STAT 381 ADDITIONAL EXERCISES

1 Distribution of Order Statistics

DEFINITION Suppose we have n observations Xi,...,X,. Denote by X1y < X < -+ <
X(n) the ordered set. For any i, 2 =1,...,n, X(; is called the i-th order statistic. Note that
X(1) is the minimum, whereas X,y denotes the maximum.

PROPOSITION Suppose X7,..., X, are iid random variables with a common pdf f(z) and
cdf F'(x). The pdf of the i-th order statistic has the form

Jx (z) = (i — 1)7(‘n Y [F(x)]%l f(w)[l — F(as)]nﬂ

PrOOF: If the i-th order statistic is “equal” to x (contributing f(x)), then i —1 observations
necessarily lie below z (contributing [F (x)]z_l) , and the other n — i lie above z (contribut-

ing [1 —F (x)]niz) Finally, the multiplicative factor is the number of ways to choose i — 1
observations to lie below x, and n — ¢ to exceed x.

ExAMPLE If we let ¢ = n in the above proposition, we obtain the pdf of the maximum of n

iid observations,
n e = flx )"
o) = = P S@ 1= F@]" " =0 @) [P

This is intuitive, since the pdf of X(;,) can also be obtained by the following reasoning:

Fx,,(z) =P(X@y <z)=P(X; <z, Xy <w,...,X, <z)=[F(z)]",
and, thus, the pdf is fx, (z) = Fk  (z) =n f(z) [F(:U)]n_l

EXERCISE 1 Consider n iid observations with the common pdf f(z) and cdf F(z). Use
the formula for the pdf of the i-th order statistic to show that the pdf of the minimum is
fxo (@) =nflz)[1 - F(x)]nil. Also, find the pdf by first deriving the expression for the
cdf, arguing from the first principles.

EXERCISE 2 Let Xi,...,X, be iid realizations of a standard uniform random variable.
Find the pdf’s of: (a) i-th order statistic, ¢ = 1,...,n, (b) minimum, and (¢) maximum.
Specify the name of the distribution and respective parameters.

EXERCISE 3 Let Xj,..., X, be independent exponential random variables with mean 1/4.
Find the densities of: (a) Xy, ¢ = 1,...,n, (b) minimum (give the distribution name and
specify parameters), and (c) maximum.



2 Maximum Likelihood Estimator

DEFINITION Suppose X7,..., X, are iid random variables with a common pmf (discrete
case) or pdf (continuous case) f(x; ). The likelihood function is a function of the unknown
parameter 6 that is given by

L(0) = L(6; X3,..., X,)) = | | £(Xi50).
i=1
DEFINITION An estimator § = (X1, ..., X,) is called the mazimum likelihood estimator

(MLE) of 6 if it maximizes the likelihood function L(#).

EXAMPLE 1 Let X1, ..., X, “ Bernoulli(p). The likelihood function is
Lip) = [ ] o (1 —p)" 5 = p5o X1 = py 2

It is easier to work with the log-likelihood function, the natural logarithm of the likelihood
function,

In L(p ZXlnp-i— zn] ) In(1—p
=1 i=1

To maximize the log-likelihood function, we equate to zero the first partial derivative of
In L(p; X1, ..., X,,) with respect to p, and solve for p. We obtain

dln L(p) PN, € o n- o Xi

0=
dp P 1-p

Thus, p, the maximum likelihood estimator of p, satisfies the equation

Z?:l Xi Zz 1 X@

p 1-p

from where p = "' | X;/n = X. The MLE p = X represents the proportion of successes
among n observations, and is an intuitive estimator of p, the probability of success.

EXERCISE 4 Let Xy,..., X, w Binomial(N, p) where N is known. Show that the MLE of
pisp=X/N.

EXERCISE 5 Let Xy,..., X, i Geometric(p) with pmf p(z) = p(1 - p)*l o =1,2,....
Prove that the MLE of p is p = 1/X.

EXERCISE 6 Let X, ..., X, % Poisson()\). Check that the MLE of A is A = X.

EXERCISE 7 Let X1, ..., X, < Uniform(0,6). Show that the MLE of 6 is § = Xy, the

nth order statistic (or, simply, the maximum).
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EXERCISE 8 Let Xy,..., X, i Uniform(a,b). Verify that the MLE of a is @ = X, the

first order statistic (i.e., the minimum), and that the MLE of b is b= X(n), the nth order
statistic (i.e., the maximum).

EXERCISE 9 Let Xi,..., X, i Exponential with mean 5. Show that the MLE of 3 is
b =X.

EXERCISE 10 Let Xq,..., X, u Exponential with mean 1/8. Show that the MLE of /3 is
p=1/X.

EXERCISE 11  Let Xy,..., X, u Normal(u, 0?). Prove that the MLE of x is i = X, and
the MLE of 6% is 62 =1 3" (X, — X)%

EXERCISE 12 Let Xi,..., X, < Weibull(a)) where the pdf is defined as
f(z;a) = az® ! exp{—2®}, >0, a>0.

Show that &, the MLE of «, is the solution of the equation

+im&-ixﬁm&=0
=1 =1

D3

This equation has no closed-form solution and has to be solved numerically. Check that if
X1 =04,X,=0.3, and X3 = 0.6, the MLE is a = 1.0067.

EXERCISE 13 Let Xy,..., X, w Bernoulli(p), 0 < p < 1/5. Verify that the MLE of p is
P=X,if0< X <1/5 and 1/5, if X > 1/5 .

EXERCISE 14 Let Xy,..., X, ¥ f(2;0) = Le™/%, 2 > 0, 8 > 4. Prove that the MLE of
Bis X,if X >4, and 4,if 0 < X < 4.

EXERCISE 15  Let Xi,..., X, w Normal(p,1) where p = 0. Show that the MLE of p is
p=Xif X >0, and 0, if X < 0.

EXERCISE 16 Let Xi,..., X, ¥ f(z;0) where the pmf f(x;6) is given by the table:

9 | 1] 2] 4
0 |1/4[1/2|1/4
1/31/2] 0 |1/2
1/4 [ 3/5 | 1/5 | 1/5

Check that if the observations are X; =1, Xy = 4, and X3 = 2, then the MLE of 6 is equal
to 0.



THEOREM 1 (FUNCTIONAL INVARIANCE OF MLE) Suppose Xi,..., X, i pmf or pdf
f(z;6). Let g be some continuous function, and let 6 = g(6). Denote by 6 the MLE of 6.
Then the MLE of § can be computed as 6 = g(6).

EXERCISE 17 Let X1, ..., X, ¥ Bernoulli(p). Show that the MLE of Var(X;) = p(1 - p)
is X(1 - X).

EXERCISE 18 Let X1, ..., X, "C Geometric(p). Verify that the MLE of E(X;) = 1/p is X.

EXERCISE 19 Let X1,..., X, ¥ X ~ Poisson(\). Prove that the MLE of P(X; = 1) =

Aexp{—\} is X exp{—X}.
EXERCISE 20 Let Xi,..., X, & Uniform(0,0). Check that the MLE of Var(X;) = 6*/12
is X2, /12.

EXERCISE 21 Let Xy,.... X, % p(x,0) where p(0, 0) = exp{—6} and p(1,0) = 1—exp{—6}.

Prove that the MLE of 6 is § = — In(1 — X).

EXERCISE 22 Let X1,..., X < Normal(p, o2). Prove that the MLE of o' is & = \/% Yo (X — X)2

3 Method of Moments Estimator

DEFINITION Suppose X, ..., X, are iid random variables with a common distribution that
depends on k parameters 61, ...,0;. The method of moments (MM) estimators of the pa-
rameters solve the system of k equations

{ n ){'Z _
E(x) = 2= X g
o X7
B(x) = 261
4 2imy X7
]E(Xig) = ;L )
iy XY
E(XT) = ==—.

