
Lecture Notes for STAT 381

DESCRIPTIVE STATISTICS VS. INFERENTIAL STATISTICS

Descriptive statistics deals with visualization and summarization of data (observations). Data
may be categorical (qualitative, di�erent categories) or numeric (numbers on which arithmetic op-
erations make sense). For categorical data, bar graphs and pie charts are typically constructed. For
numerical data, histograms, and box plots are constructed and descriptive statistics are computed
such as mean, median, mode, variance, and standard deviation.

Inferential statistics is concerned with the estimation of population parameters based on ob-
served data.

In this course, we focus exclusively on inferential statistics. We will study methods of parameter
estimation, properties of those estimators, interval estimators, and hypotheses testing.

REVIEW OF PROBABILITY THEORY

Discrete Distributions

De�nition. A discrete random variable X assumes �nite or countably in�nite number of values.
The probability distribution of X is de�ned by the probability mass function (pmf) pX(x) =
P(X = x).

Bernoulli distribution. A random variable X assumes value 1 with probability p, and 0 with
probability 1−p. These values are sometimes termed "yes/no", or "head/tail", or "success/failure".
The distribution of X is Bernoulli(p) where p is termed the probability of a success. We write
X ∼ Ber(p). The pmf of X is pX(x) = P(X = x) = px(1 − p)1−x, x = 0, 1. The mean of X is
EX = (1)(p) + (0)(1− p) = p. The variance of X is Var(X) = EX2 − (EX)2 = (1)2(p) + (0)2(1−
p)− p2 = p− p2 = p(1− p).

Note. The Bernoulli distribution is named after Jacob Bernoulli(1654 - 1705), a Swiss mathemati-
cian, who was one of the 19 prominent mathematicians in the Bernoulli family.

Binomial distribution. Let X be the number of successes among the n independent Bernoulli
trials. The distribution of X is Binomial(n, p), where n is the pre-speci�ed number of trials and
p is the probability of a success. We write X ∼ Bi(n, p). The pmf of X is pX(x) = P(X =

x) =

(
n

x

)
px(1 − p)n−x, x = 0, 1, . . . , n. The mean of X is E(X) = np, and its variance is

Var(X) = np(1 − p). The name of this distribution is derived from the binomial coe�cient

(
n

x

)
,
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which in turn, comes from the formula for the Newton's binomial (a + b)n =
n∑
i=0

(
n

i

)
aibn−i. Here

"binomial" means two terms, a and b. This formula helps to show that the binomial probabilities

sum up to one. Indeed,
n∑
x=0

(
n

x

)
px(1− p)n−x = (p+ 1− p)n = 1.

Geometric distribution. Let X be the number of independent Bernoulli trials until the �rst
success. The distribution of X is Geometric(p) where p is the probability of a success. We write
X ∼ Geom(p). The pmf of X is pX(x) = P(X = x) = p(1 − p)x−1, x = 1, 2, 3, . . . . The mean of

X is EX =
1

p
and the variance is Var(X) =

1− p
p2

.

Note. The name of the distribution comes from the geometric series. For example, we use the sum

of in�nite geometric series to show that the probabilities add up to one. We write
∞∑
x=1

p(1−p)x−1 =

p

1− p

∞∑
x=1

(1− p)x =
p

1− p

( 1

1− (1− p)
− 1
)

=
p

1− p
· 1− p

p
= 1.

Note. Another way to de�ne a geometric distribution is to let X be the number of failures until
the �rst success. Then the pmf becomes pX(x) = P(X = x) = p(1 − p)x, x = 0, 1, 2, . . . .. The

mean is EX =
1− p
p

and the variance is Var(X) =
1− p
p2

.

