LECTURE 5: SIMPLE RANDOM SAMPLING 3.4, 3.5, 3.7
3.5 Reliability of Estimates

Recall that reliability of an estimator can be measured by the size of its vari-
ance (equivalently, the standard error). Last time me proved that E(z) = X,

and
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where the population variance

Since ox is unknown, we estimate Var(z) by
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where the sample variance

is an unbiased estimator of
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and a 100(1 — a)% confidence interval for the population mean X under the
simple random sampling is
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Likewise, it can be shown that a 100(1 — «)% confidence interval for the
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population total X = ", X, is

where the point estimate
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Special case. When the measurements are binary, the sample mean is the
sample proportion
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The population variance in this case is 0% = Px(1 — Px), and the sample
variance
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is an unbiased estimator of
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Thus, the estimated variance is
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A 100(1 —a))% confidence interval for the population proportion has the form
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3.4 Coefficients of Variation of Estimated Population Parameters

LetAcZ denote an estimator of a population parameter d. Define the coefficient of variation
V(d) as
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Recall that the population coefficient of variation is denoted by

V(d) =

Proposition
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PrOOF. (i) SE(Zz) can be written as
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Thus,
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(ii) SE(2') is equal to

N N n UxN N —n
AN _ — — =
SE@) = N1V "N T m VN -1

The coeflicient of variation
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3.7 How Large a Sample Do We Need?

Consider a 100(1 — «)% confidence interval for a population parameter d,
d =+ Z—a)2 SE(d). Suppose we would like the margin of error, Z—a)2 SE(d),
not to exceed a pre-specified value e d, that is, we want to find the sample
size n such that
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Equivalently, we want to find n, which is the smallest integer satisfying
Z1—a/2 V(ci) S E.
Proposition (i) If d = X and d = Z, then
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(ii) If d = X and d = 2/, then
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(iii) If d = Px and d = p,, then
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ProoF. We will show only part (i). Parts (ii) and (iii) are left as the home-
work. B R
(i) If d = X and d = 7, then n is the smallest integer such that
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Remark From this proposition, if N is very large, then (i) if d = z or d = 2,

an approximate required sample size satisfies
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(i) if d = p,,
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Example (on pages 73 — 75) We are given N = 2500, ¢ = 0.1, z =

Z1—as2 = 3 (if not specified explicitly). To estimate Vy, we use the given
information: Ny = 1,000, Zo = 70, and s? = 14. We have
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o 0% No—1 ,1  (999/1000)(14%)
==y %im - = = 0.03996 .

Thus,
(2500)(9)(0.03996)

= (2499)(0.1)% + (9)(0.03996)

or n = 36. If we use the approximate formula, we get

= 3547,

(9)(0.03996)

"2 0y

= 35.96, or n=236.



