
STAT 381 ADDITIONAL EXERCISES

1 Distribution of Order Statistics

Definition Suppose we have n observations X1, . . . , Xn. Denote by Xp1q ¤ Xp2q ¤ � � � ¤
Xpnq the ordered set. For any i, i � 1, . . . , n, Xpiq is called the i-th order statistic. Note that
Xp1q is the minimum, whereas Xpnq denotes the maximum.

Proposition Suppose X1, . . . , Xn are iid random variables with a common pdf fpxq and
cdf F pxq. The pdf of the i-th order statistic has the form

fXpiq
pxq � n!

pi� 1q!pn� iq!
�
F pxq�i�1

fpxq�1 � F pxq�n�i.
Proof: If the i-th order statistic is “equal” to x (contributing fpxq), then i�1 observations

necessarily lie below x (contributing
�
F pxq�i�1

) , and the other n� i lie above x (contribut-

ing
�
1 � F pxq�n�i). Finally, the multiplicative factor is the number of ways to choose i � 1

observations to lie below x, and n� i to exceed x.

Example If we let i � n in the above proposition, we obtain the pdf of the maximum of n
iid observations,

fXpnq
pxq � n!

pn� 1q!pn� nq!
�
F pxq�n�1

fpxq �1 � F pxq�n�n � n fpxq �F pxq�n�1
.

This is intuitive, since the pdf of Xpnq can also be obtained by the following reasoning:

FXpnq
pxq � PpXpnq ¤ xq � PpX1 ¤ x, X2 ¤ x, . . . , Xn ¤ xq � �

F pxq�n,
and, thus, the pdf is fXpnq

pxq � F 1
Xpnq

pxq � n fpxq �F pxq�n�1
.

Exercise 1 Consider n iid observations with the common pdf fpxq and cdf F pxq. Use
the formula for the pdf of the i-th order statistic to show that the pdf of the minimum is

fXp1q
pxq � n fpxq �1 � F pxq�n�1

. Also, find the pdf by first deriving the expression for the
cdf, arguing from the first principles.

Exercise 2 Let X1, . . . , Xn be iid realizations of a standard uniform random variable.
Find the pdf’s of: (a) i-th order statistic, i � 1, . . . , n, (b) minimum, and (c) maximum.
Specify the name of the distribution and respective parameters.

Exercise 3 Let X1, . . . , Xn be independent exponential random variables with mean 1{β.
Find the densities of: (a) Xpiq, i � 1, . . . , n, (b) minimum (give the distribution name and
specify parameters), and (c) maximum.
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2 Maximum Likelihood Estimator

Definition Suppose X1, . . . , Xn are iid random variables with a common pmf (discrete
case) or pdf (continuous case) fpx; θq. The likelihood function is a function of the unknown
parameter θ that is given by

Lpθq � Lpθ;X1, . . . , Xnq �
n¹
i�1

fpXi; θq.

Definition An estimator pθ � pθpX1, . . . , Xnq is called the maximum likelihood estimator
(MLE) of θ if it maximizes the likelihood function Lpθq.

Example 1 Let X1, . . . , Xn
iid� Bernoullippq. The likelihood function is

Lppq �
n¹
i�1

pXip1 � pq1�Xi � p
°n
i�1 Xip1 � pqn�

°n
i�1 Xi .

It is easier to work with the log-likelihood function, the natural logarithm of the likelihood
function,

lnLppq �
ņ

i�1

Xi ln p� pn�
ņ

i�1

Xiq lnp1 � pq.

To maximize the log-likelihood function, we equate to zero the first partial derivative of
lnLpp;X1, . . . , Xnq with respect to p, and solve for p. We obtain

0 � d lnLppq
dp

�
°n
i�1 Xi

p
� n�°n

i�1 Xi

1 � p
.

Thus, pp, the maximum likelihood estimator of p, satisfies the equation°n
i�1 Xipp � n�°n

i�1 Xi

1 � pp ,

from where pp � °n
i�1 Xi{n � sX. The MLE pp � sX represents the proportion of successes

among n observations, and is an intuitive estimator of p, the probability of success.

Exercise 4 Let X1, . . . , Xn
iid� BinomialpN, pq where N is known. Show that the MLE of

p is pp � sX{N .

Exercise 5 Let X1, . . . , Xn
iid� Geometricppq with pmf ppxq � pp1 � pqx�1, x � 1, 2, . . . .

Prove that the MLE of p is pp � 1{ sX.

Exercise 6 Let X1, . . . , Xn
iid� Poissonpλq. Check that the MLE of λ is pλ � sX.

Exercise 7 Let X1, . . . , Xn
iid� Uniformp0, θq. Show that the MLE of θ is pθ � Xpnq, the

nth order statistic (or, simply, the maximum).
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Exercise 8 Let X1, . . . , Xn
iid� Uniformpa, bq. Verify that the MLE of a is pa � Xp1q, the

first order statistic (i.e., the minimum), and that the MLE of b is pb � Xpnq, the nth order
statistic (i.e., the maximum).

Exercise 9 Let X1, . . . , Xn
iid� Exponential with mean β. Show that the MLE of β ispβ � sX.

Exercise 10 Let X1, . . . , Xn
iid� Exponential with mean 1{β. Show that the MLE of β ispβ � 1{ sX.

Exercise 11 Let X1, . . . , Xn
iid� Normalpµ, σ2q. Prove that the MLE of µ is pµ � X̄, and

the MLE of σ2 is pσ2 � 1
n

°n
i�1 pXi � sXq2.

Exercise 12 Let X1, . . . , Xn
iid� Weibullpαq where the pdf is defined as

fpx;αq � αxα�1 expt�xαu, x ¡ 0, α ¡ 0.

Show that pα, the MLE of α, is the solution of the equation

npα �
ņ

i�1

lnXi �
ņ

i�1

X pα
i lnXi � 0.

This equation has no closed-form solution and has to be solved numerically. Check that if
X1 � 0.4, X2 � 0.3, and X3 � 0.6, the MLE is pα � 1.0067.

Exercise 13 Let X1, . . . , Xn
iid� Bernoullippq, 0 ¤ p ¤ 1{5. Verify that the MLE of p ispp � sX, if 0 ¤ sX ¤ 1{5, and 1{5, if sX ¡ 1{5 .

Exercise 14 Let X1, . . . , Xn
iid� fpx; θq � 1

β
e�x{β, x ¡ 0, β ¡ 4. Prove that the MLE of

β is sX, if sX ¥ 4, and 4, if 0 ¤ sX   4.

Exercise 15 Let X1, . . . , Xn
iid� Normalpµ, 1q where µ ¥ 0. Show that the MLE of µ ispµ � sX if sX ¥ 0, and 0, if sX   0.

Exercise 16 Let X1, . . . , Xn
iid� fpx; θq where the pmf fpx; θq is given by the table:

x
θ 1 2 4
0 1/4 1/2 1/4

1/3 1/2 0 1/2
1/4 3/5 1/5 1/5

Check that if the observations are X1 � 1, X2 � 4, and X3 � 2, then the MLE of θ is equal
to 0.
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Theorem 1 (Functional Invariance of MLE) Suppose X1, . . . , Xn
iid� pmf or pdf

fpx; θq. Let g be some continuous function, and let δ � gpθq. Denote by pθ the MLE of θ.

Then the MLE of δ can be computed as pδ � gppθq.
Exercise 17 Let X1, . . . , Xn

iid� Bernoullippq. Show that the MLE of VarpX1q � pp1� pq
is sXp1 � sXq.
Exercise 18 Let X1, . . . , Xn

iid� Geometricppq. Verify that the MLE of EpX1q � 1{p is sX.

Exercise 19 Let X1, . . . , Xn
iid� X � Poissonpλq. Prove that the MLE of PpX1 � 1q �

λ expt�λu is sX expt� sXu.
Exercise 20 Let X1, . . . , Xn

iid� Uniformp0, θq. Check that the MLE of VarpX1q � θ2{12
is X2

pnq{12.

Exercise 21 Let X1, . . . , Xn
iid� ppx, θq where pp0, θq � expt�θu and pp1, θq � 1�expt�θu.

Prove that the MLE of θ is pθ � � lnp1 � sXq.
Exercise 22 LetX1, . . . , Xn

iid� Normalpµ, σ2q. Prove that the MLE of σ is pσ �b
1
n

°n
i�1 pXi � sXq2.

3 Method of Moments Estimator

Definition Suppose X1, . . . , Xn are iid random variables with a common distribution that
depends on k parameters θ1, . . . , θk. The method of moments (MM) estimators of the pa-
rameters solve the system of k equations$'''''''''''&'''''''''''%

EpX1q �
°n
i�1 Xi

n
� sX,

EpX2
1 q �

°n
i�1 X

2
i

n
,

EpX3
1 q �

°n
i�1 X

3
i

n
,

� � �
EpXk

1 q �
°n
i�1 X

k
i

n
.

That is, in each equation the theoretical moment is equated to the corresponding empirical
moment.

Example 2 Let X1, . . . , Xn
iid� Normalpµ, σ2q. To find the MM estimators of µ and σ2,

we equate the first and second theoretical and empirical moments, respectively:$'&'%
EpX1q � µ �

°n
i�1 Xi

n
� sX,

EpX2
1 q � σ2 � µ2 �

°n
i�1 X

2
i

n
.
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The solution of this system is pµ � sX, and pσ2 �
°n
i�1 X

2
i

n
� sX2 �

°n
i�1pXi � sXq2

n
. Note

that the MM estimators of µ and σ2 coincide with the corresponding MLEs.

