder�. The distribution and link
function should be speci�ed as family=beta family(link="logit"). Also,
in this case, when predicting a value, one has to use options allow.new.levels=TRUE
and type="response" in the function predict().

9.1.5 Example

Example 9.1. A dermatologist tests a new ointment treatment for psoria-
sis. He administers the ointment to �ve patients and keeps �ve patients as
control. The control patients take a medication that is commonly prescribed
against the disease. The doctor sees the patients the next day, then after one
week, two weeks, �ve weeks, and �nally, after three months. He records the
number of psoriatic patches that are visible on patients' bodies. The code
below �ts the random slope and intercept Poisson model to the data.

data psoriasis;

input patid group$ day1 week1 week2 week5 month3 @@;

cards;

1 Tx 15 12 9 3 0 2 Tx 24 17 9 8 8

3 Cx 14 14 15 15 14 4 Cx 23 20 19 19 15

5 Tx 11 10 3 2 0 6 Cx 11 10 8 7 5

7 Tx 7 6 5 3 0 8 Tx 9 6 2 0 0

9 Cx 9 9 9 9 9 10 Cx 21 16 16 15 15

;

data longform;
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set psoriasis;

array w{5}(0.14 1 2 5 13);

array x{5} day1 week1 week2 week5 month3;

do i=1 to 5;

weeks=w{i};

npatches=x{i};

output;

end;

keep patid group weeks npatches;

run;

proc glimmix method=Laplace;

class group;

model npatches=group weeks/solution dist=poisson

link=log;

random intercept weeks/subject=patid type=un;

covtest/wald;

run;

Covariance Parameter Estimates
Cov Parm Estimate Pr Z
UN(1,1) 0.1139 0.1292
UN(2,1) 0.04259 0.2046
UN(2,2) 0.02408 0.0749

Solutions for Fixed E�ects
E�ect group Estimate Pr > |t|
Intercept 2.6503 <.0001
group Cx -0.1916 0.5762
group Tx 0 .
weeks -0.1570 0.0229

The output shows that the variances and covariance of the random-e�ects
terms are not signi�cant at the 5% level. A reasonably simpler model to
run in this case would be a random intercept-only model, where the random
slope is omitted.

proc glimmix method=Laplace;

class group;

model npatches=group weeks/solution dist=poisson

link=log;

random intercept/subject=patid type=un;
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covtest/wald;

run;

-2 Log Likelihood 289.31

Covariance Parameter Estimates
Cov Parm Estimate Pr Z
UN(1,1) 0.1492 0.0281

Solutions for Fixed E�ects
E�ect group Estimate Pr > |t|
Intercept 2.0222 <.0001
group Cx 0.7391 0.0080
group Tx 0 .
weeks -0.05778 <.0001

In the �tted random intercept-only Poisson model, the estimated rate λ̂ =
Ê(y) = exp

{
2.0222 + 0.7391 ·Cx− 0.05778 ·weeks

}
. Both group and weeks

are signi�cant predictors at the 0.05 level. The estimated average number of
psoriatic patches for patients in the control group is exp{0.7391} · 100% =
209.41% of that for the patients in the treatment group. Each week, the esti-
mated average number of patches changes by (exp{−0.05778} − 1) · 100% =
−5.61%, that is, decreases by 5.61%.

Next, we �t the null model, which in this case is the model with only the
�xed e�ects, and conduct the deviance test of model �t.

proc glimmix;

class group;

model npatches=group weeks/solution dist=poisson

link=log;

run;

data deviance_test;

deviance=336.27-289.31;

pvalue=1-probchi(deviance,1);

run;

proc print;

run;

deviance pvalue
46.96 7.245E-12
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The p -value is tiny which indicates a good model �t. Finally, we would
like to use the estimated model to predict the number of psoriatic patches
for a patient in the treatment group at �ve weeks. We compute y0 =
exp{2.0222−0.05778 ·5} = 5.66. To produce the prediction in SAS, we write:

data prediction;

input patid group$ weeks;

cards;

11 Tx 5

;

data longform;

set longform prediction;

run;

proc glimmix method=Laplace;

class group;

model npatches=group weeks/dist=poisson link=log;

random intercept/subject=patid type=un;

output out=outdata pred(ilink)=p_npatches;

run;

proc print data=outdata (firstobs=51) noobs;

var p_npatches;

run;

p_npatches
5.65951

Note that the row for prediction must contain a (hypothesized) value of the
id variable.

Further, the R script and appropriate output for this example are as follows:

psoriasis.data<-read.csv(file="./Example9.1Data.csv", header=TRUE, sep=",")

#creating long-form data set

library(reshape2)

longform.data<- melt(psoriasis.data, id.vars=c("patid", "group"),

variable.name = "visits", value.name="npatches")
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#creating numeric variable for time

weeks<- ifelse(longform.data$visits=="day1", 0.14,

ifelse(longform.data$visits=="week1", 1,

ifelse(longform.data$visits=="week2",

2,ifelse(longform.data$visits=="week5", 5, 13))))

#specifying reference category

group.rel<- relevel(longform.data$group, ref="Tx")

#fitting random slope and intercept Poisson model

library(lme4)

summary(glmer(npatches ~ group.rel + weeks + (1 + weeks|patid),

data=longform.data, family=poisson(link="log")))

Random e�ects:
Groups Name Variance Corr
patid (Intercept) 0.11393

weeks 0.02403 0.81

Fixed e�ects:
Estimate Pr(>|z|)

(Intercept) 2.65008 < 2e-16
group.relCx -0.19148 0.57023
weeks -0.15681 0.00565

#fitting random intercept-only Poisson model

summary(fitted.model<- glmer(npatches ~ group.rel + weeks + (1|patid),

data=longform.data, family=poisson(link="log")))

Random e�ects:
Groups Name Variance
patid (Intercept) 0.1492

Fixed e�ects:
Estimate Pr(>|z|)

(Intercept) 2.02224 < 2e-16
group.relCx 0.73904 0.00515
weeks -0.05778 2.74e-07

#checking model fit

null.model<- glm(npatches ~ group.rel + weeks, data=longform.data,

family=poisson(link=log))

print(deviance<- -2*(logLik(null.model)-logLik(fitted.model)))
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46.96343

print(p.value<- pchisq(deviance, df=1, lower.tail=FALSE))

7.232377e-12

#using the model for prediction

print(predict(fitted.model, data.frame(patid=11, group.rel="Tx",

weeks=5), re.form=NA, type="response"))

5.659691

2

9.2 Generalized Estimating Equations Model

9.2.1 Model De�nition

The Generalized Estimating Equations model described in Section 8.3 trans-
lates directly to the gamma, logistic, Poisson, and negative binomial models.
Neither SAS nor R can handle GEE for beta distribution, so this model will
be omitted from consideration.

9.2.2 SAS Implementation

In SAS, proc genmod is used to �t GEEs with the syntax given in Subsection
8.3.4. Allowable distributions and link types are: dist=gamma link=log,
dist=bin link=logit, dist=poisson link=log, and dist=nb link=log.
When the distribution is logistic, include descending in the proc statement
to model the probability of level �1�.

9.2.3 R Implementation

In R, the function geeglm() is employed for �tting a Generalized Estimating
Equations model. The general form of the script was presented in Subsection
8.3.5.
• The underlying response distributions and the corresponding links are given
as: gamma(link="log"), binomial(link="logit"), poisson(link="log"),
and nb(link="log").
• To request predicted response, the argument type="response" should be
added to the function predict().
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9.2.4 Example

Example 9.2. We �t GEE models to the data in Example 9.1. In SAS,
the model with an unstructured working correlation matrix doesn't converge.
Therefore, we present results for the Toeplitz, autoregressive, exchangeable,
and independent structures.