Poisson distribution. Let X be the number of occurrences of a rare event. For example, the
number of car accidents per month on a certain intersection, or the number of �eld mice per acre,
or the number of typographical errors per page in a newspaper. The distribution of X is Poisson(λ)
where the parameter λ is the mean and variance of X (that is, EX = Var(X) = λ). We write

X ∼ Poi(λ). The pmf of X is pX(x) = P(X = x) =
λx

x!
e−λ, x = 0, 1, 2, . . . . In particular,

p(0) = P(X = 0) = e−λ, p(1) = P(X = 1) = λ e−λ, p(2) = P(X = 2) =
λ2

2
e−λ, p(3) = P(X =

3) =
λ3

6
e−λ, etc. To show that these probabilities sum up to one, we can use the Taylor's expansion

of the exponential function ey =
∞∑
n=0

yn

n!
. We write

∞∑
x=0

λx

x!
e−λ = eλ e−λ = 1.

Note. The Poisson distribution is named after a French mathematician Simeon Poisson(1781 -
1840).
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Continuous Distributions

De�nition. A continuous random variable X is de�ned on an interval. The probability that X is
equal to any particular number is 0. To de�ne the probability that X falls between some values a
and b, the probability density function (pdf) is utilized. The pdf is de�ned as any function fX(x)
with the properties: (i) f(x) ≥ 0 for any x,−∞ < x < ∞, that is, the function is nowhere neg-
ative, and (ii)

∫∞
−∞ f(x) dx = 1, that is, the total area under the curve is 1. Then we de�ne the

probability that X is located between a and b with b > a as P(a < X < b) =

∫ b

a

f(x) dx. Note

that technically speaking, it doesn't matter is we include or exclude the endpoints of the interval
because P(X = a) = P(X = b) = 0. It means that P(a ≤ X ≤ b) = P(a < X ≤ b) = P(a ≤ X <

b) = P(a < X < b) =

∫ b

a

f(x) dx.

De�nition. The cumulative distribution function (cdf) of X, FX(x),−∞ < x < ∞, is de�ned as

the area swept by the density function fX(x) up to x. That is, FX(x) =

∫ x

−∞
fX(u) du.

When de�ning a continuous distribution, it is customary to specify both pdf and cdf, if the cdf
has an explicit form. Specifying cdf eliminates the need to calculate integrals of the density when
computing probabilities. We use the cdf as follows P(a < X < b) = FX(b) − FX(a). Indeed,

P(a < X < b) =

∫ b

a

fX(u) du =

∫ b

−∞
fX(u) du −

∫ a

−∞
fX(u) du = FX(b)− FX(a).

Uniform distribution. Suppose X can assume any value in an interval [a, b]. The distribution of
X is Uniform(a, b). We write X ∼ Unif(a, b). The pdf of X is

fX(x) =


0, x < a,

1
b−a , a ≤ x ≤ b,

0, x > b.
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The cdf of X is

FX(x) =

∫ x

−∞
fX(u) du =


0, x < a,∫ x
a

1
b−a du = x−a

b−a , a ≤ x ≤ b,

1, x > b.

The mean and variance of X are EX = a+b
2

and Var(X) = (b−a)2

12
. Note that the mean is the middle

of the interval [a, b], and the variance is the length of the interval b− a squared divided by 12.
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The standard uniform distribution is uniform distribution on the interval [0, 1]. We write
U ∼ Unif(0, 1). The pdf of U is fU(u) = 1 if 0 ≤ u ≤ 1 and 0 otherwise. The cdf of U is

FU(u) =


0, u < 0,

u, 0 ≤ u ≤ 1,

1, u > 1.

The mean of U is EU = 1/2 and variance is Var(U) = EU2 − (EU)2 =
∫ 1

0
u2 du − (1/2)2 =

1/3− 1/4 = 1/12. This explains the 12 in the denominator (the second moment minus the square
of the �rst moment is 1/3− 1/4 = 1/12).

Exponential distribution. A continuous random variable X has an exponential distribution with
mean β (written X ∼ Exp(mean = β)) if the pdf of X is

fX(x) =
1

β
e−x/β, x > 0, β > 0.

The cdf of X is FX(x) = 1 − e−x/β, x > 0. The mean and variance of X are EX = β, and
Var(X) = β2. Note that if the parameter β is the mean, then in the pdf and cdf we divide by
β. Sometimes the pdf of an exponential distribution is de�ned as fX(x) = β e−xβ, x > 0. Then
EX = 1/β and Var(X) = 1/β2.