Exercise 23 Let X1, . . . , Xn
iid� Bernoullippq. Show that the MM estimator for p is pp � sX,

the same as the MLE.

Exercise 24 Let X1, . . . , Xn
iid� BinomialpN, pq where N is known. Verify that the MM

estimator for p is sX{N , the same as the MLE.

Exercise 25 Let X1, . . . , Xn
iid� Geometricppq. Show that the MM estimator for p ispp � 1{ sX and coincides with the MLE.

Exercise 26 Let X1, . . . , Xn
iid� Poissonpλq. Prove that the MM estimator for λ is pλ � sX,

the same as the MLE.

Exercise 27 Let X1, . . . , Xn
iid� Uniformp0, θq. Prove that the MM estimator for θ ispθ � 2 sX. This estimator is different from the MLE. Check by giving a numeric example

that the MM estimator may be smaller than the MLE, and thus, the MM estimator doesn’t
always make sense.

Exercise 28 Let X � Uniformpa, bq. Show that the MM estimators for a and b have the
form pa � sX �

c
3
�°n

i�1 X
2
i

n
� sX2

	
, and pb � sX �

c
3
�°n

i�1 X
2
i

n
� sX2

	
.

These estimators are different from the MLE’s and don’t always make sense.

Exercise 29 Let X � Exponential with mean β. Prove that the MM estimator for β issX, the same as the MLE.

Exercise 30 Let X � Exponential with mean 1{β. Prove that the MM estimator for β
is 1{ sX, the same as the MLE.
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4 Unbiased Estimator

Definition Let X1, . . . , Xn
iid� pmf or pdf fpx; θq. Denote by pθ � pθpX1, . . . , Xnq an estima-

tor of θ. The estimator pθ is called unbiased if Eppθq � θ. An estimator that is not unbiased
is called biased.

Example 3 Let X1, . . . , Xn
iid� Bernoullippq, and consider pp � sX, the MLE and MM esti-

mator of p. This estimator is unbiased because Epppq � Ep sXq � EpX1q � p. In fact, for any
distribution, an estimator sX is an unbiased estimator of the mean since Ep sXq � EpX1q.

Exercise 31 Let X1, . . . , Xn
iid� BinomialpN, pq where N is known. Verify that the MLE

and MM estimator pp � sX{N is an unbiased estimator of p.

Exercise 32 Let X1, . . . , Xn
iid� Geometricppq. Show that the MLE and MM estimatorpp � 1{ sX is a biased estimator of p. Show also that among all estimators of p that are based

on X1 alone, the only unbiased estimator is

pppX1q �
#

1, if X1 � 1,

0, if X1 � 2, 3, . . . .

Exercise 33 Let X1, . . . , Xn
iid� Geometricppq. Show that sX is an unbiased estimator of

the mean EpX1q � 1{p.

Exercise 34 Let X1, . . . , Xn
iid� Poissonpλq. Check that the MLE and MM estimatorpλ � sX is an unbiased estimator of λ.

Exercise 35 Let X1, . . . , Xn
iid� Uniformp0, θq. Prove that Xpnq, the MLE of θ, is biased,

whereas 2 sX, the MM estimator, is unbiased. Show that
n� 1

n
Xpnq is an unbiased estimator

of θ.

Exercise 36 Let X1, . . . , Xn
iid� Uniformpa, bq. Show that Xp1q, the MLE of a, is biased,

and so is Xpnq, the MLE of b. Derive that
1

n� 1

�
nXp1q �Xpnq

�
is an unbiased estimator of

a, and
1

n� 1

�
nXpnq �Xp1q

�
is an unbiased estimator of b.

Exercise 37 Let X1, . . . , Xn
iid� Exponential with mean β. Verify that sX, the MLE and

MM estimator of β, is an unbiased estimator of β.
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Exercise 38 Let X1, . . . , Xn
iid� Exponential with mean 1{β. Verify that 1{ sX, the MLE

and MM estimator of β, is a biased estimator of β. Show also that
n� 1

n sX is an unbiased

estimator of β. Hint: Use the fact that
ņ

i�1

Xi � Gammapn, βq.

Exercise 39 Let X1, . . . , Xn
iid� Normalpµ, σ2q. Verify that sX, the MLE and MM esti-

mator of µ, is unbiased, whereas pσ2 � 1

n

ņ

i�1

pXi � sXq2, the MLE and MM estimator of σ2,

is biased. Prove that
n

n� 1
pσ2 � 1

n� 1

ņ

i�1

pXi � sXq2
is an unbiased estimator of σ2.

5 Consistent Estimator

Definition Let X1, . . . , Xn be independent with a common density fpx; θq. An estimatorpθn � pθnpX1, . . . , Xnq is called a consistent estimator of θ, if for any ε ¡ 0, P
�|pθn�θ| ¥ ε

�Ñ 0,
as nÑ 8.

Proposition The Chebyshev inequality states that for any ε ¡ 0,

P
�|pθn � θ| ¥ ε

� ¤ E
�ppθn � θq2�

ε2
.

From here, if E
�ppθn � θq2�Ñ 0 as nÑ 8, then pθn is a consistent estimator of θ.

Definition The quantity E
�ppθn � θq2� is called the mean square error and is denoted by

MSE. The mean square error can be expressed as the sum of two terms:

MSE � E
�ppθn � θq2� � E

�ppθn � Eppθnq � Eppθnq � θq2�
� E

�ppθn � Eppθnqq2�� 2
:0

E
�pθn � Eppθnq��Eppθnq � θ

�� �
Eppθnq � θ

�2

� Var
�pθn�� �

Eppθnq � θ
�2
.

The quantity
�
Eppθnq � θ

�
represents the bias of an estimator pθn. Thus, the formula for the

MSE has the form:

MSE � Var
�pθn�� �

biasppθn, θqs2.
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If pθn is an unbiased estimator of θ, then MSE � Varppθnq, and if this variance tends to zero
as n increases, then the estimator of consistent.

A biased estimator for which the bias goes to zero as n goes to infinity, is called asymptotically
unbiased. Thus, an estimator may be biased, but it is consistent if it is asymptotically
unbiased and its variance decreases as the sample size increases.

Exercise 40 Let X1, . . . , Xn
iid� Uniformp0, θq. Verify that

(a) The unbiased estimator
n� 1

n
Xpnq is a consistent estimator of θ. Hint: Show that

MSE � θ2

npn� 2q .
(b) The MLE Xpnq is asymptotically unbiased and is a consistent estimator of θ. Hint: Prove

that bias � � θ

n� 1
and MSE � 2θ2

pn� 1qpn� 2q .

(c) The estimator
n� 2

n� 1
Xpnq, which has the smallest MSE among all scalar multiples of

Xpnq (prove this!), is a consistent estimator of θ. Hint: Show that its MSE � θ2

pn� 1q2 .

Exercise 41 Consider X1, . . . , Xn that come from a Uniformp0, θq distribution. Prove
that
(a) The MM estimator 2 sXn is unbiased, consistent estimator of θ. Hint: Show that MSE �
θ2

3n
.

(b) The bias of the estimator sXn is independent of n, and thus this estimator is not a con-
sistent estimator of θ.

Exercise 42 Let X1, . . . , Xn be iid realizations of an exponential random variable with
mean 1{β. Check that
(a) The MLE 1{ sXn is asymptotically unbiased and consistent estimator of β. Hint: Prove

that its bias � β

n� 1
and MSE � pn� 2qβ2

pn� 1qpn� 2q .

(b) The unbiased estimator
n� 1

n sXn

is consistent. Hint: Prove first that the variance of this

estimator is
β2

n� 2
.

Exercise 43 Suppose X1, . . . , Xn is a random sample from Normalpµ, σ2q distribution.
Show that

(a) The unbiased estimator
1

n� 1

ņ

i�1

pXi� sXnq2 is a consistent estimator of σ2. Hint: Show
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first that the variance is equal to
2σ4

n� 1
.

(b) The MLE
1

n

ņ

i�1

pXi� sXnq2 is asymptotically unbiased, consistent estimator of σ2. Hint:

Show that its MSE � 2n� 1

n2
σ4.

6 Sufficient Statistic, Factorization Theorem

Definition Let X1, . . . , Xn
iid� pmf or pdf fpx; θq. A statistic pθ � pθpX1, . . . , Xnq is called

a sufficient statistic for θ, if the conditional distribution of X1, . . . , Xn, given pθ, does not
depend on θ.

It is more practical to find sufficient statistics not using the definition, but rather using the
factorization theorem.

Theorem 2 (Factorization Theorem) Let X1, . . . , Xn
iid� pmf or pdf fpx; θq. Thenpθ � pθpX1, . . . , Xnq is a sufficient statistic for θ if and only if there exist two nonnegative

functions g and h such that

n¹
i�1

fpXi; θq � gpX1, . . . , Xnqhppθ; θq.
This expression is interpreted as saying that the likelihood function for the observations
X1, . . . , Xn can be written as a product of two functions, one of which depends only on the
observations, and the other depends on some statistic that cannot be separated from the
parameter. Both functions are multiplicative factors, thus the name factorization theorem.