/*fitting GEE with Toeplitz working correlation matrix*/

proc genmod;

class patid group;

model npatches=group weeks/dist=poisson link=log;

repeated subject=patid/type=mdep(3) corrw;

run;

Working Correlation Matrix
Col1 Col2 Col3 Col4 Col5

Row1 1.0000 0.7495 0.4228 0.2298 0.0000
Row2 0.7495 1.0000 0.7495 0.4228 0.2298
Row3 0.4228 0.7495 1.0000 0.7495 0.4228
Row4 0.2298 0.4228 0.7495 1.0000 0.7495
Row5 0.0000 0.2298 0.4228 0.7495 1.0000

GEE Fit Criteria
QIC -483.3303

Analysis Of GEE Parameter Estimates
Parameter Estimate Pr > |Z|
Intercept 2.1455 <.0001
group Cx 0.6625 0.0303
group Tx 0.0000 .
weeks -0.0362 0.0019

/*fitting GEE with autoregressive working correlation matrix*/

proc genmod;

class patid group;

model npatches=group weeks/dist=poisson link=log;

repeated subject=patid/type=ar corrw;

run;

Working Correlation Matrix
Col1 Col2 Col3 Col4 Col5

Row1 1.0000 0.7504 0.5631 0.4225 0.3171
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Row2 0.7504 1.0000 0.7504 0.5631 0.4225
Row3 0.5631 0.7504 1.0000 0.7504 0.5631
Row4 0.4225 0.5631 0.7504 1.0000 0.7504
Row5 0.3171 0.4225 0.5631 0.7504 1.0000

GEE Fit Criteria
QIC -494.0739

Analysis Of GEE Parameter Estimates
Parameter Estimate Pr > |Z|
Intercept 2.2059 <.0001
group Cx 0.5637 0.0379
group Tx 0.0000 .
weeks -0.0424 0.0016

/*fitting GEE with exchangeable working correlation matrix*/

proc genmod;

class patid group;

model npatches=group weeks/dist=poisson link=log;

repeated subject=patid/type=cs corrw;

run;

Working Correlation Matrix
Col1 Col2 Col3 Col4 Col5

Row1 1.0000 0.5775 0.5775 0.5775 0.5775
Row2 0.5775 1.0000 0.5775 0.5775 0.5775
Row3 0.5775 0.5775 1.0000 0.5775 0.5775
Row4 0.5775 0.5775 0.5775 1.0000 0.5775
Row5 0.5775 0.5775 0.5775 0.5775 1.0000

GEE Fit Criteria
QIC -438.9074

Analysis Of GEE Parameter Estimates
Parameter Estimate Pr > |Z|
Intercept 2.3502 <.0001
group Cx 0.3174 0.1689
group Tx 0.0000 .
weeks -0.0579 0.0054

/*fitting GEE with independent working correlation matrix*/

proc genmod;
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class patid group;

model npatches=group weeks/dist=poisson link=log;

repeated subject=patid/type=ind corrw;

run;

Working Correlation Matrix
Col1 Col2 Col3 Col4 Col5

Row1 1.0000 0.0000 0.0000 0.0000 0.0000
Row2 0.0000 1.0000 0.0000 0.0000 0.0000
Row3 0.0000 0.0000 1.0000 0.0000 0.0000
Row4 0.0000 0.0000 0.0000 1.0000 0.0000
Row5 0.0000 0.0000 0.0000 0.0000 1.0000

GEE Fit Criteria
QIC -459.7895

Analysis Of GEE Parameter Estimates
Parameter Estimate Pr > |Z|
Intercept 2.1223 <.0001
group Cx 0.6902 0.0118
group Tx 0.0000 .
weeks -0.0578 0.0052

The model with the autoregressive working correlation structure has the
smallest QIC value, thus, this model has the best �t. In this case, the
estimated rate λ̂ = Ê(y) = exp

{
2.2059 + 0.5637 · Cx − 0.0424 · weeks

}
,

where both predictors are signi�cant at the 5% signi�cance level. The esti-
mated average number of psoriatic patches for patients in the control group
is exp{0.6902} · 100% = 199.41% of that for the patients in the treatment
group. Each week, the estimated average number of patches changes by
(exp{−0.0578} − 1) · 100% = −5.62%, that is, decreases by 5.62%.

To predict the number of psoriatic patches for a patient in the treatment
group �ve weeks into the study, we calculate y0 = exp{2.2059− 0.0424 · 5} =
7.34. In SAS, the following statements produce the prediction:

data prediction;

input patid group$ weeks;

cards;

11 Tx 5

;
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data longform;

set longform prediction;

run;

proc genmod;

class patid group;

model npatches=group weeks/dist=poisson link=log;

output out=outdata p=p_npatches;

repeated subject=patid/type=ar;

run;

proc print data=outdata (firstobs=51) noobs;

var p_npatches;

run;

p_npatches
7.34378

Below we give the R statements for this example and corresponding outputs.
We use the long-form data set already created in Example 9.1 but we need
to sort it by ID.

#sorting data by id

longform.data<- longform.data[order(longform.data$patid),]

#specifying reference category

group.rel<- relevel(as.factor(longform.data$group), ref="Tx")

library(geepack)

library(MuMIn)

#fitting GEE model with unstructured working correlation matrix

summary(un.fitted.model<- geeglm(npatches ~ group.rel + weeks,

data=longform.data, id=patid, family=poisson(link="log"),

corstr="unstructured"))

Coe�cients:
Estimate Pr(>|W|)

(Intercept) 1.8166 2e-12
group.relCx 0.8773 0.0019
weeks -0.0212 0.3846
Estimated Correlation Parameters:
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Estimate Std.err
alpha.1:2 1.4478 0.2470
alpha.1:3 0.4449 0.2001
alpha.1:4 0.0376 0.2068
alpha.1:5 -0.2015 0.3470
alpha.2:3 0.3136 0.1478
alpha.2:4 0.0762 0.1557
alpha.2:5 -0.0721 0.2616
alpha.3:4 0.3201 0.1263
alpha.3:5 0.3052 0.1493
alpha.4:5 0.6064 0.0983

QIC(un.fitted.model)

QIC
-1378

#fitting GEE model with autoregressive working correlation matrix

summary(ar.fitted.model<- geeglm(npatches ~ group.rel + weeks,

data=longform.data, id=patid, family=poisson(link="log"), corstr="ar1"))

Coe�cients:
Estimate Pr(>|W|)

(Intercept) 1.9935 4.4e-16
group.relCx 0.7336 0.0064
weeks -0.0218 0.3960

Estimated Correlation Parameters:
Estimate

alpha 0.544

QIC(ar.fitted.model)

QIC
-1379

#fitting GEE model with exchangeable working correlation matrix

summary(exch.fitted.model<- geeglm(npatches ~ group.rel + weeks,

data=longform.data, id=patid, family=poisson(link="log"),

corstr="exchangeable"))

Coe�cients:
Estimate Pr(>|W|)

(Intercept) 1.9666 <2e-16
group.relCx 0.7649 0.0032
weeks -0.0231 0.3497
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Estimated Correlation Parameters:
Estimate

alpha 0.328

QIC(exch.fitted.model)

QIC
-1380

#fitting GEE model with independent working correlation matrix

summary(ind.fitted.model<- geeglm(npatches ~ group.rel + weeks,

data=longform.data, id=patid, family=poisson(link="log"),

corstr="independence"))

QIC(ind.fitted.model)

Coe�cients:
Estimate Pr(>|W|)

(Intercept) 1.9666 <2e-16
group.relCx 0.7649 0.0032
weeks -0.0231 0.3497

QIC
-1380

The models with exchangeable and independent working correlation matri-
ces have the smallest QIC value. The one with the independent structure is
simpler and will be used for prediction.

#using autoregressive fitted model for prediction

print(predict(ind.fitted.model, data.frame(patid=11,

group.rel="Tx", weeks=5), type="response"))

6.37

2

Exercises for Chapter 9

Exercise 9.1. A center for medical weight loss is considering buying a
shipment of a new medication that was recently marketed. Before the pur-
chase, the doctors decide to conduct a trial with their patients to test the
superiority of this new medication as compared to the one that they have
been prescribing on a regular basis. They administer this medication to 8
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patients while keeping another 8 patients as a control group. For each sub-
ject in the trial, the doctors record group (Tx/Cx), gender (M/F), and excess
body weight loss (EWL, in percent) between measurement sessions: from the
baseline to 1 month (EWL1), 1 month to 2 months (EWL2), 2 months to 3
months (EWL3), and 3 months to 6 months (EWL4). The data are:

PatID Group Gender EWL1 EWL2 EWL3 EWL4

1 Tx M 11.8 16.4 7.1 4.5
2 Tx F 18.3 7.7 10.7 4.1
3 Tx F 20.1 8.2 7.2 6.3
4 Tx F 15.6 7.8 7.2 2.7
5 Tx M 12.5 8.6 9.7 5.4
6 Tx F 24.4 8.7 6.6 4.7
7 Tx F 18.8 12.3 6.7 4.5
8 Tx M 11.2 9.1 5.6 3.1
9 Cx F 13.9 14.3 4.1 5
10 Cx F 6.8 5.2 4.5 1.4
11 Cx M 8.1 12.7 12.3 4.9
12 Cx F 5.6 16.5 4.8 1.8
13 Cx M 9.6 9.9 3.6 3.5
14 Cx M 6.8 7.5 5.1 1.7
15 Cx F 4.7 8.3 3.2 2.4
16 Cx F 6.7 4.1 2.4 1.3

(a) Plot the histogram of the EWL to see that this variable has a right-
skewed distribution.
(b) Try to run a generalized random slope and intercept model for the EWL
based on a gamma distribution. If it doesn't run, �t an intercept-only model.
Discuss the �t of this model. Hint: as a time variable, use visits with values
1, 2, 3, or 4.
(c) What parameters are signi�cant at the 5% level? Give the �tted model,
specifying all parameter estimates.
(d) Give an interpretation of the estimates of signi�cant �xed-e�ects param-
eters. Is the new medication superior to the regularly used one?
(e) What percent excess body weight loss can the doctors expect to see
between 3 and 6 months in male patients who will be taking this new medi-
cation?