Normal distribution. A continuous random variable X has a normal distribution with mean µ
and variance σ2 (written X ∼ N(µ, σ2)) if the pdf of X is

fX(x) =
1√

2πσ2
exp

{
− (x− µ)2

2σ2

}
, −∞ < x <∞.
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The cdf of X doesn't have a closed form.

The standard normal distribution is a normal distribution with mean µ = 0, and variance
σ2 = 1. As a rule, a standard normal random variable is denoted by Z. We write Z ∼ N(0, 1). The

pdf of Z is fZ(z) =
1√
2π

exp
{
− z2

2

}
, −∞ < z <∞.

Note. To show that the density integrates to 1, we need to show that I =

∫ ∞
−∞

1√
2π

e−z
2/2 dz = 1.

To this end, we write

I2 =
(∫ ∞
−∞

1√
2π

e−x
2/2 dx

)(∫ ∞
−∞

1√
2π

e−y
2/2 dy

)
=

1

2π

∫ ∞
−∞

∫ ∞
−∞

e−(x2+y2)/2 dxdy

= {polar coordinates : r2 = x2 + y2, dxdy = rdrdθ} =
1

2π

∫ 2π

0

∫ ∞
0

e−r
2/2 rdrdθ

=
1

2π

∫ 2π

0

dθ

∫ ∞
0

e−r
2/2 d(r2/2) = 1.

Further, the cdf of a standard normal distribution is traditionally denoted by

Φ(z) =

∫ z

−∞

1√
2π

exp
{
− u2

2

}
du,

and it is tabulated for various values of z.
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Even though the values are tabulated only for the standard normal random variable Z, we can use
the table to compute the cdf of any normally distributed random variable X ∼ N(µ, σ2) if we use
the relation X = µ + Zσ, or, equivalently, Z = (X − µ)/σ. Putting it in words, Z represents how
many standard deviations (σs) the random variable X is above or below its mean µ. For example,

suppose X ∼ N(1, 4). Then P(X < 2) = P
(X − µ

σ
<

2− 1

2

)
= P(Z < 0.5) = 0.6915.

Note. Normal distribution is sometimes called Gaussian distribution. It was introduced by
Johann Carl Friedrich Gauss (1777 � 1855) who was a German mathematician.

The Central Limit Theorem

Suppose we have a sequence of independent random variables X1, X2, . . . that have the same dis-
tribution with mean EX1 = µ and variance Var(X1) = σ2. De�ne X̄n = (X1 + · · · + Xn)/n. Note
that EX̄n = µ and Var(X̄n) = σ2/n. The Central Limit Theorem (CLT) states that for large n

(in practice, n ≥ 30),
X̄n − EX̄n√
Var(X̄n)

=
X̄n − µ
σ/
√
n

has approximately N(0, 1) distribution.

Example. Twenty-ounce Coke bottles contain on average 20 oz of liquid with the standard de-
viation of 0.3 oz. Suppose we want to compute the probability that in a random sample of 81
Coke bottles the sample mean is above 20.05 oz. By the CLT, X̄81

approx.∼ N
(
20, (0.3)2

)
. Hence,

P(X̄81 > 20.05) = P
(
Z > (20.05− 20)/(0.3/

√
81)
)

= P(Z > 1.5) = 0.0668. 2

Order Statistics

De�nition. Suppose we have n observations X1, . . . , Xn. Denote by X(1) ≤ X(2) ≤ · · · ≤ X(n)

the ordered set. For any i, i = 1, . . . , n, X(i) is called the i-th order statistic. Note that X(1) is
the minimum, whereas X(n) denotes the maximum.

Proposition. Suppose X1, . . . , Xn are independent and identically distributed (iid) random vari-
ables with common pdf f(x) and cdf F (x). The pdf of the i-th order statistic has the form

fX(i)
(x) =

n!