Remark The factorization theorem can be formulated for distributions that depend on
several parameters. The vector of estimators ppθ1, . . . , pθkq is a sufficient statistic for the
vector of parameters pθ1, . . . , θkq if and only if there exist two nonnegative functions g and
h such that

n¹
i�1

fpXi; θ1, . . . , θkq � gpX1, . . . , Xnqhppθ1, . . . , pθk; θ1, . . . , θkq.

Proposition Any invertible function of a sufficient statistic is itself a sufficient statistic.

Example 4 Let X1, . . . , Xn
iid� Bernoullippq. The likelihood function has the form

n¹
i�1

fpXi; pq �
n¹
i�1

pXip1 � pq1�Xi � p
°n
i�1 Xi p1 � pqn�

°n
i�1 Xi .
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Now let

gpX1, . . . , Xnq � 1, pp � ņ

i�1

Xi, and hppp; pq � pppp1 � pqn�pp.

We see that
n¹
i�1

fpXi; pq � pppp1 � pqn�pp � gpX1, . . . , Xnqhppp; pq.
By factorization theorem,

°n
i�1 Xi is a sufficient statistic for p. Since any invertible function

is also sufficient, we can conclude that sX � °n
i�1 Xi{n is also a sufficient statistic for p.

Exercise 44 Let X1, . . . , Xn
iid� BinomialpN, pq where N is known. Show that sX{N is a

sufficient statistic for p.

Exercise 45 Let X1, . . . , Xn
iid� Geometricppq where N is known. Verify that sX is a suf-

ficient statistic for p.

Exercise 46 Let X1, . . . , Xn
iid� Poissonpλq. Prove that sX is a sufficient statistic for λ.

Exercise 47 Let X1, . . . , Xn
iid� Uniformp0, θq. Check that Xpnq is a sufficient statistic

for θ.

Exercise 48 Let X1, . . . , Xn
iid� Uniformpa, bq. Prove that the vector of estimators

pXp1q, Xpnqq is a sufficient statistic for the vector of parameters pa, bq.

Exercise 49 Let X1, . . . , Xn
iid� Exponentialpβq. Check that sX is a sufficient statistic for

β.

Exercise 50 Let X1, . . . , Xn
iid� Normalpµ, σ2q. Verify that the vector of estimators� sX, 1

n� 1

ņ

i�1

pXi � sXq2	 is sufficient for the vector of parameters pµ, σ2q. Hint: Show

first that p°n
i�1 Xi,

°n
i�1 X

2
i q is sufficient.

7 Uniform Minimum Variance Unbiased Estimator (UMVUE),

Rao-Blackwell Theorem

Definition Let X1, . . . , Xn
iid� pmf or pdf fpx; θq. An estimator pθ � pθpX1, . . . , Xnq of θ is

called a uniformly minimum variance unbiased estimator (UMVUE), if it is unbiased and
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its variance is minimal, that is, if Eppθq � θ and Varppθq ¤ Varpθ̃q for any unbiased estimator θ̃.

Rao-Blackwell Theorem If u is a sufficient statistic for θ and pθ is an unbiased estima-
tor of θ, then Eppθ|uq is the UMVUE for θ.

Example 5 Let X1, . . . , Xn
iid� Bernoullippq. We would like to find the UMVUE for p. We

recall that sX is a sufficient statistic and an unbiased estimator of p. Hence, it is the UMVUE.

Exercise 51 Let X1, . . . , Xn
iid� BinomialpN, pq where N is fixed. Show that sX{N is the

UMVUE for p.

Exercise 52 Let X1, . . . , Xn
iid� Poissonpλq. Verify that sX the UMVUE for λ.

Exercise 53 Let X1, . . . , Xn
iid� Exponential with mean β. Check that sX is the UMVUE

for β.

Exercise 54 Let X � Normalpµ, σ2q where σ is known. Verify that pµ � sX is the
UMVUE for µ.

Exercise 55 Let X1, . . . , Xn
iid� Uniformpa, bq. Show that

1

n� 1

�
nXp1q � Xpnq

�
is the

UMVUE for a, and
1

n� 1

�
nXpnq �Xp1q

�
is the UMVUE for b.

Exercise 56 Let X1, . . . , Xn
iid� Exponential with mean 1{β. Show that

n� 1

n sX is the

UMVUE for β.

Exercise 57 Let X1, . . . , Xn
iid� Normalpµ, σ2q. Prove that sX is the UMVUE for µ, and

1

n� 1

ņ

i�1

pXi � sXq2 is the UMVUE for σ2.

Exercise 58 Let X1, . . . , Xn
iid� Poissonpλq. Derive that

�
1�1{n� sX� sX2 is the UMVUE

for the second moment EpX2
1 q � λp1 � λq.

Exercise 59 Let X1, . . . , Xn
iid� Normalpµ, σ2q. Denote by pσ2 � 1

n� 1

ņ

i�1

pXi � sXq2.

Verify that sX2 � pσ2{n is the UMVUE for µ2.

Exercise 60 Let X1, . . . , Xn
iid� Poissonpλq. Find the UMVUE for PpX1 � 0q � e�λ.

Exercise 61 rm Let X1, . . . , Xn
iid� Bernoullippq. Find the UMVUE for p2.

Exercise 62 Let X1, . . . , Xn
iid� 1

θ
e�x{θ, x ¡ 0, θ ¡ 0. Find the UMVUE for PpX1 ¤ 2q �

1 � e�2{θ.
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8 Likelihood Ratio Test

Definition Let X1, . . . , Xn be iid with pdf fpx; θq. Suppose we want to test H0 : θ � θ0

against H1 : θ �� θ0. Define the likelihood ratio test as follows. The test statistic is the ratio
of the two likelihood functions where the parameter θ assumes the values θ0 and the MLE pθ,
respectively, that is, Λ � Lpθ0q

Lppθq �
±n

i�1 fpXi; θ0q±n
i�1 fpXi; pθq . If θ0 is the true value of θ, then Lpθ0q is

asymptotically the maximum value of Lpθq (Intuitively, if we sample the entire population,
the most likely value of θ is θ0). Thus, under H0, Λ should be close to 1, and the decision
rule for the test is to reject H0 if Λ ¤ c, where a constant c is such that α � PpΛ ¤ c |H0 is
true) for a significance level α. The region tX1, . . . , Xn : Λ ¤ cu is called the rejection region.

As a rule, Λ is a very complicated function, and its distribution is very hard to figure out.
However, an asymptotic distribution can be used.

Proposition Under H0, for large n, �2 ln Λ has approximately a chi-squared distribution
with one degree of freedom.

Definition An asymptotic likelihood ratio test with a significance level α has the test statis-
tic χ2 � �2 ln Λ, and rejects H0 if χ2 ¥ χ2

αp1q, where χ2
αp1q is the p1 � αq�percentile of a

chi-squared distribution with one degree of freedom.

Example. Suppose X1, . . . , Xn
iid� Bernoullippq, and suppose we are interested in testing

H0 : p � p0 versus H1 : p �� p0. The likelihood ratio is Λ �
±n

i�1 p
Xi
0 p1 � p0q1�Xi±n

i�1
sXXip1 � sXq1�Xi �

pn
sX

0 p1 � p0qn�n sXsXn sXp1 � sXqn�n sX . For large n, we reject H0 if χ2 � �2 ln Λ � �2n sX ln
�p0sX � � 2np1 �

sXq ln
�1 � p0

1 � sX �
exceeds the critical value χ2

αp1q.

Exercise 63 Let X1, . . . , Xn
iid� BinomialpN, pq with a known N . Suppose we are testing

H0 : p � p0 against H1 : p �� p0. Find the expression for the asymptotic likelihood ratio test
statistic. State the decision rule.

Exercise 64 Suppose X1, . . . , Xn
iid� Geometricppq. Compute the likelihood ratio test

statistic for testing H0 : p � p0 against H1 : p �� p0. Assume n is large. Specify the decision
rule.

Exercise 65 Assume X1, . . . , Xn
iid� Poissonpλq. We are conducting the likelihood ratio

test with H0 : λ � λ0 and H1 : λ �� λ0. Find the test statistic for n large. Find the rejection
region.

12



Exercise 66 Consider X1, . . . , Xn
iid� Uniformp0, θq. Produce the test statistic for the

asymptotic likelihood ratio test with H0 : θ � θ0 and H1 : θ �� θ0. Specify the decision rule.

Exercise 67 Let X1, . . . , Xn
iid� Exponential with mean β. Write down the asymptotic

likelihood ratio test statistic for testing H0 : β � β0 versus H1 : β �� β0. Specify the rejec-
tion region.

Exercise 68 Consider X1, . . . , Xn
iid� Normalpµ, σ2q where σ is given. Find the expression

for the asymptotic likelihood ratio test statistic �2 ln Λ and show that it has an exact χ2-
distribution with one degree of freedom. Assume H0 : µ � µ0 and H1 : µ �� µ0. State the
decision rule.

9 Power Function of a Test

Definition The probability of Type II error is β � Ppaccept H0 |H1 is trueq. Note that β
is a function of θ which range is determined by H1. Typically, β is computed for a specific
value of θ in that range.

Definition A power of a statistical test is power � 1 � β � Ppreject H0 |H1 is trueq.

Example Suppose we have a single observation X from a Binomialp5, pq distribution which
we use to test H0 : p   1{2 against H1 : p ¥ 1{2. For a rejection region tX � 5u, the power
of the test is power � 1 � β � PpX � 5 | p ¥ 1{2q � p5, 1{2 ¤ p ¤ 1.