That is, in each equation the theoretical moment is equated to the corresponding empirical
moment.

EXAMPLE 2 Let Xq,..., X, w Normal(p,0?). To find the MM estimators of y and o2,
we equate the first and second theoretical and empirical moments, respectively:

"X, -
E(X1) =p= —lel = X,

n
noX?
E(X?) =0+ u? = Z’%



= ~ D ¢ "X — X)?

The solution of this system is i = X, and 6% = L - X? = i1 ( )
n n

that the MM estimators of x4 and o coincide with the corresponding MLEs.

. Note

EXERCISE 23 Let Xi,..., X, u Bernoulli(p). Show that the MM estimator for pis p = X,
the same as the MLE.

EXERCISE 24 Let Xy,..., X, w Binomial(N, p) where N is known. Verify that the MM
estimator for p is X/N, the same as the MLE.

EXERCISE 25 Let Xi,..., X, s Geometric(p). Show that the MM estimator for p is
p = 1/X and coincides with the MLE.

EXERCISE 26 Let Xy,...,X, u Poisson(\). Prove that the MM estimator for A is \ = X,
the same as the MLE.

EXERCISE 27 Let Xi,...,X, % Uniform(0,0). Prove that the MM estimator for 6 is
§ = 2X. This estimator is different from the MLE. Check by giving a numeric example
that the MM estimator may be smaller than the MLE, and thus, the MM estimator doesn’t
always make sense.

EXERCISE 28 Let X ~ Uniform(a,b). Show that the MM estimators for a and b have the

form _ _
8- X o 3(E ) ana B x 3B ),

n

These estimators are different from the MLE’s and don’t always make sense.

EXERCISE 29 Let X ~ Exponential with mean 3. Prove that the MM estimator for 3 is
X, the same as the MLE.

EXERCISE 30 Let X ~ Exponential with mean 1/3. Prove that the MM estimator for j3
is 1/X, the same as the MLE.



4 Unbiased Estimator

DEFINITION Let Xq,...,X, u pmf or pdf f(z;0). Denote by 0= §(X1, ..., X,) an estima-
tor of #. The estimator 0 is called unbiased if E(f) = 6. An estimator that is not unbiased
is called biased.

ExamMpPLE 3 Let Xy,..., X, u Bernoulli(p), and consider p = X, the MLE and MM esti-
mator of p. This estimator is unbiased because E(p) = E(X) = E(X;) = p. In fact, for any
distribution, an estimator X is an unbiased estimator of the mean since E(X) = E(X}).

EXERCISE 31 Let Xi,..., X, u Binomial(N, p) where N is known. Verify that the MLE
and MM estimator p = X /N is an unbiased estimator of p.

EXERCISE 32 Let X,..., X, % Geometric(p). Show that the MLE and MM estimator
p = 1/X is a biased estimator of p. Show also that among all estimators of p that are based
on X alone, the only unbiased estimator is

R 1, if X, =1,
X frm—
LX) {o, if X, =2,3,....

EXERCISE 33 Let Xi,..., X, ¥ Geometric(p). Show that X is an unbiased estimator of
the mean E(X;) = 1/p.

EXERCISE 34 Let Xi,...,X, “ Poisson(\). Check that the MLE and MM estimator
A = X is an unbiased estimator of \.

EXERCISE 35 Let Xi,...,X, i Uniform(0,0). Prove that X,), the MLE of ¢, is biased,
n+1

n

whereas 2X, the MM estimator, is unbiased. Show that
of 6.

X(n) is an unbiased estimator

EXERCISE 36 Let Xi,..., X, u Uniform(a,b). Show that Xy, the MLE of a, is biased,
and so is X(y), the MLE of b. Derive that

p— (n Xy — X(n)) is an unbiased estimator of

1
1 (n Xy — X(l)) is an unbiased estimator of b.

a, and

EXERCISE 37 Let Xq,...,X, u Exponential with mean (. Verify that X, the MLE and
MM estimator of 3, is an unbiased estimator of 3.



EXERCISE 38 Let X4,...,X, u Exponential with mean 1/3. Verify that 1/X, the MLE
and MM estimator of 3, is a biased estimator of 5. Show also that T is an unbiased
n

estimator of 5. Hint: Use the fact that Z X; ~ Gamma(n, B).

i=1

EXERCISE 39 Let Xi,...,X, i Normal(p, 0?). Verify that X, the MLE and MM esti-

~ 1 ¢ > .
mator of 1, is unbiased, whereas 6> = — Z (X; — X)?, the MLE and MM estimator of o2,
n
i=1
is biased. Prove that
N 1
n—1 n-—1

Z(Xi—X)Q

is an unbiased estimator of 2.

5 Consistent Estimator

DEFINITION Let Xj,..., X, be independent with a common density f(x;#). An estimator
0, = 0,(X1,...,X,)is called a consistent estimator of 0, if for any € > 0, P(|9n—9| > 5) — 0,
as n — oo.

PrROPOSITION The Chebyshev inequality states that for any ¢ > 0,

E[(0. —0)°]

P(|6, — 6] =€) < =

From here, if E[(@L —6)*] — 0 as n — o, then 0, is a consistent estimator of 6.

DEFINITION The quantity E[(an — 0)2] is called the mean square error and is denoted by
MSE. The mean square error can be expressed as the sum of two terms:

MSE =E[(6, — 6)*] = E[(8, — E(6,) +E(8,) — 0)*]

~

- - . 0 )
=E[(6, — E(6,))*| + 2E|[0,, —E(6,)]||E(6,) — 0] + [E(6,) — 6]
= Var(6,) + [E@@,) — 6]".

The quantity [E(@n) — 9] represents the bias of an estimator 0,. Thus, the formula for the
MSFE has the form:

MSE = Var(@n) + [bias(@n,e)]z.
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If @n is an unbiased estimator of #, then MSE = Var(én), and if this variance tends to zero
as n increases, then the estimator of consistent.

A biased estimator for which the bias goes to zero as n goes to infinity, is called asymptotically
unbiased. Thus, an estimator may be biased, but it is consistent if it is asymptotically
unbiased and its variance decreases as the sample size increases.

EXERCISE 40 Let Xq,..., X, i Uniform(0,0). Verify that

n
(a) The unbiased estimator Xy is a consistent estimator of §. Hint: Show that

92

MSE = ———.

n(n + 2)
(b) The MLE X, is asymptotically unbiased and is a consistent estimator of §. Hint: Prove

0 202
that bias = — and MSE = .
n+1 (n+1)(n+2)
(c) The estimator i ] X(n), which has the smallest MSE among all scalar multiples of
n
6)2
Xy (prove this!), is a consistent estimator of §. Hint: Show that its MSE = CFE
n

EXERCISE 41 Consider X7, ..., X, that come from a Uniform(0,6) distribution. Prove

that

(a) The MM estimator 2.X,, is unbiased, consistent estimator of . Hint: Show that MSE =
92

3n’ _

(b) The bias of the estimator X, is independent of n, and thus this estimator is not a con-
sistent estimator of 6.

EXERCISE 42 Let Xi,..., X, be iid realizations of an exponential random variable with
mean 1/8. Check that
(a) The MLE 1/X,, is asymptotically unbiased and consistent estimator of 5. Hint: Prove

(n +2)5?
p—] and MSE = 1) —2)

that its bias =

n
(b) The unbiased estimator < is consistent. Hint: Prove first that the variance of this
nNAn
2

estimator 1s
n—2

EXERCISE 43 Suppose X1, ..., X, is a random sample from Normal(u,o?) distribution.
Show that

1 & =
Z (X; — X,,)? is a consistent estimator of o2. Hint: Show
=1

(a) The unbiased estimator .
n j—



4

first that the variance is equal to

(b) The MLE — Z (X; — X,,)? is asymptotically unbiased, consistent estimator of 0. Hint:

m—1 ,
20'.