(i− 1)!(n− i)!
[
F (x)

]i−1
f(x)

[
1− F (x)

]n−i
.

Proof: If the i-th order statistic is "equal" to x (contributing f(x)), then i − 1 observations

necessarily lie below x (contributing
[
F (x)

]i−1
) , and the other n − i lie above x (contributing[

1−F (x)
]n−i

). Finally, the multiplicative factor is the number of ways to choose i− 1 observations
to lie below x, and n− i to exceed x. 2
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Distribution of Maximum. If we let i = n in the above proposition, we obtain the pdf of the
maximum of n iid observations,

fX(n)
(x) =

n!

(n− 1)!(n− n)!

[
F (x)

]n−1
f(x)

[
1− F (x)

]n−n
= n f(x)

[
F (x)

]n−1
.

This is intuitive, since the pdf of X(n) can also be obtained by the following reasoning:

FX(n)
(x) = P(X(n) ≤ x) = P(X1 ≤ x, X2 ≤ x, . . . , Xn ≤ x) =

[
F (x)

]n
,

and, thus, the pdf is fX(n)
(x) = F ′X(n)

(x) = n f(x)
[
F (x)

]n−1
.

Distribution of Minimum. In the formula for the pdf of the i-th order statistic we let i = 1 to

obtain that fX(1)
(x) =

n!

(1− 1)!(n− 1)!

[
F (x)

]1−1
f(x)

[
1 − F (x)

]n−1
= n f(x)

[
1 − F (x)

]n−1
. We

can also �nd the pdf of the minimum as follows:

1− FX(1)
(x) = P(X(1) ≥ x) = P(X1 ≥ x, X2 ≥ x, . . . , Xn ≥ x) =

[
1− F (x)

]n
,

therefore, FX(1)
(x) = 1−

[
1− F (x)

]n
, and fX(n)

(x) = F ′X(n)
(x) = n f(x)

[
1− F (x)

]n−1
.

Example. Let X1, . . . , Xn be independent exponential random variables with mean β. The pdf is

f(x) =
1

β
exp{−x

β
}, and the cdf is F (x) = 1− exp{−x

β
}, x > 0, β > 0. Therefore,

(a) the i-th order statistic has the pdf

fX(i)
(x) =

n!

(i− 1)!(n− i)!
[
1− exp{−x

β
}
]i−1 1

β
exp{−x

β
}
[

exp{−x
β
}
]n−i

=
n!

(i− 1)!(n− i)!
1

β
exp{−x (n− i+ 1)

β
}
[
1− exp{−x

β
}
]i−1

.

(b) The pdf of the maximum is derived by letting i = n. We have fX(n)
(x) =

n

β
exp{−x

β
}
[
1 −

exp{−x
β
}
]n−1

. We can also notice that the cdf of the maximum is F (x) =
(
1− exp{−x

β
}
)n
, which

can be obtained by either integrating the density or arguing that all n observations must not exceed
x, if the maximum doesn't exceed x.

(c) In particular, for i = 1, the pdf of the minimum is fX(1)
(x) =

n

β
exp{−n

β
x}, that is, X(1) has

an exponential distribution with mean
β

n
. 2
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NEW MATERIAL: MAXIMUM LIKELIHOOD ESTIMATION METHOD

De�nition. Suppose X1, . . . , Xn are iid random variables with a common pmf (discrete case) or
pdf (continuous case) f(x; θ). The likelihood function is a function of the unknown parameter θ
that is given by

L(θ) = L(θ |X1, . . . , Xn) =
n∏
i=1

f(Xi; θ).

Note. The likelihood function represents the probability to observe the data points that have been
observed, namely, X1, . . . , Xn.

De�nition. An estimator θ̂ = θ̂(X1, . . . , Xn) is called the maximum likelihood estimator (MLE) of
θ if it maximizes the likelihood function L(θ), that is, it maximizes the probability to observe the
data points that have been observed. To �nd an MLE of θ, one needs to di�erentiate L(θ) with
respect to θ, set the derivative equal to zero, and solve for θ. Technically speaking, one has to show
also that the second derivative of L(θ) with respect to θ is negative at the point where the �rst
derivative is zero, so that the attained extremum is a maximum not minimum, but for all basic
distributions the extremum is in fact a maximum, so there is no need to verify the condition for the
second derivative.