Exercise 69 Take X � Binomialp6, pq. Suppose we are interested in testing H0 : p   1{3
against H1 : p ¥ 1{3. Compute the power of the test is we define the rejection region as:
(a) tX � 6u, (b) tX � 5, 6u, and (c) tX � 4, 5, 6u.

Exercise 70 Let X1, . . . , Xn
iid� Uniformp0, θq. Consider the asymptotic likelihood ratio

test for testing H0 : θ � θ0 against H1 : θ �� θ0 with a significance level α. The test statistic
for this test has been derived in Exercise 66. Present the power of this test as a function of θ.

Exercise 71 Let X1, . . . , Xn be a random sample taken from a Normalpµ, σ2q distribu-
tion with some known σ. The testing is done between H0 : µ � µ0 and H1 : µ � µ1 where
µ1 ¡ µ0. The rejection region of the test is defined as t sX ¡ ku for some constant k. Suppose
that the significance level α is specified. Prove that the power of this test can be written

as power � 1 � Φ
�

Φ�1p1 � αq � µ1 � µ0

σ{?n
	

where Φ denotes the cdf of the standard normal

distribution.
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SOLUTIONS TO EXERCISES

Exercise 1 In the formula for the pdf of the i-th order statistic we let i � 1 to obtain that

fXp1q
pxq � n!

p1 � 1q!pn� 1q!
�
F pxq�1�1

fpxq �1 � F pxq�n�1 � n fpxq �1 � F pxq�n�1
. We can

also find the pdf of the minimum as follows:

1 � FXp1q
pxq � PpXp1q ¥ xq � PpX1 ¥ x, X2 ¥ x, . . . , Xn ¥ xq � �

1 � F pxq�n,
therefore, FXp1q

pxq � 1 � �
1 � F pxq�n, and fXpnq

pxq � F 1
Xpnq

pxq � n fpxq �1 � F pxq�n�1
.

Exercise 2 We are given that fpxq � 1, and F pxq � x, 0 ¤ x ¤ 1. Hence,

(a) the i-th order statistic has the pdf fXpiq
pxq � n!

pi� 1q!pn� iq!x
i�1p1 � xqn�i, that is,

Xpiq � Betapi, n� i� 1q.
(b) If we let i � 1, we get the pdf of the minimum, fXp1q

pxq � np1 � xqn�1, that is, Xp1q �
Betap1, nq.
(c) Letting i � n, we obtain the pdf of the maximum, fXpnq

pxq � nxn�1, that is, Xpnq �
Betapn, 1q.

Exercise 3 The pdf ofX’s is fpxq � β expt�β xu, and the cdf is F pxq � 1�expt�β xu, x ¡
0, β ¡ 0. Therefore, (a) the i-th order statistic has the pdf fXpiq

pxq � n!

pi� 1q!pn� iq!
�
1 �

expt�β xu�i�1
β expt�β x u � expt�β x u�n�i � n!

pi� 1q!pn� iq! β expt�β x pn � i � 1qu �1 �
expt�β xu�i�1

.
(b) In particular, for i � 1, the pdf of the minimum is fXp1q

pxq � nβ expt�β nxu, that is,

Xp1q has an exponential distribution with mean
1

nβ
.

(c) The pdf of the maximum is derived by letting i � n. We have fXpnq
pxq � nβ expt�β xu �1�

expt�β xu�n�1
. We can also notice that the cdf of the maximum is F pxq � �

1�expt�β xu�n,
which can be obtained by either integrating the density or arguing that all n observations
must not exceed x, if the maximum doesn’t exceed x.

Exercise 4 The likelihood function has the form

Lppq �
n¹
i�1

�
N

Xi



pXip1 � pqN�Xi

�
� n¹
i�1

�
N

Xi


�
p
°n
i�1 Xip1 � pqnN�

°n
i�1 Xi .
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The log-likelihood function is

lnLppq � ln
� n¹
i�1

�
N

Xi


�
�

ņ

i�1

Xi ln p� �
nN �

ņ

i�1

Xi

�
lnp1 � pq.

The MLE pp solves the equation

0 � d lnLppq
dp

���
p�pp

�
°n
i�1 Xipp � nN �°n

i�1 Xi

1 � pp .

Hence, the MLE of p is pp � °n
i�1 Xi

nN
�

sX
N
.

To understand the structure of this estimator, we can rewrite it as

pp � °n
i�1 pXi{Nq

n
,

which is the average of proportions of successes among N trials.

Exercise 5 The likelihood function has the form

Lppq �
n¹
i�1

p p1 � pqXi�1 � pn p1 � pq
°n
i�1 Xi�n.

The log-likelihood function is

lnLppq � n ln p� � ņ

i�1

Xi � n
�

lnp1 � pq.

The MLE pp solves the equation

0 � d lnLppq
dp

���
p�pp

� npp �
°n
i�1 Xi � n

1 � pp ,

and so, pp � n°n
i�1 Xi

� 1sX .

Since the mean of Xi’s is equal to 1{p, the MLE is an estimator of p derived from estimating
the mean by the sample mean sX.

Exercise 6 The likelihood function is

Lpλq �
n¹
i�1

λXi expt�λu
Xi!

�
� n¹
i�1

1

Xi!

�
λ
°n
i�1 Xi expt�nλu,
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and the log-likelihood function takes the form

lnLpλq � ln
� n¹
i�1

1

Xi!

�
�

ņ

i�1

Xi lnλ� nλ.

The MLE pλ is the solution of the equation

0 � d lnLpλq
dλ

���
λ�pλ

�
°n
i�1 Xipλ � n.

Hence, pλ � °n
i�1 Xi

n
� sX.

Indeed, it is intuitive to estimate the mean λ by the sample mean sX.

Exercise 7 The likelihood function is derived as

Lpθq �
n¹
i�1

1

θ
It0 ¤ Xi ¤ θu � 1

θn
It0 ¤ Xpnq ¤ θu.

Here ItAu denotes the indicator function of an event A, that is, it is equal to 1 if A occurs,
and 0, otherwise. The last equality is justified by noticing that the events t0 ¤ Xi ¤ θu
occur simultaneously for all i � 1, . . . , n, if and only if the event t0 ¤ Xpnq ¤ θu occurs.

Next, we plot the likelihood function Lpθq � Lpθ;X1, . . . , Xnq � 1{θn, θ ¥ Xpnq, against θ
to see where it attains the maximum value.

-

6

0 Xpnq θ

Lpθq

As seen on the graph, the maximum is attained at Xpnq, thus pθ � Xpnq is the MLE of θ. On
intuitive level, if X1, . . . , Xn are observed, and we know that each of them doesn’t exceed θ,
then our best guess about the value of θ is the maximum of all the observations.

Exercise 8 The likelihood function is

Lpa, bq �
n¹
i�1

1

b� a
Ita ¤ Xi ¤ bu

16



� 1

pb� aqn Ita ¤ Xp1q ¤ Xpnq ¤ bu.

To maximize this likelihood function, we have to minimize the denominator pb � aqn, or,
equivalently, minimize the distance between a and b. Since it must be true that a ¤ Xp1q ¤
Xpnq ¤ b, the distance is minimal when a is equal to Xp1q and b is equal to Xpnq. This leads

to conclusion that the MLE of a is pa � Xp1q and the MLE of b is pb � Xpnq.

Exercise 9 The likelihood function is written as

Lpβq �
n¹
i�1

1

β
expt�Xi{βu � 1

βn
expt�

ņ

i�1

Xi{βu,

and the log-likelihood function takes the form

lnLpβq � �n ln β �
°n
i�1 Xi

β
.

The maximum likelihood estimator of β satisfies the equation

0 � d lnLpβq
dβ

���
β�pβ

� �npβ �
°n
i�1 Xipβ2

.

From here, pβ � °n
i�1 Xi

n
� sX.

We see that it is only reasonable to estimate the mean β by the sample mean sX.

Exercise 10 The likelihood function has the form

Lpβq �
n¹
i�1

β expt�β Xiu � βn expt�β
ņ

i�1

Xiu,

and the log-likelihood function is

lnLpβq � n ln β � β
ņ

i�1

Xi.

Differentiating the log-likelihood function, we get an equation for the MLE pβ:

0 � d lnLpβq
dβ

���
β�pβ

� npβ �
ņ

i�1

Xi.

Thus, pβ � n°n
i�1 Xi

� 1sX .
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Exercise 11 First, we obtain the likelihood function. We write

Lpµ, σ2q �
n¹
i�1

1?
2πσ2

exp
!
� pXi � µq2

2σ2

)
� 1

p2πσ2qn{2 exp
!
�

°n
i�1 pXi � µq2

2σ2

)
.

Next, we find the log-likelihood function as

lnLpµ, σ2q � �n
2

lnp2πq � n

2
lnσ2 �

°n
i�1 pXi � µq2

2σ2
.

The maximum likelihood estimators pµ and pσ2 are solutions of the system of two equations$'''&'''%
0 � B lnLpµ, σ2q

Bµ
��� µ�pµ,
σ2�pσ2

�
°n
i�1 pXi � pµqpσ2

,

0 � B lnLpµ, σ2q
Bσ2

��� µ�pµ,
σ2�pσ2

� � n

2pσ2
�

°n
i�1 pXi � pµq2

2pσ4
,

so pµ � °n
i�1 Xi

n
� sX, and pσ2 �

°n
i�1 pXi � sXq2

n
.