Exercise 9.2. A pharmaceutical company conducted a dosage trial for a
painkiller medication. Five dosages were tested and two were picked as the
winners (dosages A and B). Further investigation was launched into the long-
run safety of these dosages. An experiment was set up with 7 subjects in
each of the two groups, taking dosages A and B, respectively. The goal of the
experiment was to identify which dosage is less likely to cause side e�ects.
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The data set below contains participants' ID, dosage (A or B), gender, age,
and presence or absence of side e�ects (1=present, or 0=absent) at 1, 3, 7,
and 16 weeks.

PatID Dosage Gender Age Week1 Week3 Week7 Week16

1 A F 56 1 1 0 0
2 A F 53 1 1 1 0
3 A F 32 0 1 0 1
4 A F 22 0 0 0 0
5 A F 38 0 0 1 1
6 A F 42 0 1 1 1
7 A F 46 0 1 1 0
8 A M 33 1 1 1 1
9 A M 44 0 0 1 1
10 A M 34 0 1 0 0
11 A M 38 0 0 1 1
12 A M 40 0 0 1 1
13 A M 43 0 0 0 0
14 A M 44 0 0 1 0
15 A F 48 0 0 0 0
16 A F 29 0 1 0 0
17 A F 30 0 0 0 0
18 B F 30 0 0 0 0
19 B F 31 0 0 0 0
20 B F 32 1 1 0 0
21 B F 31 0 0 1 0
22 B F 50 0 0 0 1
23 B F 38 0 0 0 0
24 B M 51 0 0 1 1
25 B M 32 0 0 1 1

(Continues on the next page)
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(Continued from the previous page)

PatID Dosage Gender Age Week1 Week3 Week7 Week16

26 B M 25 0 0 0 0
27 B M 24 0 0 0 0
28 B M 34 0 0 0 0
29 B M 36 0 0 0 1
30 B M 44 0 0 1 1
31 B M 40 1 1 0 0
32 B M 29 0 1 0 0
33 B M 33 1 1 0 0
34 B M 38 0 0 1 0

(a) Model the logistically distributed presence of side e�ects via a general-
ized random slope and intercept model. In SAS, to obtain better estimates,
scale age by a factor of 100. Discuss the model �t.
(b) Specify the �tted model, giving the estimates of all parameters. Which
parameters are signi�cant at the 5% signi�cance level? At the 10% level?
(c) Interpret the estimates of the signi�cant beta coe�cients. What dosage
should be preferred?
(d) Predict the probability of side e�ects occurring at week 7 for a 40-year-
old woman taking dosage A.

Exercise 9.3. A new general manager of a hotel chain is interested in
measuring and improving hotel performance. He obtains a year's worth of
data on 18 hotels in the same tier and records seasonal values for such hotel
performance metrics as the average daily rate (ADR) de�ned as the average
rental income per paid occupied room (in U.S. dollars), and the number of
days the hotel occupancy rate (OCR) was below 65%. He also notes if the
hotels are situated in rural or urban areas. The data for the four seasons
(summer, fall, winter, and spring) are:
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Hotel Area ADR1 OCR1 ADR2 OCR2 ADR3 OCR3 ADR4 OCR4

1 rural 88 3 76 8 74 11 78 17
2 rural 79 5 98 9 72 7 54 14
3 rural 84 2 67 4 64 9 98 13
4 rural 79 3 88 4 77 80 66 15
5 rural 68 1 75 8 58 16 80 21
6 rural 82 0 95 4 85 9 90 16
7 rural 92 4 93 8 87 13 92 20
8 rural 58 0 54 9 67 19 84 25
9 rural 84 1 87 9 94 6 92 19
10 rural 98 3 92 0 88 3 80 7
11 urban 112 1 137 11 114 5 137 23
12 urban 104 1 176 8 97 6 146 18
13 urban 195 3 171 5 175 6 137 11
14 urban 128 1 113 10 125 3 126 9
15 urban 96 2 152 10 145 5 153 10
16 urban 98 0 170 9 129 3 148 16
17 urban 119 2 121 8 128 6 147 18
18 urban 120 0 130 0 114 2 108 13

(a) Fit a random slope and intercept model (or random intercept-only model,
if appropriate) for the days with occupancy below 65%. Use the Poisson dis-
tribution. Discuss the model �t.
(b) State the �tted model. Identify all signi�cant parameters. Use α = 0.05.
Are responses over seasons correlated within each hotel?
(c) Interpret the estimates of all signi�cant beta coe�cients.
(d) Predict the number of days with an occupancy rate below 65% for the
winter season in a rural hotel with an average daily rate of $75.

Exercise 9.4. As part of her dissertation, a Ph.D. student in the School
of Pharmacy set up a study to evaluate the e�ectiveness of medication ad-
herence educational classes. Twenty-seven patients diagnosed with diabetes
took part in the study. They were referred to the study by their doctors be-
cause their medication adherence for the initial re�ll was relatively poor. The
student conducted an educational class, and throughout the study collected
data on participants' gender, age, level of education, and proportion of days
that they took diabetes medication for 60-day re�lls (called proportion days
covered or PDC). The data are:

285



ID Gender Age Educ PDC1 PDC2 PDC3 PDC4

1 F 38 >HS 0.05 0.25 0.62 0.87
2 M 57 >HS 0.10 0.60 0.77 0.25
3 M 46 <HS 0.05 0.10 0.15 0.15
4 M 57 <HS 0.02 0.20 0.37 0.37
5 F 39 <HS 0.23 0.90 0.93 0.95
6 F 40 <HS 0.12 0.13 0.57 0.90
7 F 66 HSgrad 0.02 0.28 0.12 0.57
8 F 50 HSgrad 0.20 0.23 0.38 0.10
9 F 43 >HS 0.08 0.72 0.87 0.97
10 F 69 HSgrad 0.18 0.50 0.75 0.63
11 F 45 <HS 0.03 0.10 0.40 0.98
12 F 41 >HS 0.13 0.82 0.93 0.65
13 F 43 HSgrad 0.05 0.75 0.98 0.38
14 M 49 HSgrad 0.17 0.37 0.20 0.58
15 F 39 >HS 0.05 0.20 0.92 0.30
16 M 47 >HS 0.03 0.57 0.67 0.60
17 M 65 >HS 0.02 0.18 0.15 0.33
18 F 59 <HS 0.03 0.07 0.18 0.37
19 F 41 >HS 0.02 0.88 0.92 0.85
20 F 49 >HS 0.05 0.13 0.05 0.03
21 F 36 HSgrad 0.08 0.20 0.32 0.13
22 M 42 HSgrad 0.13 0.33 0.22 0.37
23 M 45 HSgrad 0.03 0.15 0.33 0.70
24 M 49 <HS 0.03 0.03 0.18 0.85
25 M 56 <HS 0.03 0.67 0.48 0.50
26 M 49 HSgrad 0.07 0.15 0.20 0.12
27 M 41 HSgrad 0.12 0.23 0.53 0.32

(a) Run the random slope and intercept (possibly random intercept-only)
model for the PDC, using a beta distribution. Does the model �t the data
well? Use the 10% level of signi�cance.
(b) Specify the �tted model and interpret all estimated signi�cant �xed-
e�ects parameters. Use the signi�cance level of 0.10.
(c) What is the predicted PDC value for the second re�ll of medication for
a 50-year-old man with a Bachelor's degree?