Show that its MSE =

n

6 Sufficient Statistic, Factorization Theorem

DEFINITION Let Xi,..., X, i pmf or pdf f(x;0). A statistic 0 = a(Xl, ..., Xp) is called
a sufficient statistic for 6, if the conditional distribution of Xy,..., X, given 6, does not
depend on 6.

It is more practical to find sufficient statistics not using the definition, but rather using the
factorization theorem.

THEOREM 2 (FACTORIZATION THEOREM) Let Xy, ..., X, e pmf or pdf f(z;6). Then
0 = Q(Xl, ..., X,) is a sufficient statistic for 6 if and only if there exist two nonnegative

functions g and h such that
[ ] £(Xi:60) = g(X1,..., X0) h(6; 6).
i=1

This expression is interpreted as saying that the likelihood function for the observations
Xiq,...,X, can be written as a product of two functions, one of which depends only on the
observations, and the other depends on some statistic that cannot be separated from the
parameter. Both functions are multiplicative factors, thus the name factorization theorem.

REMARK The factorization theorem can be formulated for distributions that depend on

several parameters. The vector of estimators (51, . ,5k) is a sufficient statistic for the
vector of parameters (61,...,0;) if and only if there exist two nonnegative functions g and
h such that

[T /(X000 = g(X0, ..., X0) BB, ..., 0501, ..., 6).
=1

PROPOSITION Any invertible function of a sufficient statistic is itself a sufficient statistic.

EXAMPLE 4 Let Xy,..., X, i Bernoulli(p). The likelihood function has the form

H f Xz,p _ H pXz Xi p ey X (1 _p>n—2?=l X
1=1

=1



Now let

We see that .
l_[ f(Xisp) =pP(1—p)" P = g(Xa,..., X,) h(P;p).

By factorization theorem, Y | X; is a sufficient statistic for p. Since any invertible function
is also sufficient, we can conclude that X = " | X;/n is also a sufficient statistic for p.

EXERCISE 44 Let Xq,..., X, e Binomial (N, p) where N is known. Show that X /N is a
sufficient statistic for p.

EXERCISE 45 Let Xq,..., X, e Geometric(p) where N is known. Verify that X is a suf-
ficient statistic for p.

EXERCISE 46 Let Xi,..., X, < Poisson()\). Prove that X is a sufficient statistic for \.

EXERCISE 47 Let Xq,...,X, e Uniform(0,0). Check that X,y is a sufficient statistic
for 6.

EXERCISE 48 Let Xi,...,X, i Uniform(a,b). Prove that the vector of estimators

(X(1), X(n)) is a sufficient statistic for the vector of parameters (a, b).

EXERCISE 49 Let Xq,..., X, u Exponential(f). Check that X is a sufficient statistic for
5.

EXERCISE 50 Let X1,...,X, © Normal(p,0?). Verify that the vector of estimators
_ 1 n _
(X T Z (X; — X )2) is sufficient for the vector of parameters (u,0?). Hint: Show
n j—
i—1
first that (3, X;, >, X?) is sufficient.

(2

7 Uniform Minimum Variance Unbiased Estimator (UMVUE),
Rao-Blackwell Theorem

DEFINITION Let X1, ..., X, ¢ pmf or pdf f(z;0). An estimator = a(Xl, ., X,) of Bis
called a uniformly minimum variance unbiased estimator (UMVUE), if it is unbiased and
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its variance is minimal, that is, if E(A) = 6 and Var(6) < Var(f) for any unbiased estimator 6.

RAO—BLACKWELAL THEOREM If u is a sufficient statistic for # and 8 is an unbiased estima-
tor of 0, then E(f|u) is the UMVUE for 6.

EXAMPLE 5 Let Xy,..., X, u Bernoulli(p). We would like to find the UMVUE for p. We
recall that X is a sufficient statistic and an unbiased estimator of p. Hence, it is the UMV UE.

EXERCISE 51  Let X,..., X, Binomial(N, p) where N is fixed. Show that X /N is the
UMVUE for p.

EXERCISE 52 Let X1,..., X, % Poisson(\). Verify that X the UMVUE for \.

EXERCISE 53 Let Xy,..., X, u Exponential with mean §. Check that X is the UMVUE
for f3.

EXERCISE 54 Let X ~ Normal(y,o?) where o is known. Verify that i = X is the
UMVUE for p.

EXERCISE 55 Let Xi,...,X, w Uniform(a,b). Show that
1

n —

L 1(TLX(1) - X(n)) is the

UMVUE for a, and — (n X(n) — X@) is the UMVUE for .

ii . . -1
EXERCISE 56 Let Xi,...,X, j Exponential with mean 1/8. Show that r ¥ is the
n

UMVUE for 8.

EXERCISE 57 Let Xi,..., X, u Normal(p,o?). Prove that X is the UMVUE for p, and
1 & _
D (X; = X)? is the UMVUE for 0.

i=1

n—1

EXERCISE 58 Let X1, ..., X, “ Poisson()\). Derive that (1—1/n)X + X? is the UMVUE
for the second moment E(X?) = A(1 + ).

i - R _
EXERCISE 59 Let X1,..., X, “ Normal(u,o?). Denote by 52 = : DX - X
n==4a

Verify that X2 — 52/n is the UMV UE for p?.
EXERCISE 60 Let Xi,..., X, " Poisson(\). Find the UMVUE for P(X; = 0) = ¢~
EXERCISE 61 rm Let Xy,...,X, u Bernoulli(p). Find the UMVUE for p.

EXERCISE 62 Let Xy,..., X, < 1e % 2> 0,0 > 0. Find the UMVUE for P(X, < 2) =
1—e 20,

11



8 Likelihood Ratio Test

DEFINITION Let Xi,..., X, be iid with pdf f(z;0). Suppose we want to test Hy : 6 = 6
against Hy : 0 6. Define the likelihood ratio test as follows. The test statistic is the ratio
of the two likelihood functions where the parameter 6 assumes the values 6y and the MLE 6,

respectively, that is, A = (6) = Ll /T AO) If 0y is the true value of 6, then L(6p) is

LO) Tl f(Xi;0)
asymptotically the maximum value of L(#) (Intuitively, if we sample the entire population,
the most likely value of 0 is 6y). Thus, under Hy, A should be close to 1, and the decision
rule for the test is to reject Hy if A < ¢, where a constant c¢ is such that o = P(A < ¢| Hy is
true) for a significance level a. The region {X7,..., X, : A < ¢} is called the rejection region.

As a rule, A is a very complicated function, and its distribution is very hard to figure out.
However, an asymptotic distribution can be used.

ProprosiTiION Under Hy, for large n, —21In A has approximately a chi-squared distribution
with one degree of freedom.

DEFINITION An asymptotic likelihood ratio test with a significance level a has the test statis-
tic x* = —2In A, and rejects Hy if x* = x2(1), where x2(1) is the (1 — a)—percentile of a
chi-squared distribution with one degree of freedom.

EXAMPLE. Suppose Xi,...,X, e Bernoulli(p), and suppose we are interested in testing

n X 1-X;
. i(1— i
Hy : p = py versus Hy : p + py. The likelihood ratio is A = [Liy Py (1= po) =

) ) [T X651 - X)=%
pSX(l _ po)n—nX

XnX(l _ X)nfn)z ’
_ 1—
X)1In (1 ?g) exceeds the critical value x2(1).