Example (Bernoulli distribution). Let X1, . . . , Xn
iid∼ Ber(p). The likelihood function is

L(p |X1, . . . , Xn) =
n∏
i=1

pXi(1− p)1−Xi = p
∑n

i=1 Xi(1− p)n−
∑n

i=1 Xi .

It is easier to work with the log-likelihood function, the natural logarithm of the likelihood
function,

lnL(p |X1, . . . , Xn) =
n∑
i=1

Xi ln p+ (n−
n∑
i=1

Xi) ln(1− p).

Note. Since the logarithm is a strictly increasing function, the maximum of the log-likelihood
function is attained at the same point where the maximum of the likelihood function itself is

attained. Put mathematically,
d lnL(θ)

dθ
=
L′(θ)

L(θ)
= 0 if and only if L′(θ) = 0.

Further, to maximize the log-likelihood function, we equate to zero the �rst partial derivative of
lnL(p |X1, . . . , Xn) with respect to p, and solve for p. We obtain

0 =
∂ lnL(p |X1, . . . , Xn)

∂p
=

∑n
i=1 Xi

p
− n−

∑n
i=1 Xi

1− p
.

Thus, p̂, the maximum likelihood estimator of p, satis�es the equation∑n
i=1 Xi

p̂
=
n−

∑n
i=1 Xi

1− p̂
,
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from where
n∑
i=1

Xi − p̂

n∑
i=1

Xi = np̂ − p̂

n∑
i=1

Xi, or p̂ =
∑n

i=1 Xi/n = X̄. The MLE p̂ = X̄

represents the proportion of successes among n observations, and is an intuitive estimator of p, the
probability of a success. For instance, if we observe a sequence 0, 1, 1, 1, 0, 0, 1, 0, 1, the MLE of
p is p̂ =proportion of ones= 5/9. 2

Example (geometric distribution). LetX1, . . . , Xn
iid∼ Geom(p) with pmf p(x) = p(1−p)x−1, x =

1, 2, . . . . The likelihood function has the form

L(p |X1, . . . , Xn) =
n∏
i=1

p (1− p)Xi−1 = pn (1− p)
∑n

i=1 Xi−n.

The log-likelihood function is

lnL(p |X1, . . . , Xn) = n ln p+
( n∑
i=1

Xi − n
)

ln(1− p).

The MLE p̂ solves the equation

0 =
∂ lnL(p |X1, . . . , Xn)

∂p

∣∣∣
p=p̂

=
n

p̂
−
∑n

i=1 Xi − n
1− p̂

,

and so,

p̂ =
n∑n

i=1 Xi

=
1

X̄
.

Since the mean of Xi's is equal to 1/p, the MLE is an estimator of p derived from estimating the
mean by the sample mean X̄. 2

Example (Poisson distribution). Let X1, . . . , Xn
iid∼ Poi(λ). The likelihood function is

L(λ |X1, . . . , Xn) =
n∏
i=1

λXi exp{−λ}
Xi!

=
[ n∏
i=1

1

Xi!

]
λ
∑n

i=1 Xi exp{−nλ},

and the log-likelihood function takes the form

lnL(λ |X1, . . . , Xn) = ln
[ n∏
i=1

1

Xi!

]
+

n∑
i=1

Xi lnλ− nλ.

The MLE λ̂ is the solution of the equation

0 =
∂ lnL(λ |X1, . . . , Xn)

∂λ

∣∣∣
λ=λ̂

=

∑n
i=1 Xi

λ̂
− n.
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Hence,

λ̂ =

∑n
i=1 Xi

n
= X̄.