Exercise 9.5. Use the data in Exercise 9.1 to do the following:
(a) Fit the GEE models for the EWL with the gamma underlying distri-
bution and with unstructured, Toeplitz (only in SAS), autoregressive, com-
pound symmetric, and independent working correlation matrices.
(b) Compare model �ts. Use the QIC criterion.
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(c) For the model that has the best �t, do questions (c)-(e) from Exercise 9.1.

Exercise 9.6. Use the data in Exercise 9.2 to carry out the following anal-
ysis:
(a) Fit the generalized estimating equations models for logistically distributed
presence or absence of side e�ects, with unstructured, Toeplitz, autoregres-
sive, compound symmetric, and independent working correlation matrices.
(b) Choose the best model according to the QIC value.
(c) For the best-�tted model, answer questions (b)-(d) from Exercise 9.2.

Exercise 9.7. Consider the data given in Exercise 9.3. Answer the ques-
tions below.
(a) Fit a generalized estimating equations model for the days with occupancy
below 65% based on a Poisson distribution. Try di�erent working correlation
matrices: unstructured, Toeplitz, autoregressive, compound symmetric, and
independent.
(b) Choose the QIC-optimal model.
(c) Answer parts (b)-(d) in Exercise 9.3 for the optimal model.
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Chapter 10

Hierarchical Regression Model

In this chapter, we introduce models in which observations may be collected
F once or repeatedly for each individual, but individuals are logically ag-
gregated in some way, possibly at multiple levels (for example, students are
clustered within classrooms, which are clustered within schools). These mod-
els incorporate potential correlation among observations at each hierarchical
level.

10.1 Hierarchical Regression Model for Normal

Response

10.1.1 Model De�nition

We assume that data are collected at three levels, and, for ease of presenta-
tion, will formulate a three-level hierarchical regression model for a special
case when data are collected longitudinally for individuals who are clustered
in some way. Suppose data are recorded at times t1, . . . , ta on each of n
individuals, who are grouped into c clusters. For each individual, there are
k predictor variables and one normally distributed response. An observa-
tion at time j for individual i in cluster m is (x1ijm, . . . , xkijm, yijm), where
i = 1, . . . , n, j = 1, . . . , a, and m = 1, . . . , c. Some of the x variables may be
characteristics of times (level 1), or individuals (level 2), or clusters (level 3).
A general form of the three-level hierarchical model (also termed three-stage
hierarchical regression model 1 or multilevel model or model for clustered data)
for a normal response is:

1The model was introduced in Goldstein, H. (1986). �Multilevel mixed linear model
analysis using iterative generalized least squares�. Biometrika, 73(1): 43 � 56.
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yijm = β0+β1 x1ijm+· · ·+βk xkijm+βk+1 tj+u1im+u2im tj+τ1m+τ2m tj+εijm
(10.1)

where u1im
iid∼ N (0, σ2

u1
), u2im

iid∼ N (0, σ2
u2

), Cov(u1im, u2im) = σu1u2 , and
Cov(u1im, u2i′m′) = 0 for i 6= i′. These two random variables are the level-

2 random slope and intercept, respectively. Also, τ1m
iid∼ N (0, σ2

τ1
), τ2m

iid∼
N (0, σ2

τ2
), and Cov(τ1m, τ2m) = στ1τ2 . These variables are, respectively, the

level-3 random slope and intercept. The random errors εijm's are independent
with N (0, σ2) distribution. In addition, all u's are independent of τ 's, and
both are independent of ε's.

As de�ned in the above formula, the index i for individuals (or, more gener-
ally, level-2 variable) ranges between 1 and n. It is also possible to enumerate
individuals only within each cluster: i = 1, . . . , nm where

∑c
m=1 nm = n.

It can be shown (see Exercise 10.1) that
• Observations within each individual i in cluster m for di�erent times j and
j′ have covariance Cov(yijm, yij′m) = σ2

u1
+σ2

τ1
+(σu1u2 +στ1τ2)(tj+tj′)+(σ2

u2
+

σ2
τ2

) tjtj′ . It means that if at least one of these parameters statistically di�ers
from zero, the observations over time within one individual are correlated.
• Observations for two individuals i and i′ within the same cluster m at
any two times tj and tj′ , equal or not, have covariance Cov(yijm, yi′j′m) =
σ2
τ1

+ στ1τ2(tj + tj′) + σ2
τ2
tjtj′ . If any of the sigmas are statistically distin-

guishable from zero, the observations are correlated for di�erent individuals
within the same cluster.
• Observations for two individuals in di�erent clusters are always uncorre-
lated, that is, Cov(yijm, yi′j′m′) = 0 where i 6= i′ and m 6= m′.

10.1.2 Fitted Model, Interpretation of Estimated Re-

gression Coe�cients, Model Goodness-of-Fit Check,

Predicted Response

A �tted hierarchical model has the estimated mean response of the form
Ê(y) = β̂0 + β̂1 x1 + · · · + β̂k xk + β̂k+1 t. Estimated regression coe�cients
are interpreted identically to how they are interpreted in a general linear
regression model (see Section 1.5). The log-likelihood deviance test is used
to check the model �t. The null model in this case has only �xed-e�ects
terms. As expected, the predicted response for a given set of predictors
x0

1, . . . , x
2
k, and t

0 can be calculated as y0 = β̂0 + β̂1 x
0
1 + · · ·+ β̂k x

0
k + β̂k+1 t

0.
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10.1.3 SAS Implementation

The procedure mixed �ts hierarchical regression with a normally distributed
response. To accommodate the hierarchical structure, random statements
should be included for variables de�ning levels 2 and 3 of the model. The
full syntax is presented below.

proc mixed data=longform data name covtest;

class cluster name individual name <list of categorical predictors>;
model response name=<list of predictors> time name/solution
outpm=outdata name;

random intercept time name/subject=cluster name type=un;

random intercept time name/subject=individual name(cluster name)
type=un;

run;

• For prediction, the long-form data set must contain a row with speci�ed
values of all the x variables and the time variable. And in addition, one
has to specify some (sometimes hypothesized) values for a cluster and an
individual within this cluster, possibly de�ning a new cluster with individual
number 1.

10.1.4 R Implementation

Hierarchical model for normally distributed response variable may be �tted
to a long-form data set with the function lmer() in the library lme4. The
syntax is:

summary(�tted.model.name<- lmer(response.name ∼ x1.name + · · ·
+ xk.name + time.name + (1 + time.name|cluster.name)
+ (1 + time.name|cluster.name:individual.name), data = data.name)).

• As usually, prediction can be carried out using the function predict(). In
the data.frame argument, however, some values for a cluster and an indi-
vidual must be speci�ed. Since a new cluster and individual are added, the
argument allow.new.levels=TRUE must be included. The syntax looks like
this:
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predict(�tted.model.name, data.frame(cluster.name=new.value, individ-
ual.name=1, catpredictor1.name="value", . . . , numpredictork.name=value,
time.name=value), allow.new.levels=TRUE, re.form=NA)

10.1.5 Example

Example 10.1. Mothers and daughters from 24 families with signs of de-
pression were invited for a study of the e�cacy of a new method of intensive
psychotherapy. At the baseline, one- and three-month visits, the quality of
life (QOL) questionnaire was �lled out by each of the participants, and a QOL
score was computed. Higher values of this score indicate better quality of
life. Whether signs of depression were present was also recorded (1=present,
or 0=absent). The study was done on mother-daughter dyads. This type
of study is called familial or dyadic. The scores are logically expected to be
correlated over time for each individual, and also members of the same family
might have correlated responses. For some families, more than one daughter
participated. Below we develop a three-stage hierarchical model for the data.

data dyads;

input family individual relation$ depression1

depression2 depression3 qol1 qol2 qol3 @@;

cards;