Since µ is the mean of the normal distribution, the estimator is indeed intuitive. The variance
is estimated by the average squared distance between each observation and the sample mean,
which is a natural measure of spread.

Exercise 12 We derive the likelihood function as follows:

Lpαq �
n¹
i�1

αXα�1
i expt�Xα

i u

� αn
� n¹
i�1

Xi

	α�1

expt�
ņ

i�1

Xα
i u.

The log-likelihood function is given by

lnLpαq � n lnα � pα � 1q
ņ

i�1

lnXi �
ņ

i�1

Xα
i .

Differentiating the log-likelihood function with respect to α and setting the derivative equal
to zero, we obtain the equation that the MLE of α solves:

0 � d lnLpαq
dα

���
α�pα

� npα �
ņ

i�1

lnXi �
ņ

i�1

X pα
i lnXi.
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There is no explicit solution to this equation, thus is has to be solved numerically. For the
observations X1 � 0.4, X2 � 0.3, and X3 � 0.6, the MLE of α solves

3pα � ln 0.4 � ln 0.3 � ln 0.6 � p0.4pα ln 0.4 � 0.3pα ln 0.3 � 0.6pα ln 0.6q � 0.

Using Excel, for example, it is easy to verify that pα � 1.51909.

Exercise 13 In Example 1 we have shown that the maximum of the likelihood function

Lppq � p
°n
i�1 Xip1 � pqn�

°n
i�1 Xi

is attained when p � sX.

We will plot this likelihood function against values of p when sX is on either side of 1{5 to
see where the maximums of this function are attained on r0, 1{5s.

-

6

-

6

0 1sX 1
5

p

Lppq

pp
0 1sX1

5
p

Lppq

pp

From the graphs, if 0 ¤ sX ¤ 1{5, then the maximum of Lppq on the interval 0 ¤ p ¤ 1{5
is attained at sX, whereas when sX ¡ 1{5, then the maximum of the likelihood function on
this interval is attained at 1{5. Thus, the MLE of p is

pp � # sX, if 0 ¤ sX ¤ 1{5,

1{5, if sX ¡ 1{5.

Exercise 14 We know from Exercise 9 that in the general case of β ¡ 0, the likelihood

function Lpβq � 1

βn
expt�

ņ

i�1

Xi{βu attains its maximum at pβ � sX. In this exercise, the

values of β are bounded from below by 4. The two graphs below present two possible
scenarios: when 0 ¤ sX   4 and when sX ¥ 4.

-

6

-

6

0 sX 4 β

Lpβq

pβ
0 sX4 β

Lpβq

pβ
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As seen on the graphs, the maximum of the likelihood function is attained on r4,8q at pβ � 4

if 0 ¤ sX   4, and at pβ � sX, if sX ¥ 4.

Exercise 15 From Exercise 11, we know that if there are no restrictions on the value of µ,
the maximum of the likelihood function

Lpµq � 1

p2πqn{2 exp
 � ņ

i�1

pXi � µq2{2(
is attained at pµ � sX. In the present exercise, it is assumed that µ ¥ 0.

To see how the plot of Lpµq looks like, we rewrite the likelihood function as

Lpµq � 1

p2πqn{2 exp
!
� 1

2

� ņ

i�1

X2
i � 2µn sX � nµ2

	)
� 1

p2πqn{2 exp
!
� 1

2

ņ

i�1

X2
i �

n

2
sX2
)

exp
!
� n

2
pµ� sXq2).

From here we can see that Lpµq is bell shaped and is centered around sX. Now we plot Lpµq
in the cases sX ¥ 0 and sX   0, respectively, to determine at what respective points the
maximums are attained on r0,8q.

-

6

-

6

0 sX µ

Lpµq

pµ
0sX µ

Lpµq

pµ

As depicted on the graphs, in the case when sX ¥ 0, the MLE of µ is pµ � sX, while if sX   0,
then pµ � 0.

Exercise 16 The likelihood function is calculated as
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Lpθ;X1, X2, X3q � fp1; θqfp4; θqfp2; θq �

$'&'%
p1{4qp1{4qp1{2q � 0.03125, if θ � 0,

p1{2qp1{2qp0q � 0, if θ � 1{3,
p3{5qp1{5qp1{5q � 0.024, if θ � 1{4.

The largest value of the likelihood function is 0.03125 and corresponds to the MLE pθ � 0.

Exercise 17 We know from Example 1 that the MLE of p is pp � sX, and by Theorem 1,
the MLE of VarpX1q � pp1 � pq is X̄p1 � X̄q.

Exercise 18 By Exercise 5, the MLE of p is pp � 1{ sX. Hence, using Theorem 1, we find
that the MLE of EpX1q � 1{p as 1{p1{ sXq � sX.

Exercise 19 By Exercise 6, the MLE of λ is pλ � sX. Thus, using Theorem 1, we conclude
that the MLE of PpX1 � 1q � λ expt�λu is sX expt� sXu.
Exercise 20 As shown in Exercise 7, the MLE of θ is pθ � Xpnq. Applying Theorem 1, we
get that the MLE of VarpX1q � θ2{12 is X2

pnq{12.

Exercise 21 The likelihood function has the form

Lpθq �
n¹
i�1

p1 � expt�θuqXi pexpt�θuq1�Xi

� p1 � expt�θuq
°n
i�1 Xi pexpt�θuqn�

°n
i�1 Xi .

This is a Poisson distribution truncated at x � 1, or, alternatively, it can be looked at as a
Bernoulli distribution with p � 1 � expt�θu. The quickest way to find the MLE of θ is to
recall from by Example 1 that the MLE of p is pp � sX, and now use Theorem 1 to conclude
that the MLE of θ solves pp � sX � 1 � expt�pθu. Thus, pθ � � lnp1 � sXq.
Exercise 22 In Exercise 11 we have shown that the MLE of σ2 is pσ2 � 1

n

ņ

i�1

pXi �sXq2. We use this result and Theorem 1 to conclude that the MLE of σ is pσ �
?pσ2 �d

1

n

ņ

i�1

pXi � sXq2.

Exercise 23 To find the MM estimator of p, we equate the theoretical and empirical first
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moments. We have

EpX1q � p �
°n
i�1 Xi

n
� sX.

The solution is pp � sX, and, thus, the MM estimator coincides with the MLE for p.

Exercise 24 The MM estimator for p solves the equation EpX1q � Np � sX, or pp � sX{N .
It is the same as the MLE.

Exercise 25 The MM estimator for p satisfies

EpX1q � 1

p
� sX.

Hence, pp � 1{ sX, and it coincides with the MLE for p.

Exercise 26 The MM estimator for λ is the solution of the equation

EpX1q � λ � sX,
and so, pλ � sX. It is the same as the MLE.

Exercise 27 To find the MM estimator for θ we write

EpX1q � θ

2
� sX,

thus, pθ � 2 sX. This estimator is not the same as Xpnq, the MLE of θ. Moreover, for some
observations, 2 sX is smaller than Xpnq, and hence, the MM estimator doesn’t always make
sense. For example, if X1 � 1, X2 � 1, X3 � 2, and X4 � 8. Then 2 sX � 6, whereas Xp4q � 8,
so we have an observation that exceeds our MM estimate of θ.

Exercise 28 We find the MM estimators for a and b by solving the system of equations:$'&'%
EpX1q � a� b

2
� sX,

EpX2
1 q �

» b

a

x2

b� a
dx � b3 � a3

3pb� aq �
b2 � ab� a2

3
�

°n
i�1 X

2
i

n
.

Hence, pa and pb satisfy the equations$&%pa�pb � 2 sX,
pa2 � papb�pb2 � 3

°n
i�1 X

2
i

n
.

22



Squaring the first equation and subtracting the second, we get$&%pa�pb � 2 sX,
papb � 4 sX2 � 3

°n
i�1 X

2
i

n
.

Letting pb � 2 sX � pa and plugging it into the second equation, we arrive at a quadratic
equation. The system becomes$&%pa�pb � 2 sX,

pa2 � 2 sXpa� 4 sX2 � 3

°n
i�1 X

2
i

n
� 0.

The solution of this system is

pa � sX �
c

3
�°n

i�1 X
2
i

n
� sX2

	
, and pb � sX �

c
3
�°n

i�1 X
2
i

n
� sX2

	
.

Note that these estimators are not the same as the MLE’s Xp1q and Xpnq. In addition, they

may not make sense for some data sets, where the minimum is below pa and/or the maximum

is above pb.
Exercise 29 The MM estimator for β is the solution of the equation EpX1q � β � sX,

thus, pβ � sX, and is equal to the MLE.

Exercise 30 The MM estimator pβ satisfies sX � EpX1q � 1{pβ. Thus, pβ � 1{ sX,the same
as the MLE.

Exercise 31 We write Epppq � Ep sX{Nq � EpX1q{N � Np{N � p, thus the estimator is
unbiased.

Exercise 32 The sum
°n
i�1 Xi of n independent Geometricppq random variables has a

NegativeBinomialpn, pq distribution with the pmf

P p
ņ

i�1

Xi � xq �
�
x� 1

n� 1



pnp1 � pqx�n, x � n, n� 1, . . . .

So, we write

Epppq � E
� 1sX � � E

� n°n
i�1 Xi

� � 8̧

x�n

n

x

�
x� 1

n� 1



pnp1 � pqx�n �� p.
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Thus, the estimator is biased.