Indeed, it is intuitive to estimate the mean λ by the sample meanX̄. For example, let 4, 4, 2, 0, 3,
1, 1, 5, 3, 1 come from a Poisson distribution with parameter λ. The MLE of λ is λ̂ = X̄ = 24/10 =
2.4. 2

Example (uniform distribution). Let X1, . . . , Xn
iid∼ Unif(0, θ). The likelihood function is

derived as

L(θ |X1, . . . , Xn) =
n∏
i=1

1

θ
I{0 ≤ Xi ≤ θ} =

1

θn
I{0 ≤ X(n) ≤ θ}.

Here I{A} denotes the indicator function of an event A, that is, it is equal to 1 if A occurs, and 0,
otherwise. The last equality is justi�ed by noticing that the events {0 ≤ Xi ≤ θ} occur simultane-
ously for all i = 1, . . . , n, if and only if the event {0 ≤ X(n) ≤ θ} occurs.

Next, we plot the likelihood function L(θ) = L(θ |X1, . . . , Xn) = 1/θn, θ ≥ X(n), against θ to see
where it attains the maximum value.

As seen on the graph, the maximum is attained at X(n), thus θ̂ = X(n) is the MLE of θ. On intuitive
level, if X1, . . . , Xn are observed, and we know that each of them doesn't exceed θ, then our best
guess about the value of θ is the maximum of all the observations.

For example, suppose the observations are 0.156, 0.324, 0.011, 0.896, 0.376, 0.423, 0.799, and 0.206,
and we know that they come from a uniform distribution of the interval [0, θ]. The MLE of θ is the

maximum of these observations which is θ̂ = 0.896. 2
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Example (exponential distribution). Let X1, . . . , Xn
iid∼ Exp with mean β. The likelihood

function is written as

L(β |X1, . . . , Xn) =
n∏
i=1

1

β
exp{−Xi/β} =

1

βn
exp{−

n∑
i=1

Xi/β},

and the log-likelihood function takes the form

lnL(β |X1, . . . , Xn) = −n ln β −
∑n

i=1 Xi

β
.

The maximum likelihood estimator of β satis�es the equation

0 =
∂ lnL(β |X1, . . . , Xn)

∂β

∣∣∣
β=β̂

= −n
β̂

+

∑n
i=1 Xi

β̂2
.

From here,

β̂ =

∑n
i=1 Xi

n
= X̄.

We see that it is only reasonable to estimate the mean β by the sample mean X̄. 2

Example (shifted exponential distribution). Let X1, . . . , Xn
iid∼ f(x; θ) = exp{−(x−θ)}, x >

θ. This distribution is called shifted exponential distribution. It is an exponential distribution
with mean 1 shifted by θ. Its mean is equal 1 + θ and variance is 1. We need to �nd the MLE of
θ. Note that since the range of x depends on θ, the MLE is an order statistics. The log-likelihood
function has the form

L(θ) =
n∏
i=1

exp{−(Xi−θ)} I{Xi ≥ θ} = exp{−
n∑
i=1

(Xi−θ)} I{X(1) ≥ θ} = exp{−n(X̄−θ)} I{X(1) ≥ θ}.

This is an exponentially increasing function of θ which reaches its maximum in the rightmost point
X(1). Thus, the MLE of θ is the minimum of the observations. 2

Note. Like in the case of uniform and shifted exponential distributions, if the range of x depends
on θ, the MLE of θ is always an extreme order statistic (minimum or maximum).

Example (normal distribution). Let X1, . . . , Xn
iid∼ N(µ, σ2) where both, µ and σ are unknown.

First, we obtain the likelihood function. We write

L(µ, σ2 |X1, . . . , Xn) =
n∏
i=1

1√
2πσ2

exp
{
− (Xi − µ)2

2σ2

}
12



=
1

(2πσ2)n/2
exp

{
−
∑n

i=1 (Xi − µ)2

2σ2

}
.

Next, we �nd the log-likelihood function as

lnL(µ, σ2 |X1, . . . , Xn) = −n
2

ln(2π)− n

2
lnσ2 −

∑n
i=1 (Xi − µ)2

2σ2
.