1 1 M 1 1 1 4.0 4.1 4.9 1 2 D 1 1 0 2.5 3.2 4.2

2 1 M 1 1 1 2.6 2.8 4.1 2 2 D 1 1 1 2.8 3.1 4.2

3 1 M 1 1 1 2.5 3.8 4.0 3 2 D 1 1 1 2.4 5.1 3.3

4 1 M 1 0 0 2.1 3.3 4.6 4 2 D 1 0 0 3.7 3.1 4.4

5 1 M 1 0 0 2.9 4.2 3.4 5 2 D 1 0 0 2.4 2.6 2.7

6 1 M 1 1 0 3.3 4.2 4.7 6 2 D 1 1 0 2.7 4.0 4.1

7 1 M 1 1 0 3.7 4.3 3.8 7 2 D 1 1 0 2.8 3.2 3.6

8 1 M 1 0 0 3.5 4.1 4.3 8 2 D 1 1 0 1.6 2.6 3.5

9 1 M 1 0 0 4.0 4.4 3.6 9 2 D 1 0 1 1.8 2.5 3.1

10 1 M 1 1 1 3.0 3.7 4.3 10 2 D 1 1 1 2.2 2.0 3.3

11 1 M 1 1 1 4.3 5.0 3.7 11 2 D 1 1 1 3.3 2.5 3.2

12 1 M 1 1 1 3.5 5.4 4.7 12 2 D 1 1 1 3.5 3.6 4.2

13 1 M 1 0 0 4.1 4.5 3.2 13 2 D 1 0 0 3.7 4.2 3.5

14 1 M 1 1 0 5.0 4.2 3.6 14 2 D 1 0 0 3.3 4.6 3.0

15 1 M 1 1 0 1.8 2.2 2.3 15 2 D 1 0 0 2.4 3.5 3.6

16 1 M 1 0 0 3.1 2.5 3.9 16 2 D 1 1 0 2.0 2.9 2.4

17 1 M 1 1 0 3.4 5.5 4.7 17 2 D 1 0 1 3.2 4.3 3.7

18 1 M 1 0 0 3.4 5.3 4.1 18 2 D 1 1 0 1.8 3.4 3.1

19 1 M 1 0 0 3.5 3.3 5.1 19 2 D 1 0 0 2.8 4.3 3.4
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20 1 M 1 0 0 3.5 3.3 5.1 20 2 D 1 0 0 3.2 4.9 3.6

21 1 M 1 0 0 2.9 2.7 3.5 21 2 D 1 0 0 4.3 3.7 2.5

22 1 M 1 0 0 4.8 4.3 4.3 22 2 D 1 0 0 4.5 3.8 3.3

23 1 M 1 1 0 3.6 3.9 3.7 23 2 D 1 0 0 3.7 3.7 3.5

23 3 D 1 1 0 2.5 1.8 2.3 24 1 M 1 1 0 5.0 4.4 4.2

24 2 D 1 1 0 4.9 3.2 2.5 24 3 D 1 0 0 2.7 3.1 4.1

24 4 D 1 0 1 3.0 3.5 3.6

;

data longform;

set dyads;

array d[3] depression1-depression3;

array q[3] qol1-qol3;

do visit=1 to 3;

depression=d[visit];

qol_score=q[visit];

output;

end;

keep family individual relation depression visit qol_score;

run;

proc univariate;

var qol_score;

histogram/normal;

run;

Goodness-of-Fit Tests for Normal Distribution
Test p Value
Kolmogorov-Smirnov 0.150
Cramer-von Mises >0.250
Anderson-Darling >0.250

The tests support normality, and the histogram shows a roughly bell-shaped
curve. Therefore, we will �t a hierarchical model based on normal distribu-
tion.

proc mixed covtest;

class family individual relation(ref="D") depression;

model qol_score=relation depression visit/solution;

random intercept visit/subject=family type=un;

random intercept visit/subject=individual(family) type=un;

run;
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Figure 10.1: Histogram for QOL score in SAS

Covariance Parameter Estimates
Cov Parm Subject Estimate Pr Z
UN(1,1) family 0.2827 0.1694
UN(2,1) family -0.1238 0.2730
UN(2,2) family 0.06723 0.0840
UN(1,1) individual(family) 0.4795 0.0111
UN(2,1) individual(family) -0.09011 0.0342
UN(2,2) individual(family) 0 .
Residual 0.3882 <.0001

Null Model Likelihood Ratio Test
DF Chi-Square Pr > ChiSq
5 17.83 0.0032

Solution for Fixed E�ects
E�ect mother depression Estimate Pr > |t|
Intercept 2.7180 <.0001
relation M 0.6060 <.0001
relation D 0 .
depression 0 0.04226 0.7777
depression 1 0 .
visit 0.2569 0.0150

This model has a reasonable �t since the p -value in the likelihood ratio test
is smaller than 0.05. At the individual level, the variance of the random
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intercept, and covariance between the intercept and the slope are signi�-
cant at the 5% level. At the family level, the variance of the random slope
is signi�cant at the 10% level. Thus, at the 5% signi�cance level, obser-
vations are correlated for each individual, but not between family mem-
bers. At the 10% level, however, the correlation between family members
also exists. The estimated mean QOL score may be written as Ê(QOL) =
2.7180+0.6060 ·mother+0.04226 ·no_depression+0.2569 ·visit. At the 5%
level, depression is not a signi�cant predictor of quality of life, whereas both
mother and visit are signi�cant predictors. The estimated average QOL score
for mothers is larger than that for daughters by 0.6060, and the estimated
score increases, on average, by 0.2569 between visits.

Suppose now that we would like to predict the QOL score for a mother
at visit 3 who doesn't show any symptoms of depression. We calculate
QOL0 = 2.7180 + 0.6060 + 0.04226 + 0.2569 · 3 = 4.13696. SAS outputs
a similar value as seen below.

data prediction;

input family individual relation$ depression visit;

cards;

25 1 M 0 3

run;

data longform;

set longform prediction;

run;

proc mixed covtest;

class family individual relation(ref="D") depression;

model qol_score=relation depression visit/solution outpm=outdata;

random intercept visit/subject=family type=un;

random intercept visit/subject=individual(family) type=un;

run;

proc print data=outdata (firstobs=154 obs=154);

var Pred;

run;

Pred
4.13688

The R script and output for �tting the hierarchical model are:
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Figure 10.2: Histogram for QOL in R

dyads.data<-read.csv(file="./Example10.1Data.csv",

header=TRUE, sep=",")

#creating long-form data set

install.packages("reshape2")

library(reshape2)

data.depr<- melt(dyads.data[,c("family", "individual", "relation",

"depression1","depression2", "depression3")], id.vars=c("family",

"individual", "relation"), variable.name="depr.visits",

value.name="depression")

data.qol<- melt(dyads.data[,c("qol1","qol2", "qol3")],

variable.name="qol.visits", value.name="qol")

longform.data<- cbind(data.depr, data.qol)

#creating numeric variable for time

visit<- ifelse(longform.data$depr.visits=="depression1", 1,

ifelse(longform.data$depr.visits=="depression2", 2, 3))

#plotting histogram with fitted normal density

install.packages("rcompanion")

library(rcompanion)

plotNormalHistogram(longform.data$qol)

#testing for normality of distribution
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shapiro.test(longform.data$qol)

Shapiro-Wilk normality test
W = 0.98955, p-value = 0.3147

#specifying reference category

depression.rel<- relevel(as.factor(longform.data$depression), ref="1"))

#fitting hierarchical model

install.packages("lme4")

library(lme4)

summary(fitted.model<- lmer(qol ~ relation + depression.rel + visit

+ (1 + visit|family)+ (1 + visit|family:individual),

data=longform.data))

Random e�ects:
Groups Name Variance Corr
family:individual (Intercept) 0.54480

visit 0.03518 -1.00
family (Intercept) 0.28400

visit 0.05722 -0.90
Residual 0.35886

Fixed e�ects:
Estimate t value

(Intercept) 2.71793 12.731
relationM 0.60277 4.458
depression.rel0 0.03476 0.235
visit 0.25838 2.651

#checking model fit

null.model<- glm(qol ~ relation + depression.rel + visit,

data=longform.data)

print(deviance<- -2*(logLik(null.model)-logLik(fitted.model)))

5.332274

print(p.value<- pchisq(deviance, df=6, lower.tail=FALSE))

0.5019591

#using fitted model for prediction

print(predict(fitted.model, data.frame(family=25, individual=1,

relation="M", depression.rel="0", visit=3), allow.new.levels=TRUE))

4.130584

2
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10.2 Hierarchical Regression Model for Non-

normal Response

10.2.1 Model De�nition

A hierarchical regression model for the response variable yijm that has a
gamma, or logistic, or Poisson, or negative binomial, or beta distribution is
de�ned similarly to a normally distributed response but the expression (10.1)
takes the form

g
(
E(yijm)

)
= β0+β1 x1ijm+· · ·+βk xkijm+βk+1 tj+u1im+u2im tj+τ1m+τ2m tj

where g(·) is the link function that corresponds to the underlying distribution.