For an estimator pp � pppX1q to be an unbiased estimator of p, it must satisfy the identity

Epppq � EppppX1qq �
8̧

x�1

pppxqpp1 � pqx�1 � p. Since the left-hand side is a polynomial in p,

the only solution is

pppX1q �
#

1, if X1 � 1,

0, if X1 � 2, 3, . . . .

Exercise 33 We have that Ep sXq � EpX1q � 1{p, thus, it is an unbiased estimator.

Exercise 34 We write Eppλq � Ep sXq � λ, hence, pλ is an unbiased estimator of λ.

Exercise 35 We start by finding the cdf of the largest order statistic:

FXpnq
px; θq � PpXpnq ¤ xq � PpX1 ¤ x, . . . , Xn ¤ xq

� PpX1 ¤ xq � � �PpXn ¤ xq, by independence,

� xn

θn
, 0 ¤ x ¤ θ.

From here, the density of Xpnq is fXpnq
px; θq � F 1

Xpnq
px; θq � nxn�1{θn, 0 ¤ x ¤ θ. And thus

the expected value is derived as

EpXpnqq �
» θ

0

xn
xn�1

θn
dx � n

n� 1
θ � �

1 � 1

n� 1

�
θ   θ.

We can see that Xpnq is a biased estimator of θ, and, in fact, it underestimates θ by 1{pn�1qth
of θ, on average. An unbiased estimator of θ based on the maximum value is

n� 1

n
Xpnq.

In the case of the MM estimator of θ we write Ep2 sXq � 2EpX1q � 2pθ{2q � θ. Thus, it is
unbiased.

Exercise 36 We derive the cdf of the smallest order statistic. We have

PpXp1q ¥ xq � PpX1 ¥ x, . . . , Xn ¥ xq
� PpX1 ¥ xq � � �P pXn ¥ xq, by independence,

� pb� xqn
pb� aqn , a ¤ x ¤ b.

Hence, the cdf of Xp1q is

FXp1q
px; a, bq � PpXp1q ¤ xq � 1 � PpXp1q ¥ xq � 1 � pb� xqn

pb� aqn , a ¤ x ¤ b.
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The pdf is equal to fXp1q
px; a, bq � F 1

Xp1q
px; a, bq � n pb � xqn�1{pb � aqn, a ¤ x ¤ b. The

expectation is found as

EpXp1qq �
» b

a

xn
pb� xqn�1

pb� aqn dx � �
» b

a

pb� x� bqn pb� xqn�1

pb� aqn dx

� �
» b

a

n
pb� xqn
pb� aqn dx� b

» b

a

n
pb� xqn�1

pb� aqn dx

� � n

n� 1
pb� aq � b � a� 1

n� 1
pb� aq ¡ a.

Thus, Xp1q is biased, and overestimates the lower endpoint a by 1{pn � 1qth of the length
b� a of the interval, on average.

Further, the cdf of the nth order statistic is

FXpnq
px; a, bq � PpXpnq ¤ xq � PpX1 ¤ x, . . . , Xn ¤ xq

� PpX1 ¤ xq � � �PpXn ¤ xq, by independence,

� px� aqn
pb� aqn , a ¤ x ¤ b.

The pdf of Xpnq is fXpnqpx; a, bq � F 1
Xpnq

px; a, bq � n px � aqn�1{pb � aqn, a ¤ x ¤ b. The
mean is computed as

EpXpnqq �
» b

a

xn
px� aqn�1

pb� aqn dx �
» b

a

px� a� aqn px� aqn�1

pb� aqn dx

�
» b

a

n
px� aqn
pb� aqn dx� a

» b

a

n
px� aqn�1

pb� aqn dx

� n

n� 1
pb� aq � a � b� 1

n� 1
pb� aq   b.

This indicates that Xpnq is biased, and, on average, it underestimates the upper endpoint b
by 1{pn� 1qth of the length b� a of the interval.

To see what estimators based on Xp1q and Xpnq are unbiased estimators of a and b, we solve
the following system with respect to a and b:$'&'%

EpXp1qq � a� 1

n� 1
pb� aq,

EpXpnqq � b� 1

n� 1
pb� aq.

Adding and subtracting the equations yield$&%E
�
Xp1q �Xpnq

� � a� b,

E
�
Xpnq �Xp1q

� � n� 1

n� 1
pb� aq, or

$&%E
�
Xp1q �Xpnq

� � a� b,

E
�n� 1

n� 1

�
Xpnq �Xp1q

�� � b� a.
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Again adding and subtracting the equations yield$''''&''''%
a � E

�1

2

�
Xp1q �Xpnq � n� 1

n� 1
pXpnq �Xp1qq

�� � E
� 1

n� 1

�
nXp1q �Xpnq

��
,

b � E
�1

2

�
Xp1q �Xpnq � n� 1

n� 1
pXpnq �Xp1qq

�� � E
� 1

n� 1

�
nXpnq �Xp1q

��
.

Thus,
1

n� 1

�
nXp1q � Xpnq

�
is an unbiased estimator of a, and

1

n� 1

�
nXpnq � Xp1q

�
is an

unbiased estimator of b.

Exercise 37 We know that Ep sXq � EpX1q � β. Thus, sX is an unbiased estimator of β.

Exercise 38 As the sum of n independent exponential random variables,
°n
i�1 Xi has a

Gamma distribution with the pdf fpxq � βn xn�1 expt�β xu
pn� 1q! , x ¡ 0. Hence, we expected

value of 1{ sX can be computed explicitly as follows:

E
�
1{ sX� � E

�
n{

ņ

i�1

Xi

� � » 8

0

n

x

βn xn�1 expt�β xu
pn� 1q! dx

� npn� 2q!
pn� 1q! β

» 8

0

βn�1 xn�2 expt�β xu
pn� 2q! dx � n

n� 1
β.

Thus, 1{ sX is a biased estimator of β, but
n� 1

n sX is unbiased.

Exercise 39 Since Ep sXq � EpX1q � µ, sX is an unbiased estimator of µ. Next, we compute
the expected value of pσ2. We write

Eppσ2q � E
� 1

n

ņ

i�1

pXi � sXq2� � 1

n
E
� ņ

i�1

X2
i � n sX2

�
� EpX2

1 q � Ep sX2q � VarpX1q � pEpX1qq2 �
�
Varp sXq � pEp sXqq2�

� σ2 � µ2 � �σ2

n
� µ2

� � n� 1

n
σ2.

Hence,
n

n� 1
pσ2 � 1

n� 1

ņ

i�1

pXi � sXq2 is an unbiased estimator of σ2.

Exercise 40 (a) The density of Xpnq is fXpnq
pxq � nxn�1

θn
, 0   x   θ, therefore, the mean

squared error of the unbiased estimator
n� 1

n
Xpnq is computed as follows:

MSE � Var
�n� 1

n
Xpnq

�
�
�n� 1

n

	2

Var
�
Xpnq

�
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�
�n� 1

n

	2 � » θ

0

nxn�1

θn
dx �

� nθ

n� 1

	2�
�
�n� 1

n

	2 � nθ2

n� 2
� n2θ2

pn� 1q2
�

�
�n� 1

n

	2 n θ2

pn� 2qpn� 1q2 � θ2

npn� 2q Ñ 0 as nÑ 8.
Thus, it is a consistent estimator of θ.

(b) The bias of Xpnq is equal to EpXpnqq � θ � n

n� 1
θ� θ � � θ

n� 1
. Since the bias goes to

zero as n increases, this estimator is asymptotically unbiased. Its mean square error is

MSE � VarpXpnqq �
�
biaspXpnq, θq

�2 � n θ2

pn� 2qpn� 1q2 �
�
� θ

n� 1

�2

� θ2

pn� 1q2
� n

n� 2
� 1

�
� 2θ2

pn� 1qpn� 2q .
Since MSE Ñ 0 as nÑ 8, the estimator is consistent.

(c) First we will show that
n� 2

n� 1
Xpnq has the smallest MSE among all estimators of the

form cXpnq, where c � cpnq is a function of n. We write

MSE � VarpcXpnqq �
�
biaspcXpnq, θq

�2 � c2 n θ2

pn� 2qpn� 1q2 �
� c n θ
n� 1

� θ
	2

.

We would like to minimize with respect to c the following function

c2 n

pn� 2qpn� 1q2 �
� c n

n� 1
� 1

	2

.

Taking derivative with respect to c and setting it equal to zero, we arrive at the identity

2cn

pn� 2qpn� 1q2 �
2n

n� 1

� cn

n� 1
� 1

	
� 0,

from where c � n� 2

n� 1
. The MSE of this estimator is

MSE �
�n� 2

n� 1

	2 n θ2

pn� 2qpn� 1q2 � θ2
�pn� 2qn
pn� 1q2 � 1

	2

� pn� 2qn θ2

pn� 1q4 � θ2

pn� 1q4 �
θ2

pn� 1q2 .
The MSE goes to zero, as n increases, which proves the consistency of the estimator.

Exercise 41 (a) The MM estimator 2 sXn is unbiased, and its mean square error is obtained
as

MSE � Varp2 sXnq � 4
θ2

12n
� θ2

3n
.
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The MSE tends to zero when n goes to infinity, implying consistency of the estimator.

(b) The bias of the estimator sXn is biasp sXn, θq � Ep sXnq � θ � θ

2
� θ � �θ

2
�Ñ 0, as

nÑ 8. It means that this estimator is not asymptotically unbiased, and, consequently, not
consistent.