The maximum likelihood estimators µ̂ and σ̂2 are solutions of the system of two equations
0 =

∂ lnL(µ, σ2 |X1, . . . , Xn)

∂µ

∣∣∣ µ=µ̂,
σ2=σ̂2

=

∑n
i=1 (Xi − µ̂)

σ̂2
,

0 =
∂ lnL(µ, σ2 |X1, . . . , Xn)

∂σ2

∣∣∣ µ=µ̂,
σ2=σ̂2

= − n

2σ̂2
+

∑n
i=1 (Xi − µ̂)2

2σ̂4
,

so

µ̂ =

∑n
i=1 Xi

n
= X̄, and σ̂2 =

∑n
i=1 (Xi − X̄)2

n
.

Since µ is the mean of the normal distribution, the estimator is indeed intuitive. The variance is
estimated by the average squared distance between each observation and the sample mean, which
is a natural measure of spread. 2

Example (Bernoulli distribution with a constraint). Let X1, . . . , Xn
iid∼ Ber(p), where p is

constrained by the condition p ≤ 1/5. In a previous example we have shown that the maximum of
the likelihood function

L(p) = L(p |X1, . . . , Xn) = p
∑n

i=1 Xi(1− p)n−
∑n

i=1 Xi

is attained when p = X̄.

We will plot this likelihood function against values of p when X̄ is on either side of 1/5 to see where
the maximum of this function is attained on [0, 1/5].
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From the graphs, if 0 ≤ X̄ ≤ 1/5, then the maximum of L(p) on the interval 0 ≤ p ≤ 1/5
is attained at X̄, whereas when X̄ > 1/5, then the maximum of the likelihood function on this
interval is attained at 1/5. Thus, the MLE of p is

p̂ =

{
X̄, if 0 ≤ X̄ ≤ 1/5,

1/5, if X̄ > 1/5.
2

Example(exponential distribution with a constraint). LetX1, . . . , Xn
iid∼ f(x; θ) = 1

β
e−x/β, x >

0, with an additional constraint that β > 4. We know from a previous example that in the general

case of β > 0, the likelihood function L(β) =
1

βn
exp{−

n∑
i=1

Xi/β} attains its maximum at β̂ = X̄.

In this case, the values of β are bounded from below by 4. The two graphs present two possible
scenarios: when 0 ≤ X̄ < 4 and when X̄ ≥ 4.

As seen on the graphs, the maximum of the likelihood function is attained on [4,∞) at β̂ = 4 if

0 ≤ X̄ < 4, and at β̂ = X̄, if X̄ ≥ 4. 2

Example (discrete distribution). Let X1, . . . , Xn
iid∼ f(x; θ) where the pmf f(x; θ) is given by

the table:
x

θ 1 2 4
0 1/4 1/2 1/4
1/3 1/2 0 1/2
1/4 3/5 1/5 1/5

Suppose the observations are X1 = 1, X2 = 4, and X3 = 2. We need to �nd the MLE of θ. The
likelihood function is calculated as
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L(θ;X1, X2, X3) = f(1; θ)f(4; θ)f(2; θ) =


(1/4)(1/4)(1/2) = 0.03125, if θ = 0,

(1/2)(1/2)(0) = 0, if θ = 1/3,

(3/5)(1/5)(1/5) = 0.024, if θ = 1/4.

The largest value of the likelihood function is 0.03125 and corresponds to the MLE θ̂ = 0. 2.

Example (discrete distribution). Suppose X has pmf given in the table below.

x 0 1 2 3
p(x) 3θ/5 2θ/5 2(1− θ)/5 3(1− θ)/5

Suppose we observe 0, 2, 1, 3, 0, 0, 3, 1, 2, 2, 0, 1, and 1. The likelihood function can be written as

L(θ) =
(3θ

5

)4 (2θ

5

)4(2(1− θ)
5

)3(3(1− θ)
5

)2

.

The log-likelihood function has the form lnL(θ) = 4 ln θ+4 ln θ+3 ln(1−θ)+2 ln(1−θ)+constant.