10.2.2 Fitted Model

A �tted hierarchical model with the link function g(·) is

g
(
Ê(y)

)
= β̂0 + β̂1 x1 + · · ·+ β̂k xk + β̂k+1 t. (10.2)

10.2.3 Interpretation of Estimated Regression Coe�-

cients

In view of (10.2), in the hierarchical regression model with non-normal re-
sponse, estimated regression coe�cients are interpreted identically to how
they are interpreted in a generalized linear regression model, in terms of a
change or di�erence in the link function of the estimated mean response.
Or, more speci�cally, the same way as estimated regression coe�cients are
interpreted for each of the appropriate regressions models: gamma (Subsec-
tion 2.2.3), logistic (Subsection 3.1.3), Poisson (Subsection 5.1.3), negative
binomial (Subsection 6.1.3), and beta (Subsection 7.1.3).

10.2.4 Model Goodness-of-Fit Check

The model �t can be veri�ed via the standard log-likelihood deviance test,
where the null model has no random-e�ects terms.
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10.2.5 Predicted Response

By (10.2), the predicted response for a given set of predictors x0
1, . . . , x

2
k, and

t0 is found as y0 = g−1
(
β̂0 + β̂1 x

0
1 + · · ·+ β̂k x

0
k + β̂k+1 t

0
)
for the appropriate

link function g(·).

10.2.6 SAS Implementation

The syntax for procedure glimmix presented in Subsection 9.1.3 applies
directly to �tting hierarchical regression models. Two random statements
should be included for variables de�ning levels 2 and 3 of the model. The
general syntax is:

proc glimmix data=data name method=Laplace;

class cluster name individual name catpredictor1 name (ref="level name")
catpredictor2 name (ref="level name") . . . ;
model response name=<list of predictors> time name/solution dist=dist name
link=link type;

output out=outdata pred(ilink)=predicted name;
random intercept time name/subject=cluster name type=un;

random intercept time name/subject=individual name(cluster name) type=un;

covtest/wald;

run;

• For prediction purposes, one has to add to the long-form data set a row
containing a value for the cluster, a value for the individual, and values for
all predictor and time variables.

10.2.7 R Implementation

Function glmer() in the library lme4 may be used to �t a hierarchical model
for a response variable with a gamma, logistic, and Poisson distributions. The
statements are:

summary(�tted.model.name<- glmer(response.name ∼ x1.name + · · ·
+ xk.name + time.name + (1 + time.name|cluster.name)
+ (1 + time.name|cluster.name/individual.name), data=data.name,
family=dist.name("link.type")))

• The choices for distribution names and link types are Gamma("log"),
binomial("logit"), and poisson("log").
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To �t a hierarchical model for a response variable with a negative binomial
distribution, one can use the function glmer.nb() in the library lme4. The
syntax is the same as above with family=negative.binomial("log").

A hierarchical model with a beta distributed response can be �tted using the
function glmmTMB in the library glmmTMB, where the syntax above is valid
with family=beta_family(link="logit").

• The syntax for prediction is:

predict(�tted.model.name, data.frame(cluster.name=new.value, individ-
ual.name=1, catpredictor1.name="value", . . . , numpredictork.name=value,
time.name=value), allow.new.levels=TRUE, re.form=NA, type="response")

10.2.8 Example

Example 10.2. For the long-form data set created in the previous exam-
ple, we �t a hierarchical model based on logistic distribution to model the
presence of symptoms of depression. First, we try a complete three-stage
model. The code is given below. This model, however, doesn't converge.

proc glimmix method=Laplace;

class family individual relation(ref="D");

model depression=relation qol_score visit/solution dist=binomial

link=logit;

random intercept visit/subject=family type=un;

random intercept visit/subject=individual(family) type=un;

covtest/wald;

run;

The most complex model that converges is the one with the intercept at the
family level only.

proc glimmix method=Laplace;

class family individual relation(ref="D");

model depression=relation qol_score visit/solution dist=binomial

link=logit;

random intercept/subject=family type=un;

covtest/wald;

run;
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-2 Log Likelihood 123.46

Covariance Parameter Estimates
Cov Parm Subject Estimate Pr > Z
UN(1,1) family 5.9549 0.0491

Solutions for Fixed E�ects
E�ect mother Estimate Pr > |t|
Intercept 9.3445 0.0009
relation M 0.2761 0.6400
relation D 0 .
qol_score -0.5214 0.2576
visit -3.2363 <.0001

The variance of the random intercept at the family level is statistically sig-
ni�cant at the 5% level. Next, we conduct the goodness-of-�t test.

proc glimmix;

class family individual relation;

model depression=relation qol_score visit/dist=binomial link=logit;

run;

-2 Log Likelihood 143.50

data deviance_test;

deviance=143.50-123.46;

pvalue=1-probchi(deviance,1);

run;

proc print;

run;

deviance pvalue
20.04 .000007584

The p -value is below 0.05, indicating a good �t. The �tted model has the
form

P̂(depr = 1) =
exp{9.3445 + 0.2761 ·mother − 0.5214 · qol_score− 3.2363 · visit}

1 + exp{9.3445 + 0.2761 ·mother − 0.5214 · qol_score− 3.2363 · visit}
.

Signi�cant predictor is only the visit number. The estimated odds in favor
of the presence of symptoms of depression change by

(
exp{−3.2363} − 1) ·
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100% = −96.07%, that is, decrease by 96.07% from a visit to visit.

The predicted probability that a mother with a quality of life score of 3.5
shows symptoms of depression during the third visit is

P0(depr) =
exp{9.3445 + 0.2761− 0.5214 · 3.5− 3.2363 · 3}

1 + exp{9.3445 + 0.2761− 0.5214 · 3.5− 3.2363 · 3}
= 0.12862.

The prediction in SAS is carried out via the following statements.

data prediction;

input family individual relation$ qol_score visit;

cards;

25 1 M 3.5 3

;

data longform;

set longform prediction;

run;

proc glimmix method=Laplace;

class family individual relation;

model depression=relation qol_score visit/dist=binomial link=logit;

random intercept/subject=family type=un;

output out=outdata pred(ilink)=p_probdepr;

run;

proc print data=outdata (firstobs=154) noobs;

var p_probdepr;

run;

p_probdepr
0.12862

R script and relevant output for this example follow.

dyads.data<- read.csv(file="./Example10.1Data.csv", header=TRUE,

sep=",")

#creating long-form data set

library(reshape2)

data.depr<- melt(dyads.data[,c("family", "individual", "relation",
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"depression1", "depression2", "depression3")], id.vars=c("family",

"individual", "relation"), variable.name="depr.visits",

value.name="depression")

data.qol<- melt(dyads.data[,c("qol1","qol2", "qol3")],

variable.name="qol.visits", value.name="qol")

longform.data<- cbind(data.depr, data.qol)

#creating numeric variable for time

visit<- ifelse(longform.data$depr.visits=="depression1", 1,

ifelse(longform.data$depr.visits=="depression2", 2, 3))

#fitting hierarchical model (fails to converge)

library(lme4)

summary(glmer(depression ~ relation + qol + visit + (1 + visit|family)

+ (1 + visit|family:individual), data=longform.data,

family=binomial(link="logit")))

#fitting simpler hierarchical model (converges)

summary(fitted.model<- glmer(depression ~ relation + qol + visit

+ (1|family), data=longform.data, family=binomial(link="logit")))

Random e�ects:
Groups Name Variance
family (Intercept) 5.955

Fixed e�ects:
Estimate Pr(>|z|)

(Intercept) 9.3444 0.000138
mother 0.2761 0.639248
qol -0.5214 0.255404
visit -3.2363 2.24e-07

#checking model fit

null.model<- glm(depression ~ relation + qol + visit,

data=longform.data, family=binomial(link=logit))

print(deviance<- -2*(logLik(null.model)-logLik(fitted.model)))

20.03607

print(p.value<- pchisq(deviance, df=1, lower.tail=FALSE))

7.599509e-06

303



#using fitted model for prediction

print(predict(fitted.model, data.frame(family=25, individual=1,

relation="M", qol=3.5, visit=3), allow.new.levels=TRUE,

re.form=NA, type="response"))

0.1286211

2

Exercises for Chapter 10

Exercise 10.1. For the hierarchical model with normal response de�ned
in (10.1), show that
(a) Observations within each individual i in cluster m for di�erent times j
and j′ have covariance Cov(yijm, yij′m) = σ2

u1
+σ2

τ1
+ (σu1u2 +στ1τ2)(tj + tj′) +

(σ2
u2

+ σ2
τ2

) tjtj′ .
(b) Observations for two individuals i and i′ within the same cluster m at
any two times tj and tj′ , equal or not, have covariance Cov(yijm, yi′j′m) =
σ2
τ1

+ στ1τ2(tj + tj′) + σ2
τ2
tjtj′ .