Exercise 42 (a) The bias of 1{ sXn is biasp1{ sXn, βq � E
�
1{ sXn

��β � » 8

0

n

x

βn xn�1 expt�β xu
pn� 1q! dx�

β � nβ

n� 1
� β � β

n� 1
Ñ 0, as n Ñ 8. Hence, the estimator is asymptotically unbiased.

The mean square error is

MSE � Var
� 1sXn

�
� �

biasp1{ sXn, βq
�2 �

» 8

0

n2

x2

βn xn�1 expt�β xu
pn� 1q! dx

�
� nβ

n� 1

	2

�
� β

n� 1

	2

� n2β2

pn� 1qpn� 2q �
n2β2

pn� 1q2 �
β2

pn� 1q2

� pn� 2qβ2

pn� 1qpn� 2q Ñ 0,

as n increases. Therefore, the estimator is consistent.

(b) The mean square error of an unbiased estimator
n� 1

n sXn

is equal to its variance. We

derive the expression for the variance as:

Var
�n� 1

n sX 	
� pn� 1q2

� » 8

0

1

x2

βn xn�1 expt�β xu
pn� 1q! dx

�
� » 8

0

1

x

βn xn�1 expt�β xu
pn� 1q! dx

	2�
� pn� 1q2

�β2 pn� 3q!
pn� 1q!

» 8

0

βn�2 xn�3 expt�β xu
pn� 3q! dx

�
�β pn� 2q!
pn� 1q!

» 8

0

βn�1 xn�2 expt�β xu
pn� 2q!

	2�
� pn� 1q2 β2

� 1

pn� 1qpn� 2q �
1

pn� 1q2
�

� β2
�n� 1

n� 2
� 1

�
� β2

n� 2
.

Thus, the mean square error is

MSE � Var
�n� 1

n sXn

�
� β2

n� 2
Ñ 0, as nÑ 8.

This proves consistency.

Exercise 43 (a) The MSE of an unbiased estimator
1

n� 1

ņ

i�1

pXi � sXnq2 is equal to its

variance, which is
2σ4

n� 1
. This quantity tends to zero as n increases, implying the consistency
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of the estimator.

(b) The bias of the MLE
1

n

ņ

i�1

pXi � sXnq2 is computed as

bias
� 1

n

ņ

i�1

pXi � sXnq2, σ2
	
� E

� 1

n

ņ

i�1

pXi � sXnq2
�
� σ2

� n� 1

n
E
� 1

n� 1

ņ

i�1

pXi � sXnq2
�
� σ2 � n� 1

n
σ2 � σ2 � �σ

2

n
Ñ 0,

as n tends to infinity. Thus, this estimator is asymptotically unbiased. Its mean square error
is found as

MSE � Var
� 1

n

ņ

i�1

pXi � sXnq2
�
�
�
bias

� 1

n

ņ

i�1

pXi � sXnq2, σ2
	�2

�
�n� 1

n

	2

Var
� 1

n� 1

ņ

i�1

pXi � sXnq2
�
�
�
� σ2

n

	2

�
�n� 1

n

	2 2σ4

n� 1
� σ4

n2
� 2n� 1

n2
σ4 Ñ 0 as nÑ 8,

whence, the estimator is consistent.

Exercise 44 The likelihood function is of the form

n¹
i�1

fpXi; pq �
n¹
i�1

�
N

Xi



pXi p1 � pqN�Xi

�
� n¹
i�1

�
N

Xi


�
p
°n
i�1 Xi p1 � pqnN�

°n
i�1 Xi .

Now we take

gpX1, . . . , Xnq �
n¹
i�1

�
N

Xi



, pp � ņ

i�1

Xi, and hppp; pq � ppp p1 � pqnN�pp.

The likelihood function can be written as the product of g and h, and, therefore, by the
factorization theorem,

°n
i�1 Xi is sufficient. Since any invertible function of a sufficient

statistic is sufficient,
°n
i�1 Xi{pnNq � sX{N is also a sufficient statistic for p.

Exercise 45 We write the likelihood function as

n¹
i�1

fpXi; pq �
n¹
i�1

pp1 � pqXi�1 � pn p1 � pq
°n
i�1 Xi�n.
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If we suppose that

gpX1, . . . , Xnq � 1, pp � ņ

i�1

Xi, and hppp; pq � pn p1 � pqpp�n,

then the likelihood function becomes

n¹
i�1

fpXi; pq � pn p1 � pqpp�n � gpX1, . . . , Xnqhppp; pq.
From here, by factorization theorem, we conclude that

°n
i�1 Xi is a sufficient statistic for p,

and thus,
°n
i�1 Xi{n � sX is sufficient.

Exercise 46 The likelihood function is of the form

n¹
i�1

fpXi;λq �
n¹
i�1

λXi

Xi!
expt�λu �

� n¹
i�1

Xi!
��1

λ
°n
i�1 Xi expt�nλu.

We take

gpX1, . . . , Xnq �
� n¹
i�1

Xi!
��1

, pλ � ņ

i�1

Xi, and hppλ;λq � λ
pλ expt�nλu.

Hence,
n¹
i�1

fpXi;λq � gpX1, . . . , Xnqhppλ;λq,

which means that
°n
i�1 Xi is sufficient for λ, therefore

°n
i�1 Xi{n � sX is sufficient as well.

Exercise 47 The likelihood function is

n¹
i�1

fpXi; θq �
n¹
i�1

1

θ
It0 ¤ Xi ¤ θu � 1

θn
It0 ¤ Xpnq ¤ θu.

We let

gpX1, . . . , Xnq � 1, pθ � Xpnq, and hppθ, θq � 1

θn
It0 ¤ pθ ¤ θu.

The likelihood function can be factored into g and h. Hence, by the factorization theorem,
Xpnq is a sufficient statistic for θ.

Exercise 48 We write the likelihood function

n¹
i�1

fpXi; a, bq �
n¹
i�1

1

b� a
Ita ¤ Xi ¤ bu � 1

pb� aqn Ita ¤ Xp1q ¤ Xpnq ¤ bu.
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If we define gpX1, . . . , Xnq � 1, pa � Xp1q, pb � Xpnq, and

hppa,pb; a, bq � 1

pb� aqn Ita ¤ pa ¤ pb ¤ bu,

then the likelihood function is factored into g and h, and, thus, by the factorization theorem,
pXp1q, Xpnqq is sufficient for pa, bq.

Exercise 49 We have that the likelihood function

n¹
i�1

fpXi; βq �
n¹
i�1

1

β
expt�Xi{βu � 1

βn
expt�

ņ

i�1

Xi{βu.

Hence the likelihood function is a product of gpX1, . . . , Xnq � 1, and hppβ; βq � 1
βn

expt�pβ{βu
where pβ � °n

i�1 Xi. By the factorization theorem,
°n
i�1 Xi is sufficient for β, and therefore°n

i�1 Xi{n � sX is sufficient.

Exercise 50 The likelihood function has the form

n¹
i�1

fpXi;µ, σ
2q �

n¹
i�1

1?
2πσ2

exp
!
� pXi � µq2

2σ2

)

� 1

p2πσ2qn{2 exp
!
� 1

2σ2

� ņ

i�1

X2
i � 2µ

ņ

i�1

Xi � nµ2
�)
.

Now we let u � °n
i�1 X

2
i and v � °n

i�1 Xi, and define gpX1, . . . , Xnq � 1, and

hpu, v;µ, σ2q � 1

p2πσ2qn{2 exp
!
� 1

2σ2

�
u� 2µ v � nµ2

�)
.

We see that the likelihood function factors into g and h, and, thus, by the factorization
theorem, pu, vq is sufficient for pµ, σ2q. We now define pµ � v{n � sX and pσ2 � 1

n�1
pu�v2{nq �

1
n�1

°n
i�1 pXi � sXq2. Since pµ and pσ2 are invertible functions of u and v, we conclude that

the vector ppµ, pσ2q is also a sufficient statistic for pµ, σ2q.

Exercise 51 The estimator sX{N is sufficient for p, and, thus, it is the UMVUE for p.

Exercise 52 The estimator sX is sufficient for λ. Therefore, it is the UMVUE for λ.

Exercise 53 The estimator sX is sufficient for β. Hence, it is the UMVUE for β.
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Exercise 54 The estimator sX is sufficient for µ. Thus, it is the UMVUE for µ.

Exercise 55 We know that
1

n� 1

�
nXp1q�Xpnq

�
is an unbiased estimator of a that is based

on a sufficient statistic pXp1q, Xpnqq. Likewise,
1

n� 1

�
nXpnq�Xp1q

�
is an unbiased estimator

of b that is based on a sufficient statistic.

Exercise 56 The estimator
n� 1

n sX is an unbiased and based on a sufficient statistic for β,°n
i�1 Xi, and, therefore, it is the UMVUE for β.

Exercise 57 The estimator sX is sufficient and unbiased for µ. Also,
1

n� 1

ņ

i�1

pXi� sXq2 is

sufficient and unbiased for σ2. Hence,
1

n� 1

ņ

i�1

pXi � sXq2 is the UMVUE for σ2.

Exercise 58 The estimator sX is a sufficient statistic for λ. We need to find an unbiased
estimator of λp1 � λq based on sX. We write

E
� sXp1 � sXq� � Ep sXq � Ep sX2q � Ep sXq � Varp sXq � �

Ep sXq�2

� EpX1q � VarpX1q
n

� �
EpX1q

�2 � λ� λ

n
� λ2.