For large n, we reject Hy if x> = —2InA = —2nX1n (%) —2n(l —

EXERCISE 63 Let Xq,...,X, u Binomial(N, p) with a known N. Suppose we are testing
Hy: p = pyagainst Hy : p % pg. Find the expression for the asymptotic likelihood ratio test
statistic. State the decision rule.

EXERCISE 64 Suppose Xi,...,X, (S Geometric(p). Compute the likelihood ratio test
statistic for testing Hy : p = pp against Hy : p & pg. Assume n is large. Specify the decision
rule.

EXERCISE 65 Assume Xi,..., X, < Poisson(\). We are conducting the likelihood ratio
test with Hy : A = \g and H; : A £ A\¢. Find the test statistic for n large. Find the rejection
region.

12



EXERCISE 66 Consider Xy,..., X, i Uniform(0,0). Produce the test statistic for the
asymptotic likelihood ratio test with Hy : 0 = 6y and H; : 6 % 6. Specify the decision rule.

EXERCISE 67 Let Xy,...,X, w Ezxponential with mean 5. Write down the asymptotic
likelihood ratio test statistic for testing Hy : 5 = [y versus Hy : [ &+ [y. Specify the rejec-
tion region.

EXERCISE 68 Consider Xy,..., X, w Normal(p, 0?) where o is given. Find the expression
for the asymptotic likelihood ratio test statistic —2In A and show that it has an exact x2-
distribution with one degree of freedom. Assume Hy : p = po and Hy : p £ po. State the
decision rule.

9 Power Function of a Test

DEFINITION The probability of Type II erroris f = P(accept Hy | Hy is true). Note that
is a function of § which range is determined by H;. Typically, £ is computed for a specific
value of # in that range.

DEFINITION A power of a statistical test is power = 1 — 8 = P(reject Hy | H; is true).

EXAMPLE Suppose we have a single observation X from a Binomial(5, p) distribution which
we use to test Hy: p < 1/2 against Hy : p = 1/2. For a rejection region {X = 5}, the power
of the test is power =1—=P(X =5|p=>1/2)=p°, 1/2<p<1.

EXERCISE 69 Take X ~ Binomial(6,p). Suppose we are interested in testing Hy : p < 1/3
against Hy : p = 1/3. Compute the power of the test is we define the rejection region as:
(a) {X =6}, (b) {X =56} and (c) {X =4,5,6}.

EXERCISE 70 Let X1,..., X, “ Uni form(0,0). Consider the asymptotic likelihood ratio
test for testing Hy : 0 = 0y against Hy : 6 + 0y with a significance level a. The test statistic
for this test has been derived in Exercise 66. Present the power of this test as a function of 6.

EXERCISE 71 Let Xi,..., X, be a random sample taken from a Normal(u,c?) distribu-
tion with some known o. The testing is done between Hy : p = pg and Hy : p = pq where
1 > pto. The rejection region of the test is defined as {X > k} for some constant k. Suppose
that the significance level « is specified. Prove that the power of this test can be written

as power = 1 — <I>(<I>’1(1 —a) — - 'MO) where ® denotes the cdf of the standard normal

a/\/n

distribution.
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SOLUTIONS TO EXERCISES

EXERCISE 1 In the formula for the pdf of the i-th order statistic we let ¢ = 1 to obtain that

Prw(@) = = 1)?(!n - [F(@)] ™ fl@)[1 = F@)]"™ = nf(@)[1 - F@@)]"™". We can

also find the pdf of the minimum as follows:

1= Fx, () =PXpyz2)=P(X, 22, Xo=22,...,X,, >7) = [1-F(z)]",

n—1

therefore, Fy, (z) =1—[1— F(z)]", and fx,(T) = F)’((m (z) =nf(z)[1 - F(z)]

EXERCISE 2 We are given that f(z) =1, and F(z) =z, 0 < x < 1. Hence,

| ) )
(a) the i-th order statistic has the pdf fx (z) = = 1)7'1(71 - i)!xl_l(l — 2)", that is,
X@y ~ Beta(i,n —i+1).
(b) If we let i = 1, we get the pdf of the minimum, fx, (z) = n(l — )", that is, X1y ~
Beta(1,n).
(c) Letting i = n, we obtain the pdf of the maximum, fx,, (r) = na" ', that is, Xpy ~
Beta(n, 1).

EXERCISE 3 The pdfof X’sis f(z) = 8 exp{—/f 2}, and the cdfis F'(x) = 1—exp{—f x}, = >
|
0, B> 0. Therefore, (a) the i-th order statistic has the pdf fx, (z) = e

ENICEDL
! pexp{—fx(n—i+1)} [1 —

n—i n!

exp{=Ba}] " B exp{—Ba} [exp{=—Ba}]" = 5

i1

exp{—p 93}] )

b) In particular, for ¢ = 1, the pdf of the minimum is fx,. (x) = n g exp{—Fnx}, that is,
&

X(1) has an exponential distribution with mean _5
n
(c) The pdf of the maximum is derived by letting i = n. We have fx,(z) = n 8 exp{—f§} [1-

exp{—p x}]nfl. We can also notice that the cdf of the maximum is F(z) = (1—exp{—Sz})",
which can be obtained by either integrating the density or arguing that all n observations
must not exceed x, if the maximum doesn’t exceed .

EXERCISE 4 The likelihood function has the form

L) = ﬁ (Q—Z)Pxi(l —p)"

14



The log-likelihood function is

—.

In L(p) =In [

(N)}—i-iXilnp—i- nN — in In(l —p
X i=1 i=1

The MLE p solves the equation

=1

0— dIn L(p) 2 Xi N X

dp  lp=p p 1-p ‘
Hence, the MLE of p is _
~ 22;1 Xi _ X
P="uN N

To understand the structure of this estimator, we can rewrite it as

]’?\: Z?:ls;)(l/N)7

which is the average of proportions of successes among N trials.

EXERCISE 5 The likelihood function has the form
Lip) = [ [ p(1=p)"7" = p" (1 = p) =i X7,
i=1
The log-likelihood function is
InL(p) =nlnp+ (i X; —n) In(1 - p).
i=1

The MLE p solves the equation

0 — dIn L(p) n oy Xi—n
dp p=p P 1-p ,
and so,
~ n 1
b=~V =%
Zi:l X X

Since the mean of X’s is equal to 1/p, the MLE is an estimator of p derived from estimating
the mean by the sample mean X.

EXERCISE 6 The likelihood function is

o =[]0 ] ] ety




and the log-likelihood function takes the form

InL(\) = In [ﬁ ;.'
i=1 =

The MLE ) is the solution of the equation

}+i X In A — nA.

i=1

Hence,

Indeed, it is intuitive to estimate the mean A by the sample meanX.

EXERCISE 7 The likelihood function is derived as

"1 1
Loy=1] S0 < Xi <0} = 2T{0 < Xy < 0}

i=1
Here T{A} denotes the indicator function of an event A, that is, it is equal to 1 if A occurs,
and 0, otherwise. The last equality is justified by noticing that the events {0 < X; < 6}
occur simultaneously for all i = 1,...,n, if and only if the event {0 < X(,) < 0} occurs.

Next, we plot the likelihood function L(#) = L(0; X1,...,X,) = 1/0", 0 = X(,), against ¢

to see where it attains the maximum value.

L)

0 X(n) 0

As seen on the graph, the maximum is attained at X,), thus 0= X(n) is the MLE of 6. On
intuitive level, if X, ..., X,, are observed, and we know that each of them doesn’t exceed 0,
then our best guess about the value of # is the maximum of all the observations.