(c) Observations for two individuals in di�erent clusters are not correlated,
that is, Cov(yijm, yi′j′m′) = 0 where i 6= i′ and m 6= m′.
(d) The response variable yijm has a normal distribution with the mean
E(yijm) = β0 + β1 x1ijm + · · · + βk xkijm + βk+1 tj and variance Var(yijm) =
σ2
u1

+ +σ2
τ1

+ 2(σu1u2 + στ1τ2) tj + (σ2
u2

+ σ2
τ2

) t2j + σ2.

Exercise 10.2. A team of school inspectors is studying scores on tests in
English Language Arts (ELA), Mathematics, and Science and their relation
to schools' Academic Performance Index (API) and classroom size. Data on
average classroom scores for �ve consecutive years at two schools are avail-
able.

304



School API Subject Class size Year Score
1 911 ELA 20 15 78.39
1 912 ELA 22 16 79.85
1 917 ELA 23 17 81.34
1 917 ELA 22 18 82.56
1 919 ELA 24 19 83.12
1 911 Math 21 15 83.77
1 912 Math 22 16 84.9
1 917 Math 24 17 86.12
1 917 Math 23 18 88.99
1 919 Math 23 19 88.4
1 911 Science 21 15 80.19
1 912 Science 22 16 83.15
1 917 Science 24 17 84.45
1 917 Science 23 18 86.66
1 919 Science 23 19 88.43
2 732 ELA 34 15 68.03
2 745 ELA 36 16 70.67
2 751 ELA 36 17 74.17
2 753 ELA 37 18 72.78
2 753 ELA 38 19 73.18
2 732 Math 34 15 67.88
2 745 Math 34 16 68.34
2 751 Math 35 17 70.3
2 753 Math 37 18 71.22
2 753 Math 36 19 72.12
2 732 Science 34 15 72.96
2 745 Science 34 16 73.65
2 751 Science 36 17 74.58
2 753 Science 35 18 76.36
2 753 Science 35 19 76.23

(a) Plot a histogram for test scores and conduct normality testing. Verify
that the underlying distribution may be modeled as normal.
(b) Run the hierarchical model with random slopes and intercepts at the
school and subject-within-school levels. If there is a problem with conver-
gence, gradually remove the random slopes and simplify the model to random
intercepts only, if necessary. Discuss the overall model �t.
(c) Write down the �tted model. Include all estimated parameters. Use
α = 0.10 to draw a conclusion about signi�cant parameters of the random
e�ects. Are the scores for each subject correlated? Are the scores for di�er-
ent subjects within the same school correlated?
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(d) Give interpretation for all estimated signi�cant �xed-e�ects coe�cients.
Use α = 0.10.
(e) Use the �tted model to predict the average score on a math test for a
class of 36 students in 2019 in a school with an API of 753.

Exercise 10.3. An environmental health scientist studies levels of pollu-
tion. For the study, he randomly chooses three states and two counties within
each state. In each county, he randomly samples eight townships and mea-
sures levels of atmospheric particulate matter that have a diameter of fewer
than 2.5 micrometers (PM2.5). For each township, he also records popula-
tion size (in thousands of people) and whether pesticides are applied on a
large scale in farming. The collected data are summarized in the following
table.

state county township popl pest pm2 5 state county township popl pest pm2 5

S1 A 1 4.1 no 22.97 S2 D 1 6.6 no 9.13
S1 A 2 22.0 no 23.05 S2 D 2 7.2 no 11.04
S1 A 3 6.3 no 24.97 S2 D 3 8.3 no 8.98
S1 A 4 3.2 no 23.77 S2 D 4 5.2 yes 5.75
S1 A 5 13.4 no 23.09 S2 D 5 9.1 yes 11.28
S1 A 6 3.9 yes 24.75 S2 D 6 4.3 no 6.88
S1 A 7 3.8 yes 36.93 S2 D 7 6.9 yes 9.21
S1 A 8 25.6 yes 45.83 S2 D 8 8.5 yes 11.23
S1 B 1 12.7 no 13.19 S3 E 1 6.1 no 5.44
S1 B 2 17.8 no 22.90 S3 E 2 3.9 no 4.33
S1 B 3 23.7 no 31.45 S3 E 3 3.5 no 5.04
S1 B 4 11.8 yes 25.40 S3 E 4 2.4 no 3.31
S1 B 5 12.9 yes 44.15 S3 E 5 4.3 no 5.24
S1 B 6 13.0 yes 25.16 S3 E 6 2.8 yes 14.34
S1 B 7 12.0 yes 54.36 S3 E 7 3.4 no 4.90
S1 B 8 13.0 no 24.38 S3 E 8 3.6 no 3.59
S2 C 1 9.9 no 7.25 S3 F 1 5.3 no 5.01
S2 C 2 5.6 yes 28.46 S3 F 2 4.5 no 5.73
S2 C 3 3.9 no 7.06 S3 F 3 2.5 no 4.28
S2 C 4 7.3 no 9.33 S3 F 4 3.1 yes 15.42
S2 C 5 4.7 no 5.59 S3 F 5 3.5 no 3.59
S2 C 6 8.9 yes 9.94 S3 F 6 5.7 no 4.69
S2 C 7 6.7 yes 8.49 S3 F 7 7.1 no 4.06
S2 C 8 6.5 yes 6.97 S3 F 8 4.6 no 3.98

(a) Plot a histogram of the particulate matter (PM2.5). Describe its shape.
Argue that a gamma distribution is appropriate.
(b) Run the multilevel regression model for PM2.5, based on the gamma dis-
tribution. How well does the model �t the data? Hint: Townships variable
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indexes repeated measures within each county.
(c) Write down the �tted model. Specify all estimates. Are PM2.5 readings
correlated within each county? Between di�erent counties within each state?
Use α = 0.10.
(d) What �xed-e�ects predictors are signi�cant at the 5% level? Interpret
them.
(e) Use the �tted model to predict the level of particulate matter in a town
with a population of 2,500 people if it is known that no pesticides are used
in the �elds that surround this town.

Exercise 10.4. A �nancial analyst is studying the behavior of certain port-
folios with stocks, bonds, and currency. He records whether the prices of the
assets went up at the closure of the stock exchange at the end of �ve con-
secutive business days (1=went up, 0=went down or stayed the same). The
data follow.
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Portfolio Asset Type Day1 Day2 Day3 Day4 Day5

1 1 stock 0 0 0 0 1
1 2 stock 0 1 1 0 0
1 3 bond 0 0 0 0 0
1 4 bond 1 0 0 0 0
1 5 stock 1 1 1 0 1
1 6 stock 1 0 1 1 1
1 7 stock 1 1 1 1 1
2 8 currency 0 1 1 1 1
2 9 stock 0 1 1 1 1
2 10 bond 0 1 0 0 1
2 11 stock 1 0 1 1 1
3 12 currency 1 0 1 0 1
3 13 stock 0 0 1 0 1
3 14 stock 0 0 1 1 1
4 15 stock 1 0 1 0 0
4 16 bond 1 1 1 1 0
4 17 currency 0 0 0 0 1
4 18 stock 1 1 1 1 1
4 19 currency 0 0 0 0 1
5 20 stock 0 0 1 1 1
5 21 currency 1 0 0 1 1
5 22 stock 0 0 1 1 1
5 23 bond 1 1 0 0 0
5 24 stock 1 1 1 1 1
6 25 bond 1 0 0 1 1
6 26 stock 1 1 1 1 1
6 27 stock 1 1 1 1 1
6 28 stock 1 1 1 1 1
7 29 currency 0 1 1 1 1
7 30 currency 0 0 1 1 1
7 31 bond 1 1 1 1 0
7 32 currency 1 0 1 1 1
7 33 bond 0 0 0 1 1
7 34 bond 1 0 1 0 1
7 35 stock 1 1 1 1 1
7 36 stock 1 1 1 1 1

(a) Run a three-level hierarchical model for the binary response variable.
Write down the �tted model. Are the measurements correlated within each
asset over time? Are the measurements for di�erent assets within the same
portfolio correlated? Use the 10% signi�cance level. How good is the model
�t?
(b) What predictors are signi�cant at the 5% level? Interpret the estimated
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signi�cant regression coe�cients.
(c) According to the �tted model, what is the predicted probability of an
increase in the value of a currency on the third day?

Exercise 10.5. A team of child psychologists conducted a study with third
graders. They administered a test to high-performing students in all third-
grade classes at three schools. The computer-based test consisted of four
tasks. The researchers were interested in how many additional attempts
beyond one it would take each student to complete each task. The measure-
ments are summarized in the following table.