It follows that if we subtract sX{n from sXp1 � sXq, we will get an unbiased estimator of
λp1 � λq. Indeed,

E
� sXp1 � sXq � sX

n

�
� λ� λ

n
� λ2 � λ

n
� λp1 � λq.

Thus, by the Lehmann-Scheffé theorem, sXp1 � sXq � sX
n
� �

1 � 1

n

� sX � sX2 is the UMVUE

for the second moment EpX2
1 q � λp1 � λq.

Exercise 59 We know that p sX, pσ2 � 1

n� 1

ņ

i�1

pX1 � sXq2q is sufficient for pµ, σ2q. Also,

Ep sXq � µ and Eppσ2q � σ2. Remained to find an unbiased estimator of µ2. We take sX2 and

compute Ep sX2q � Varp sXq � �
Ep sXq�2 � σ2

n
� µ2. Thus, sX2 � pσ2

n
is an unbiased estimator

of µ2. Indeed, E
� sX2 � pσ2

n

�
� σ2

n
� µ2 � σ2

n
� µ2. Hence, it is the UMVUE of µ2.
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Exercise 60 Take ItX1�0u. It is an unbiased estimator of PpX1 � 0q. Computing the
conditional expectation, conditioning on a sufficient statistic

°n
i�1 Xi � x, we arrive at the

UMVUE of e�λ:

E
�
ItX1�0u |

ņ

i�1

Xi � x
�
� P

�
X1 � 0 |

ņ

i�1

Xi � x
	
� P

�
X1 � 0,

°n
i�1 Xi � x

�
Pp°n

i�1 Xi � xq
ind� PpX1 � 0qPp°n

i�2 Xi � xq
Pp°n

i�1 Xi � xq � e�λ
rpn� 1qλsx e�pn�1qλ

x!

x!

pnλqx e�nλ �
�

1 � 1

n

	nX̄
.

Exercise 61 Take X1X2. It is an unbiased estimator of EpX1X2q � p2. The UMVUE of p2

is

E
�
X1X2 |

ņ

i�1

Xi � x
�
�

P
�
X1 � 1, X2 � 1,

°n
i�3 Xi � x� 2

	
P
�°n

i�1 Xi � x
�

� ppqppq�n�2
x�2

�
px�2p1 � pqn�x�

n
x

�
pxp1 � pqn�x � xpx� 1q

npn� 1q �
nX̄pnX̄ � 1q
npn� 1q .

Exercise 62 The UMVUE of PpX ¤ 2q � 1 � e�2{θ is

E
�
ItX1¤2u |

ņ

i�1

Xi � x
�
�
» 2

0

f
�
X1 � y,

°n
i�2 Xi � x� y

	
f
�°n

i�1 Xi � x
	 dy

�
» 2

0

p1{θqe�yθ px� yqn�2e�px�yq{θ

Γpn� 1qθn�1
{
�xn�1e�x{θ

Γpnqθn
�
dy � pn�1q

» 2

0

p1�y{xqn�2 dy � 1�
�

1� 2

nX̄

	n�1

.

Exercise 63 The MLE of p is pp � sX{N . The likelihood ratio for testing H0 : p � p0

against H1 : p �� p0 is computed as follows:

Λ �
±n

i�1

�
N
Xi

�
pXi0 p1 � p0qN�Xi±n

i�1

�
N
Xi

� � sX
N

�Xi�1 � sX
N

�N�Xi � pn
sX

0 p1 � p0qnN�n sX� sX
N

�n sX�
1 � sX

N

�nN�n sX .
The asymptotic likelihood ratio test statistic is

χ2 � � 2 ln Λ � 2n sX ln
� sXp1 � p0q
pN � sXqp0

�
� 2nN ln

�N � sX
N � p0

�
.

The decision is to reject the null hypothesis if χ2 ¥ χ2
αp1q.

Exercise 64 The MLE of p is pp � 1{ sX. Therefore, the likelihood ratio has the form

Λ �
±n

i�1 p0p1 � p0qXi�1±n
i�1

�
1
sX
��

1 � 1
sX
�Xi�1

� psp0qn p1 � p0qn sX�n�
1
sX
�n �

1 � 1
sX
�n sX�n .

The asymptotic likelihood ratio test statistic is

χ2 � � 2 ln Λ � 2n ln
� 1 � p0

p sX � 1qp0

�
� 2n sX ln

� sX � 1sXp1 � p0q
�
.
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If this statistic is in excess of the critical value χ2
αp1q, then H0 is rejected.

Exercise 65 The MLE of λ is pλ � sX, thus the likelihood ratio is

Λ �
±n

i�1
λ
Xi
0

Xi!
expt�λ0u±n

i�1

sXXi

Xi!
expt� sXu �

�λ0sX 	n sX
expt�npλ0 � sXqu,

and the asymptotic test statistic is

χ2 � �2 ln Λ � 2n sX ln
� sX
λ0

�� 2npλ0 � sXq.
The rejection region is of the form tX1, . . . , Xn : χ2 ¥ χ2

αp1qu.

Exercise 66 The MLE of θ is pθ � Xpnq. The likelihood ratio is written as

Λ �
�
1{θ0

�n ItXpnq ¤ θ0u�
1{Xpnq

�n �
�Xpnq
θ0

	n
ItXpnq ¤ θ0u.

The asymptotic likelihood ratio test statistic is equal to χ2 � �2 ln Λ � 2n ln θ0 � 2n lnXpnq,
and the decision rule is to reject H0 if either Xpnq ¡ θ0 or χ2 ¥ χ2

αp1q.

Exercise 67 The MLE of β is pβ � sX. Consequently, the likelihood ratio has the expression

Λ �
±n

i�1

�
1{β0

�
expt�Xi{β0u±n

i�1

�
1{ sX�

expt�Xi{ sXu �
� sX
β0

	n
exp

 
n
�
1 �

sX
β0

�(
.

The asymptotic likelihood ratio test statistic is χ2 � �2 ln Λ � 2n ln β0�2n ln sX�2np sX{β0�
1q, and the rejection region is tχ2 ¥ χ2

αp1qu.

Exercise 68 The MLE of µ is pµ � sX, and hence the likelihood ratio is of the form

Λ �
±n

i�1 p2πσ2q�1{2 exp
 � 1

2σ2 pXi � µ0q2
(±n

i�1 p2πσ2q�1{2 exp
 � 1

2σ2 pXi � sXq2(
� exp

!
� 1

2σ2

ņ

i�1

�pXi � µ0q2 � pXi � sXq2�) � exp
!
� n

2σ2
p sX � µ0q2

)
.

The asymptotic likelihood ratio test statistic is χ2 � �2 ln Λ � n

σ2
p sX�µ0q2 �

� sX � µ0

σ{?n
	2

�
χ2p1q. The decision rule is to reject the null if χ2 ¥ χ2

αp1q.
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Exercise 69 For the rejection region tX � 6u, power � 1 � β � p6, 1{3 ¤ p ¤ 1.
(b) For the rejection region tX � 5, 6u, power � 1�β � �

6
5

�
p5p1�pq�p6 � 6p5p1�pq�p6 �

6p5 � 5p6, 1{3 ¤ p ¤ 1.
(c) For the rejection region tX � 4, 5, 6u, power � 1�β � �

6
4

�
p4p1�pq2��

6
5

�
p5p1�pq�p6 �

15p4p1 � pq2 � 6p5p1 � pq � p6 � 15p4 � 24p5 � 10p6, 1{3 ¤ p ¤ 1.

Exercise 70 As found in Exercise 66, the test statistic is equal to χ2 � 2n ln θ0 � 2n lnXpnq,
and the rejection region is tXpnq ¡ θ0 or χ2 ¥ χ2

αp1qu. Therefore, the power is computed as:

power � 1 � β � P
�
Xpnq ¡ θ0 or χ2 ¥ χ2

αp1q | θ �� θ0

�
� P

�
Xpnq ¡ θ0 or 2n ln θ0 � 2n ln Xpnq ¥ χ2

αp1q | θ �� θ0

�
� P

�
Xpnq ¡ θ0 or Xpnq ¤ θ0 exp

!
� χ2

αp1q
2n

)
| θ �� θ0

	
� 1 � FXpnq

pθ0q � FXpnq

�
θ0 exp

!
� χ2

αp1q
2n

)	
� 1 � θn0

θn
� θn0 exp

 � χ2
αp1q
2

(
θn

� 1 �
�

1 � exp
!
� χ2

αp1q
2

)	θn0
θn
, θ �� θ0.

Exercise 71 The constant k is determined by the significance level α, that is, it solves α �
Pp sX ¡ k |µ � µ0q � P

�
Z ¡ k � µ0

σ{?n
	
� 1�Φ

�k � µ0

σ{?n
	

. From here, k � σ?
n

Φ�1p1�αq�µ0.

The power of the test is then computed as power � 1�β � Pp sX ¡ k |µ � µ1q � 1�P
�
Z ¤

k � µ1

σ{?n
	
� 1 � Φ

�k � µ1

σ{?n
	
� 1 � Φ

� σ?
n

Φ�1p1 � αq � µ0 � µ1

σ{?n
	
� 1 � Φ

�
Φ�1p1 � αq �

µ1 � µ0

σ{?n
	
.
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