EXERCISE 8 The likelihood function is

"o
L(a,b) =] — o < X; < b}
i=1

16



1
= 7 Mo < Xy < Xm) < b}

(b—a)

To maximize this likelihood function, we have to minimize the denominator (b — a)", or,
equivalently, minimize the distance between a and b. Since it must be true that a < X3y <
X(n) < b, the distance is minimal when a is equal to X (1) and b is equal to X(,). This leads

to conclusion that the MLE of a is @ = X(;) and the MLE of b is b= Xn)-

EXERCISE 9 The likelihood function is written as

o) =11

and the log-likelihood function takes the form

exp{=X,/B} = 5 expi= Y, Xi/)

™|~

InL(B) =—nlng — ZlL
5
The maximum likelihood estimator of § satisfies the equation
0= dIn L(p) __n X D1 Xi.

g = j 32

From here,

. nox
6 — Zz=1 = X.
n

We see that it is only reasonable to estimate the mean 3 by the sample mean X.

EXERCISE 10 The likelihood function has the form
L(B) = [ | B exp{-BX;} = 8" exp{-5 D>, X;},
i=1 1=1
and the log-likelihood function is

InL(B)=nlns—p i X;.
i1

Differentiating the log-likelihood function, we get an equation for the MLE B :

0— dIn L(p)

Thus,



EXERCISE 11 First, we obtain the likelihood function. We write

L(M702):H 1 exp{—M}

202

_ 1 exp{ _ Yy (Xi — p)? }

-~ (2mo?)n/? 202

Next, we find the log-likelihood function as

In L(p,0?) = —g In(27) — gln02 _ Zin (202 ) .

The maximum likelihood estimators [i and 2 are solutions of the system of two equations

- dnLo®| N (Xi—R)
op Iuh, o
- (NHL(M,JQ)‘ __n S ()
B 0o> w257 264 ’

SO

)2
i = Z?:I Xi _ X’, and &2 = Z?:l (Xi _X) .

n n
Since p is the mean of the normal distribution, the estimator is indeed intuitive. The variance
is estimated by the average squared distance between each observation and the sample mean,

which is a natural measure of spread.

EXERCISE 12 We derive the likelihood function as follows:

L(a) =[] aXe* exp{—x2)
i=1
n a—1 n
=a" (n Xi) eXp{—Z X}
i=1 i=1
The log-likelihood function is given by

InL(a) =nlha+ (a— 1)ZlnXi — Z Xe.
i=1 i=1
Differentiating the log-likelihood function with respect to o and setting the derivative equal
to zero, we obtain the equation that the MLE of a solves:

_dln L(«)

0 da

+Zn:lnXi —Zn: X% In X;.
=1 =1

D3

a=a

18



There is no explicit solution to this equation, thus is has to be solved numerically. For the
observations X; = 0.4, Xy = 0.3, and X3 = 0.6, the MLE of « solves

i +1n0.4+1n0.34+1m0.6 - (0.4°n0.4 4+ 0.3%1n0.3 + 0.6 In 0.6) = 0.
(6%

Using Excel, for example, it is easy to verify that @ = 1.51909.

EXERCISE 13 In Example 1 we have shown that the maximum of the likelihood function
L(p) = p¥i= Xi(1 — p)rZiz X
is attained when p = X.

We will plot this likelihood function against values of p when X is on either side of 1/5 to
see where the maximums of this function are attained on [0, 1/5].

F L(p) F L(p)
p p
/\\\
0 x 1 1 p 0 1y 1 p

From the graphs, if 0 < X < 1/5, then the maximum of L(p) on the interval 0 < p < 1/5
is attained at X, whereas when X > 1/5, then the maximum of the likelihood function on
this interval is attained at 1/5. Thus, the MLE of p is

. X, o< X <1/5,
P= V15, it X > 1/5.

EXERCISE 14 We know from Exercise 9 that in the general case of § > 0, the likelihood

1
function L(B) = an exp{— Z X;/B} attains its maximum at B = X. In this exercise, the

values of 8 are bounded from below by 4. The two graphs below present two possible
scenarios: when 0 < X < 4 and when X > 4.

FL(B) FL(B)
. 3
B
> 19 >
0] x 4 5 0 4X 5




~

As seen on the graphs, the maximum of the likelihood function is attained on [4, ) at § = 4
if0< X <4,and at f = X, if X > 4.

EXERCISE 15 From Exercise 11, we know that if there are no restrictions on the value of p,
the maximum of the likelihood function

1

L) = Gy &P {= 2 (Xi—w?/2}

is attained at i = X. In the present exercise, it is assumed that p > 0.

To see how the plot of L(x) looks like, we rewrite the likelihood function as

1 1 /& _
1= o {350 a4 )
=1

1 1 " n = n _
- Wexp{ —52 Xf+§X2} exp{ —E(,u—X)Q}.
i—1

From here we can sce that L(u) is bell shaped and is centered around X. Now we plot L(y)
in the cases X > 0 and X < 0, respectively, to determine at what respective points the
maximums are attained on [0, o).

' L(n) ' L(1)
Z j
_/ K
0 X H x |0 0

As depicted on the graphs, in the case when X > 0, the MLE of p is fi = X, while if X < 0,
then 11 = 0.

EXERCISE 16 The likelihood function is calculated as

20



(1/4)(1/4)(1/2) = 0.03125, if 6 =0,
L(0; X1, X2, X3) = f(L:0)f(4:0)£(2:0) = { (1/2)(1/2)(0) = 0, if § =1/3,
(3/5)(1/5)(1/5) = 0.024,  if 6 = 1/4.

The largest value of the likelihood function is 0.03125 and corresponds to the MLE 6 =0.

EXERCISE 17 We know from Example 1 that the MLE of p is p = X, and by Theorem 1,
the MLE of Var(X;) = p(1 —p) is X(1 — X).

EXERCISE 18 By Exercise 5, the MLE of p isp = 1/X. Hence, using Theorem 1, we find
that the MLE of E(X;) = 1/p as 1/(1/X) =

EXERCISE 19 By Exercise 6, the MLE of A is =X . Thus, using Theorem 1, we conclude
that the MLE of P(X; = 1) = Aexp{—A} is X exp{—X}.

EXERCISE 20 As shown in Exercise 7, the MLE of @ is = X(ny. Applying Theorem 1, we
get that the MLE of Var(X;) = 92/12 is X72,/12.

EXERCISE 21 The likelihood function has the form

H (1 —exp{—0})™ (exp{—0})"

= (1 — exp{—0})>=1 X1 (exp{—0})" 2= X,
This is a Poisson distribution truncated at x = 1, or, alternatively, it can be looked at as a
Bernoulli distribution with p = 1 — exp{—60}. The quickest way to find the MLE of ¢ is to

recall from by Example 1 that the MLE of pis p = X, and now use Theorem 1 to conclude
that the MLE of 6 solves p = X = 1 — exp{— «9} Thus, § = — In(1 — X).

1 n
EXERCISE 22 In Exercise 11 we have shown that the MLE of o2 is 6> = — Z (X; —
n —
X)?. We use this result and Theorem 1 to conclude that the MLE of ¢ is 6 = V52 =
1 & _
- Z (X; —
i3

EXERCISE 23 To find the MM estimator of p, we equate the theoretical and empirical first

21



moments. We have

N S
E(X:)=p= Zio Ko _ X.

n
The solution is p = X, and, thus, the MM estimator coincides with the MLE for p.

EXERCISE 24 The MM estimator for p solves the equation E(X;) = Np = X, or p = X/N.
It is the same as the MLE.