School Class Student Gender Task1 Task2 Task3 Task4

1 1 1 boy 1 3 4 5
1 1 2 boy 0 0 3 4
1 1 3 boy 1 2 4 5
1 1 4 girl 3 3 5 5
1 1 5 boy 1 1 4 13
1 1 6 girl 2 4 3 4
1 1 7 girl 1 2 3 7
1 2 1 boy 1 2 3 5
1 2 2 boy 10 11 7 6
1 2 3 girl 3 14 8 7
1 2 4 boy 2 2 5 6
1 2 5 girl 3 3 5 8
2 1 1 boy 11 3 4 8
2 1 2 boy 0 5 5 3
2 1 3 girl 2 6 7 9
2 1 4 boy 0 2 4 6
2 1 5 boy 2 3 3 5
2 1 6 girl 3 5 4 9
2 1 7 boy 1 3 7 3
2 2 1 girl 0 2 6 5
2 2 2 boy 0 10 4 13
2 2 3 girl 3 4 7 6
2 2 4 boy 1 2 5 3
2 2 5 boy 3 4 2 12
2 2 6 girl 1 10 6 8
2 2 7 girl 4 3 8 7
2 2 8 girl 12 5 4 5
2 3 1 girl 1 0 12 1
2 3 2 girl 0 1 2 4
2 3 3 boy 0 1 1 3
2 3 4 boy 0 1 0 2
2 3 5 girl 1 1 1 2
2 3 6 boy 0 0 0 1
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(a) Fit a four-level hierarchical regression to model the number of additional
attempts: level 1 is tasks, level 2 is students, level 3 is classrooms, and level
4 is schools. Assume that the underlying distribution is Poisson. What is
the �t of this model?
(b) Present the �tted model. What can you say about the correlation of
the repeated measures for each student? Among the students in each class-
room? Among the students in each school? Interpret estimated signi�cant
�xed-e�ects coe�cients. Use the 10% level of signi�cance.
(c) Use the �tted model to predict the number of extra attempts it would
take a girl to complete the fourth task.

Exercise 10.6. An undergraduate advisor in Mathematics at a Master's
degree-granting university is interested in �nding out how many students who
graduate with a Bachelor's degree stay on at the same department to get a
Master's degree. She records the data for her university and also sends out
a brief survey to the Biology, Chemistry, and Mathematics departments at
seven comparable universities. The data she obtains are for the most recent
three years.

Univ Dept Year1 Year2 Year3 Univ Dept Year1 Year2 Year3

1 bio 6 13 17 5 bio 7 16 15
1 chem 8 7 12 5 chem 4 4 4
1 math 10 14 13 5 math 8 1 6
2 bio 0 8 8 6 bio 5 3 3
2 chem 0 9 9 6 chem 5 3 4
2 math 0 5 8 6 math 23 32 45
3 bio 2 8 5 7 bio 7 2 8
3 chem 3 3 5 7 chem 9 12 9
3 math 18 19 26 7 math 7 15 16
4 bio 1 11 12 8 bio 3 6 8
4 chem 1 5 4 8 chem 32 11 20
4 math 5 16 17 8 math 8 4 13

(a) Argue that the data may be modeled as having a negative binomial dis-
tribution. What quantities support your argument?
(b) Run a multilevel model, using department and year as predictors. Does
the model �t the data well?
(c) Are the observations correlated for each department over time? For the
departments within the same university? State the �tted model, specifying
all parameter estimates.
(d) Does the response change signi�cantly over the years? Is there a dif-
ference in responses between departments? Give an interpretation of the
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signi�cant regression coe�cients. Use α = 0.10. (e) What is the predicted
number of students who would stay on for a Master's program in a math
department in year 4?

Exercise 10.7. A multi-center clinical trial in pharmacology studies the
response for di�erent medications. Same subjects test four medications with
proper washout periods observed in-between. The response to medications
is measured on a continuous scale. The data are as follows.

Center Subject Gender Med A Med B Med C Med D

1 101 M 0.32 0.27 0.23 0.90
1 102 M 0.17 0.16 0.35 0.40
1 103 F 0.39 0.44 0.45 0.64
1 104 M 0.14 0.47 0.63 0.76
1 105 F 0.08 0.36 0.40 0.72
1 106 F 0.61 0.53 0.64 0.79
1 107 F 0.55 0.73 0.63 0.61
1 108 M 0.40 0.47 0.46 0.99
1 109 F 0.25 0.40 0.31 0.62
1 110 M 0.34 0.48 0.29 0.63
1 111 M 0.33 0.42 0.43 0.75
1 112 F 0.21 0.39 0.74 0.98
1 113 F 0.39 0.22 0.50 0.88
1 114 M 0.33 0.30 0.26 0.19
1 115 F 0.03 0.49 0.36 0.73
2 201 M 0.31 0.46 0.53 0.81
2 202 F 0.27 0.57 0.28 0.84
2 203 M 0.26 0.42 0.38 0.90
2 204 M 0.33 0.34 0.56 0.75
2 205 F 0.29 0.45 0.57 0.81
2 206 F 0.30 0.42 0.64 0.95
2 207 F 0.34 0.42 0.55 0.77
2 208 M 0.09 0.35 0.42 0.67
2 209 M 0.25 0.44 0.62 0.73
2 210 F 0.21 0.41 0.58 0.75
3 301 F 0.23 0.41 0.50 0.86
3 302 F 0.21 0.35 0.52 0.84
3 303 M 0.21 0.43 0.68 0.72
3 304 M 0.07 0.23 0.47 0.59
3 305 M 0.11 0.28 0.50 0.78
3 306 F 0.19 0.24 0.55 0.73
3 307 M 0.15 0.23 0.39 0.82
3 308 F 0.18 0.19 0.53 0.92
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(a) Run the multilevel regression to model the response to medication, as-
suming that it follows a beta distribution.
(b) State the model and estimate the parameters. What random-e�ects
terms are present? Discuss the model �t. For all signi�cance use the 10%
level.
(c) Interpret the results. Are responses correlated for each subject? For each
center? Interpret estimated signi�cant �xed-e�ects terms.
(d) Use the �tted model to predict the response to medication A for a female
subject.
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longitudinal data, 219

mean response, 14
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one-in�ated beta regression

model, 193
ordinal variable, 83
outcome variable, see response

variable, 13
overdispersed count variable, 149

percent change in odds, 63, 85
percent ratio in odds, 63
Poisson regression model, 117
polytomous regression, 83
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Generalized Estimating

Equations, 248, 275
generalized linear, 14
generalized linear mixed, 267
generalized logit model, 104
generalized random slope and

intercept, 267
hierarchical, 289, 298
hurdle negative binomial, 165
hurdle Poisson, 133
mixed-e�ects linear, 219
multinomial, 83
negative binomial, 149
one-in�ated beta, 193
Poisson, 117
probit, 68
random slope and intercept,

220
zero-in�ated beta, 185
zero-in�ated negative
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binomial, 159
zero-in�ated Poisson, 127
zero-one-in�ated beta, 200
zero-truncated negative

binomial, 154
zero-truncated Poisson, 122

regression coe�cient, 13
regressor, see predictor variable,

13
repeated measures, 219
response variable, 13
response, see response variable, 13

SAS procedure
fmm, 123, 135, 166
genmod, 19, 50, 64, 69, 74, 86,

93, 99, 129, 160, 250, 275
glimmix, 181, 268, 299
logistic, 106
mixed, 222, 233, 291
nlmixed, 186, 195, 202
transreg, 37
univariate, 18

Schwartz Bayesian Information
Criterion (BIC), 17

spatial power covariance structure
of errors, 231

structural zero, 127

Toeplitz covariance structure of
errors, 231

Toeplitz working correlation
matrix, 249

m-dependent, 251

unstructured covariance matrix of
errors, 230

unstructured working correlation
matrix, 249

variance function, 248
variate, see response variable, 13

working correlation matrix, 248
autoregressive, 249
exchangeable, 249
independent, 249
Toeplitz, 249
unstructured, 249

zero-in�ated beta regression
model, 185

zero-in�ated negative binomial
regression model, 159

zero-in�ated Poisson regression
model (ZIP), 127

zero-one-in�ated beta regression
model, 200

zero-truncated negative binomial
regression model, 154

zero-truncated Poisson regression
model, 122

ZINB, see zero-in�ated negative
binomial regression model,
159

ZIP, see zero-in�ated Poisson
regression model, 127
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