EXERCISE 25 The MM estimator for p satisfies

1 _
B(X)) = =X,

Hence, p = 1/X, and it coincides with the MLE for p.

EXERCISE 26 The MM estimator for A is the solution of the equation
E(Xl) == X?

and so, \ = X. It is the same as the MLE.

EXERCISE 27 To find the MM estimator for € we write

0 _
E(X) =5 =X,

thus, § = 2X. This estimator is not the same as X(ny, the MLE of 6. Moreover, for some
observations, 2X is smaller than X(n), and hence, the MM estimator doesn’t always make
sense. For example, if X; = 1, X, = 1, X5 = 2, and X, = 8. Then 2X = 6, whereas X =8,
so we have an observation that exceeds our MM estimate of 6.

EXERCISE 28 We find the MM estimators for a and b by solving the system of equations:

E(X;) =

£

v¥—a® V+ab+a® D X?
E(X2) = T gy = _ _ =1 i
(X1) J b—a’" 3(b—a) 3 n

a

Hence, a and b satisfy the equations

a+b=2X,
i1 X7
Lo

a21ab+b*=3

22



Squaring the first equation and subtracting the second, we get

Letting b =2X —d and plugging it into the second equation, we arrive at a quadratic
equation. The system becomes

G+b=2X,
- - noox2
62—2Xa+4X2—3L=0.
n

The solution of this system is

_ X L TxT
aZX—\/:s(L—)@), and b=X+\/3(—Z“ - X2).

n n

Note that these estimators are not the same as the MLE’s Xy and X{,,y. In addition, they

may not make sense for some data sets, where the minimum is below @ and/or the maximum
is above b.

EXERCISE 29 The MM estimator for 3 is the solution of the equation E(X;) = 8 = X,
thus, = X, and is equal to the MLE.

EXERCISE 30 The MM estimator 3 satisfies X = E(X;) = 1/3 Thus, 3 = 1/X the same
as the MLE.

EXERCISE 31 We write E(p) = E(X/N) = E(X,)/N = Np/N = p, thus the estimator is
unbiased.

EXERCISE 32 The sum Y., X; of n independent Geometric(p) random variables has a
Negative Binomial(n, p) distribution with the pmf

So, we write



Thus, the estimator is biased.

For an estimator p = p(X;) to be an unbiased estimator of p, it must satisfy the identity

e}

E(p) = E(p(X1)) = Z p(x)p(1 — p)*~! = p. Since the left-hand side is a polynomial in p,
=1

the only solution is

) 1ifX, =1,
X:
LX) {Q itX, =23, ..

EXERCISE 33 We have that E(X) = E(X;) = 1/p, thus, it is an unbiased estimator.

EXERCISE 34 We write E()) = E(X) = ), hence, A is an unbiased estimator of \.

EXERCISE 35 We start by finding the cdf of the largest order statistic:
FX<n>($;6) = ]P)(X(n) < 513') = ]P)(Xl <a,... 7Xn < x)

=P(X; <z)---P(X, <z), by independence,
= g—n, 0z <@

From here, the density of X, is fx,,, (2;0) = P (z;0) = na" /6", 0 <z <6. And thus
the expected value is derived as

0 n—1
1
E(X(n)) = J xnx = n

dv = 0= (1-
0 g n+1 ( n+1

)0 < 6.
We can see that X, is a biased estimator of , and, in fact, it underestimates 6 by 1/(n+1)th
n+1
_ n
In the case of the MM estimator of 6 we write E(2X) = 2E(X;) = 2(6/2) = 0. Thus, it is
unbiased.

of 6, on average. An unbiased estimator of 6 based on the maximum value is

EXERCISE 36 We derive the cdf of the smallest order statistic. We have
P(Xqyzz)=PX1>2,...,X, = 1)
=P(X; >2z)---P(X, >x), by independence,

I
(b—a)"
Hence, the cdf of X(y) is
L i (=)
FX<1>(13,a,b) =PXpy<z)=1-P(Xy=2)=1 b—ar a<zxz<h.
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The pdf is equal to fx,,,(7;a,b) = F)’((l)(a:; a,b) =n{b—x)"1/(b—a)", a <z <b The
expectation is found as

E(X(l))ZJ xn%dxz—f (b—x—b)n%dm

a

< J e [

a

a a

n 1
= — b— b= — (b— )
n—|—1( @)+ a+n+1( a) > a

Thus, X(1y is biased, and overestimates the lower endpoint a by 1/(n 4 1)th of the length
b — a of the interval, on average.

Further, the cdf of the nth order statistic is
Fx . (z;0,0) = P(X(y <7) =P(X) < ..., X, < 1)

=P(X; <z)---P(X, <z), by independence,

B (x —a)”

(b—a)"

The pdf of Xy is fxmy(@;a,b) = Fj((n) (z;a,0) = n(z —a)" 1/(b—a)*, a <z <b The
mean is computed as

a<x<b.

E(X(n))zLxn(gzb__—ai;:dxzfa(x—a+a)n%dx
N R G0 O R Gy
S R e s
n 1

This indicates that X, is biased, and, on average, it underestimates the upper endpoint b
by 1/(n + 1)th of the length b — a of the interval.

To see what estimators based on X(;) and X(,) are unbiased estimators of a and b, we solve
the following system with respect to a and b:

1
EXw)=a+ — (b—a),

E(X(n)) =b— (b—a).

n+1
Adding and subtracting the equations yield

E(Xqy + X)) =a+0b, E(Xq) + X)) =a+b,
n—1 or n+1
E(X(") _X(l)) B (b—a), E[n— 1 (X(n) —X(l))] =b—a.

25



Again adding and subtracting the equations yield

1 n+1 1
o =E[5(Xa) + Xy = =7 Ko = X)) = E[-— (n Xy = X)) ],
1 n+1 1
b=E[5 (X0 + X + —— (X = X))] = E[-— (0 Xy = X) ]

1
1(nX(n) - X(l)) is an

n —

1
Thus,
n JE—

unbiased estimator of b.

7 (n Xy — X(n)) is an unbiased estimator of a, and

EXERCISE 37 We know that E(X) = E(X;) = 8. Thus, X is an unbiased estimator of 3.

EXERCISE 38 As the sum of n independent exponential random variables, > ; X; has a
prat Texp{=fu}
(n—1)!

value of 1/X can be computed explicitly as follows:

E(1/X) - n/z R Y

n(n — 2)! pr—t "Qexp{ —Bx} n
= ﬁf ) T |

Gamma distribution with the pdf f(z) = x > 0. Hence, we expected

3.

—1
Thus, 1/X is a biased estimator of 3, but % is unbiased.
n

EXERCISE 39 Since E(X) = E(X;) = p, X is an unbiased estimator of . Next, we compute
the expected value of 52. We write

E(5?) = E[% i(xi - X)2| - %E(i X7 —nX?)

= E(X7) — E(X?) = Var(X;) + (E(X1))* — [Var(X) + (E(X))?]

n—1
o2

_ 2+ 2_(0_2+ 2)_
=0 o - o =

1 = =
Hence, - 7_l 182 =7 ; (X; — X)? is an unbiased estimator of o2,
n—1
EXERCISE 40 (a) The density of X, is fx,,(2) = m;—n, 0 < z < 6, therefore, the mean

n
squared error of the unbiased estimator X(n is computed as follows:

n

MSE = Var| " x| = ("50) Var(x()
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n+1 2 202
(S e GR) - s a]

B <n+1)2 n 6> 62
N (

= — 0 — 0.
n+2)(n+1)2  nn+2) s

Thus, it is a consistent estimator of 6.

n

n

(b) The bias of X(,) is equal to E(X(,)) —0 = o 19 —0 = g

zero as n increases, this estimator is asymptotically unbiased. Its mean square error is

. Since the bias goes to

, 2 n 62 0 2
MSE = Var(Xe) + [Has(Xe, 6)] = it )12 [ Cn+ 1]
62 n 202

:(n+DJn+2+1]:O%+DM+2f

Since M SE — 0 as n — o0, the estimator is consistent.

2
(c) First we will show that r i 1 X(ny has the smallest M SE among all estimators of the
n

form ¢ Xy, where ¢ = ¢(n) is a function of n. We write

ctn 6? cnb 2
+ (25 —0)
(n+2)(n+1)2 n+1

We would like to minimize with respect to ¢ the following function

MSE = Var(c X)) + [bias(cX(n),G)]2 =

n cn 2
+ (25 -1
(n+2)(n +1)2 n+1
Taking derivative with respect to ¢ and setting it equal to zero, we arrive at the identity

2cn N 2n ( cn 1)_0
n+2)n+1)? n+l\n+1 7

2
from where ¢ = + T The MSE of this estimator is

n+
22 n 6> 5 ((n+2)n 2
MSE_(n—i—l) (n+2)(n+1)2+9 ((n—|—1)2 _1)
(n +2)n6? 6? 62

mr)t Tt Dt (s

The MSFE goes to zero, as n increases, which proves the consistency of the estimator.

EXERCISE 41 (a) The MM estimator 2X,, is unbiased, and its mean square error is obtained

as

= 6> 6?

MSE =Var(2X,) =4— = —.
r@X) =4 T

27



The MSFE tends to zero when n goes to infinity, implying consistency of the estimator.

_ _ . 0 0
(b) The bias of the estimator X, is bias(X,,0) = E(X,) —0 = 5~ 0 = —3 + 0, as
n — oo. It means that this estimator is not asymptotically unbiased, and, consequently, not
consistent.

EXERCISE 42 (a) The bias of 1/X,, is bias(1/X,, ) = E(1/X,)—f = JOO g prar (; eXIji'—ﬁ r} dr—
0 - .
nf B

= — = —— — 0, as n — o0. Hence, the estimator is asymptotically unbiased.
1 1
n R R
The mean square error is

AiSEszOrL%—]+[Ma5@/X}J%]2:‘fng;ann1fmp{—5$}dx

_<n6)2+(%3)2_ gt owp P
n—1 n—1/  (n—-1)n-2) ®m-1)2 (n—1)2
(n+2)5?
= e d O,
(n—1)(n —2)
as n increases. Therefore, the estimator is consistent.
(b) The mean square error of an unbiased estimator LB N equal to its variance. We

n
derive the expression for the variance as:

() = o) e

_(L xﬁn n_n(fql)){ i dm)Q} = (-1 [5(7571—_1)) Jo - T(Ln—e}?(f))'{ - du

n—l?') J = e);l;{ 51})1 (n _1)262[(71—1)1(71—2)_(n—ll)z]
1

2
:ﬁﬂz _1]:n€2'

-2
Thus, the mean square error is
-1 2
MSEzVar[nf ]: b — 0, as n — 0.
nX,, n—2

This proves consistency.

EXERCISE 43 (a) The MSE of an unbiased estimator

— Z (X; — X,,)? is equal to its

i=1
4

variance, which is T This quantity tends to zero as n increases, implying the consistency

n —
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of the estimator.

1 n
(b) The bias of the MLE — Z (X; — X,,)? is computed as
s
1 ¢ - 1« -
bi (— X — X,)2, 2)=E[— XZ»—XnQ]— 2
tas{ ~ ZZ ( ), o - ; ( ) o
n—1 1 < _ n—1 o?
= ]E[ Xi—an]— 2 _ 2 2:___)0’
n n—1 Z; ( ) ’ n ? ’ n
as n tends to infinity. Thus, this estimator is asymptotically unbiased. Its mean square error

is found as

MSE = Var[%i (X; — XH)Z] + [bms(% '" (X; — Xn)2,0'2):|2
_ (n; 1)2Var[ni1 j (X; —Xn)2] + (_ %2)2

=1

n—1\2 204 ot 2n—1,
:( ) = s—0 — 0asn — oo,

n n—1 n? n

whence, the estimator is consistent.

EXERCISE 44 The likelihood function is of the form

Now we take

n N R n R R I N_s
i=1 t i=1

The likelihood function can be written as the product of g and h, and, therefore, by the
factorization theorem, >, X; is sufficient. Since any invertible function of a sufficient
statistic is sufficient, Y | X;/(n N) = X/N is also a sufficient statistic for p.

EXERCISE 45 We write the likelihood function as

f(szp) = p(l — p)Xi_l =p" (1 — p)Z?:l Xi—n

n n
i=1 i=1

29



If we suppose that
g(Xh'"u Z i) and hpp) (1_p)ﬁ_n7

then the likelihood function becomes

[ [ r(Xip) =p" (1=py " = g(Xy,..., X)) h(B;p).

=1

From here, by factorization theorem, we conclude that > X, is a sufficient statistic for p,
and thus, Y | X;/n = X is sufficient.

EXERCISE 46 The likelihood function is of the form

[T =115

=1 =1

3

[ﬁ Xi!]_l AZi=1 X exp{—n A}.
=1
We take
g(Xl,...,Xn):[ﬁ ] i o and h(u ) = M exp{—n\l.
i=1 i=1

Hence,

~

[T A(X5A) = g(X,... X)) (X V),
=1

which means that Y;_, X; is sufficient for A, therefore Y./ | X;/n = X is sufficient as well.

EXERCISE 47 The likelihood function is

n

- 1 1
[TrX6) =] 5H0< X <6} = 10 < X < 6},

i=1 i1
We let ]
9(X1,...,Xn) =1, 0 =X, and h(0,0) = e—nﬂ{0<9<9}.

The likelihood function can be factored into g and h. Hence, by the factorization theorem,
X(n) is a sufficient statistic for 6.

EXERCISE 48 We write the likelihood function

X, a,b) {a < X; <b} = {a < X1y < Xy < b}
[ reesanr =] 15—t P g s Yo s Xw <0
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If we define g(Xq,...,X,) =1, a= Xq, b= Xn), and

then the likelihood function is factored into ¢ and A, and, thus, by the factorization theorem,
(X(1), X)) is sufficient for (a,b).

EXERCISE 49 We have that the likelihood function

ﬁf(Xz;ﬁ):ﬁ% p{—X;/5} = —exp{ ZX/Q}

Hence the likelihood function is a product of g(X1, . .., X,) = 1, and h(3; B) = —n exp{—3/8}

where § = Y.i; Xi. By the factorization theorem, >}, X; is sufficient for 3, and therefore
>, Xi/n = X is sufficient.

EXERCISE 50 The likelihood function has the form

n n 1 X, — 2
H f&apmo?) =] 5= exp { - ke 202@ }

i=1

1 13
:Wexp{—Q— ZX —2u2X—i—nu }
Now we let uw =Y | X? and v =) | X;, and define g(Xi,...,X,) =1, and

1 1
h(u,v; p, 0?) = W exp{ —@(u—qu—i-n,uZ)}.

We see that the likelihood function factors into ¢ and h, and, thus, by the factorization
theorem, (u, v) is sufficient for (11, 0%). We now define i = v/n = X and 62 = -1 (u—v?/n) =
LS (X; — X)?. Since fi and 52 are invertible functions of u and v, we conclude that
the vector (fi,5?) is also a sufficient statistic for (u, o?).

EXERCISE 51 The estimator X /N is sufficient for p, and, thus, it is the UMVUE for p.
EXERCISE 52 The estimator X is sufficient for \. Therefore, it is the UMVUE for \.

EXERCISE 53 The estimator X is sufficient for 5. Hence, it is the UMVUE for 3.
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EXERCISE 54 The estimator X is sufficient for . Thus, it is the UMVUE for p.

EXERCISE 55 We know that 7 (n Xa—X (n)) is an unbiased estimator of a that is based

n —

1
] (n Xn) — X(l)) is an unbiased estimator

on a sufficient statistic (X1, X(»)). Likewise,

of b that is based on a sufficient statistic.

EXERCISE 56 The estimator I % is an unbiased and based on a sufficient statistic for j,
n
>, X;, and, therefore, it is the UMVUE for f.

_ 1 & _
EXERCISE 57 The estimator X is sufficient and unbiased for p. Also, ; (X; — X)%is
n J—
i=1
1 & _
sufficient and unbiased for 0. Hence, : Z (X; — X)? is the UMVUE for o2.
n j—
i—1

EXERCISE 58 The estimator X _is a sufficient statistic for A. We need to find an unbiased
estimator of A\(1+ A) based on X. We write

E[X(1+ X)] = E(X) + E(X?) = B(X) + Var(X) + [E()]°

Var(X;)
n

It follows that if we subtract X/n from X(1 + X), we will get an unbiased estimator of
A(1 + A). Indeed,

=E(X,) + +[EX)] = A+ 2 A2,

_ _. X A A
E[X(HX)——] T WA S RA Y PPN
n n n
, oo X I\ o oo
Thus, by the Lehmann-Scheffé theorem, X (1 + X) — = (1- E)X + X* is the UMVUE

for the second moment E(X?) = A(1 + \).

EXERCISE 59 We know that (X,5? = N (X1 — X)?) is sufficient for (i, 0?). Also,
n J—
i=1

E(X) = u and E(6?) = ¢%. Remained to find an unbiased estimator of 1. We take X? and

1 n

R _ _ 2 a2
compute E(X?) = Var(X) + []E(X)]2 =25 p?. Thus, X* — 7 is an unbiased estimator
n n
2 G2 O o’ , 0 2 . 2
of p*. Indeed, IE[X — —] = — 4+ p° — — = p°. Hence, it is the UMVUE of p°.
n n n



EXERCISE 60 Take Iix,_o;. It is an unbiased estimator of P(X; = 0). Computing the

conditional expectation, conditioning on a sufficient statistic >, ; X; = x, we arrive at the
UMVUE of e~

E[Ix o) i X; = z| =P(X1 = 0| an X; =) = IP’(XED(:ZE’ Z}Z;l:X;): z)

=1 i=1 =1

md P(X1 = 0P, Xi=12)  _, [(n—1)A]re (DA ! 1\nX
— ) L =€ = (1 _) .
PR, X, = x) x! (nA)® e n
EXERCISE 61 Take X;X,. It is an unbiased estimator of E(X;X3) = p*. The UMVUE of p?
is

IP’(X1 1L X =130, X, = x—z)

E[X1X2| Zn] X; = :1:] —

i=1 P(Z?:1 Xi = x)
_@@EE)PF A=) a@-1) _ nX@nX -1)
(Z)px(l —p)nT n(n — 1) n(n —1)

EXERCISE 62 The UMVUE of P(X <2) =1—¢"2 is

3 F( X=X, Xi=a—
[t 07 - | ( 1f(y2’:_1 ;:x)x ’

= f (/o) & ;(?"_?;;_IW / [x;(;e);e] dy = (n—1) f(l—y/x)“ dy=1- (1—%)"‘1.

EXERCISE 63 The MLE of p is p = X/N. The likelihood ratio for testing Hy : p = po
against Hy : p % pg is computed as follows:

dy

T () pe =p)™ " pp¥( = py) V=X
- n N X\ Xi X\ N-X; - TAnX \nN—nX"
Hi=1 (X) (N) (1 o N) (%) ( o %)
The asymptotic likelihood ratio test statistic is
- X(1- N-X
Y2 = —21nA=2nXln[(—_p0)]+2ann[ ]
(N = X)po N —po
The decision is to reject the null hypothesis if x* > y%(1)

LI, po(t—po) ™t (po)" (1 —po) ¥
5 G- @ -9

The asymptotic likelihood ratio test statistic is

2= —2InA = 2nln [(;—)p] +2nX In [X—}
— 1)po



If this statistic is in excess of the critical value x2(1), then Hy is rejected

EXERCISE 65 The MLE of A is A = X , thus the likelihood ratio is

X

H?=1 /\Lv exp{—Ao} Ao\ "X ~
s oy~ () Pl 5

and the asymptotic test statistic is

A=

x?= —2InA = 2nX In (%) +2n(A — X).
0

The rejection region is of the form {Xi,..., X, : x* = x2(1)}.

EXERCISE 66 The MLE of 6 is § = X(n)- The likelihood ratio is written as

_ (1/00)" T{ X <60} (Ko
- (1/X(n))n - to

The asymptotic likelihood ratio test statistic is equal to x* = —2In A = 2nlnf, — 2nln X(n)s
and the decision rule is to reject Hy if either X, > 6y or x* = x2(1).

EXERCISE 67 The MLE of 3 is B = X. Consequently, the likelihood ratio has the expression

"1 -X; X\n X
p = Ui (/) oxpl=X) (5) exp{n(-2)}
[T (1/X) exp{—X;/X} Bo Bo
The asymptotic likelihood ratio test statistic is x>
1), and the rejection region is {x* = x2(1)}.

= —2InA =2nInBy—2nIn X +2n(X/By—

EXERCISE 68 The MLE of y is /i = X, and hence the likelihood ratio is of the form

o 2 T ro?) 2 e { = (X, — )
T2z @) 7 exp { = (X, = X))

:exp{—%i (Xi — o) —(Xi—)_()Q]}zexp{—l(X— )2}

The asymptotic likelihood ratio test statistic is y? =

a/\/n
x?(1). The decision rule is to reject the null if x? > x2(1).
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EXERCISE 69 For the rejection region {X = 6}, power =1 —=p% 1/3<p<1.
(b) For the rejection region {X = 5,6}, power = 1—8 = (3)p*(1—p)+p°® = 6p°(1—p) +p° =
6p° —5p°®, 1/3<p<1.

(c) For the rejection region {X = 4,5 6}, power = 1— = (Z)p4(1_p)2+ (g)p5(1—p) 4 =
15p*(1 — p)? + 6p°(1 — p) + p® = 15p* — 24p° + 10p°, 1/3 < p < 1.

EXERCISE 70 As found in Exercise 66, the test statistic is equal to x*> = 2n1nfy, — 2n1n X(n)s
and the rejection region is {X(,) > 0 or x* = x2(1)}. Therefore, the power is computed as:

power =1 — 3 =P (X, > 0y or x> = x2(1) |0 * b))
= ]P’(X(n) > 0y or 2nlnfy — 2nln X(n > A1) |0 + 90)

al
— P X > g or Xy < b exp { = } 6+6,)
Xa(l

)

:1_§_§+936XP{9;@}:1_(1_exp{_><i2<l>})§: )40,

Ql\')

= 1—FX( )(90)+FX( )(90 exp{

EXERCISE 71 The constant k is determined by the significance level «, that is, it solves o =

_ B B k—poy kE— o 0 2
]P’(X>k|u_u0)_]P’(Z>a/\/ﬁ)_1 @(U/ﬁ).Fromhere,k_ﬁ@ (1—a)+ o.

The power of the test is then computed as power = 1 =8 =P(X > k|p= ) =1 — ]P(Z <

) =1 me(r) -1 e(RTECEE) < a0

)
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