We take the �rst derivative and set it equal to zero. We obtain L′(θ) =
4

θ
+

4

θ
− 3

1− θ
− 2

1− θ
= 0,

or, equivalently,
8

θ
=

5

1− θ
. Solving for θ, we get θ̂ = 8/13. 2

Theorem (Functional Invariance of MLE). Suppose X1, . . . , Xn
iid∼ pmf or pdf f(x; θ). Let g

be some continuous function and let θ̂ denote the MLE of θ. Then the MLE of g(θ) can be computed

as ĝ(θ) = g(θ̂).

Example (Bernoulli distribution - function of parameter). Let X1, . . . , Xn
iid∼ Ber(p).

Suppose we need to �nd the MLE of the variance Var(X1) = p(1− p). We know that the MLE of
p is p̂ = X̄, and by the functional invariance of MLE theorem, the MLE of the variance of X1 is
V̂ar(X1) = p̂(1− p̂) = X̄(1− X̄). 2

Example (Poisson distribution - function of parameter). Let X1, . . . , Xn
iid∼ X ∼ Poi(λ).

Suppose we need to �nd the MLE of P(X1 = 0) = exp{−λ}. We know that the MLE of λ is λ̂ = X̄.

So, by the invariance of MLE theorem, the MLE of P(X1 = 0) is P̂(X1 = 0) = exp{−X̄}. Similarly,

the MLE of, say, P(X1 = 2) =
λ2

2
exp{−λ} is P̂(X1 = 2) =

X̄2

2
exp{−X̄}. 2

Example (uniform distribution - function of parameter). Let X1, . . . , Xn
iid∼ Unif(0, θ).

Suppose we need to �nd the MLE of Var(X1) = θ2/12. As we already know that the MLE of θ

15



is θ̂ = X(n). Applying the theorem on functional invariance of MLE, we get that the MLE of the

variance is V̂ar(X1) = X2
(n)/12. 2

Example (variation of Bernoulli distribution - function of parameter). SupposeX1, . . . , Xn

are iid with the pmf p(0) = e−θ and p(1) = 1 − e−θ. Assume that we need to �nd the MLE of θ.
Denote by p = 1 − e−θ. Here p is the probability of a success for a Bernoulli distribution and we
already know that the MLE of p is p̂ = X̄. Now we solve for θ the equation p = 1−e−θ. We get θ =
− ln(1− p), and therefore, by the invariance principle, the MLE θ̂ = − ln(1− p̂) = − ln(1− X̄). 2

METHOD OF MOMENTS ESTIMATION

De�nition. Suppose X1, . . . , Xn are iid random variables with a common distribution that de-
pends on k parameters θ1, . . . , θk. The method of moments (MM) estimators of the parameters
solve the system of k equations: 

E(X1) =

∑n
i=1 Xi

n
= X̄,

E(X2
1 ) =

∑n
i=1 X

2
i

n
,

E(X3
1 ) =

∑n
i=1 X

3
i

n
,

· · ·

E(Xk
1 ) =

∑n
i=1 X

k
i

n
.

That is, in each equation the theoretical moment is equated to the corresponding empirical moment.

Example (Bernoulli distribution). Let X1, . . . , Xn
iid∼ Ber(p). To �nd the MM estimator of p,

we equate the theoretical and empirical �rst moments. We have

E(X1) = p =

∑n
i=1 Xi

n
= X̄.

The solution is p̂ = X̄, and, thus, the MM estimator coincides with the MLE for p. 2

Example (geometric distribution). Let X1, . . . , Xn
iid∼ Geom(p). The MM estimator for p

satis�es

E(X1) =
1

p
= X̄.

Hence, p̂ = 1/X̄, which is the same as the MLE for p. 2
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Example (Poisson distribution). Let X1, . . . , Xn
iid∼ Poi(λ). The MM estimator for λ is the

solution of the equation
E(X1) = λ = X̄,

and so, λ̂ = X̄. It is the same as the MLE. 2

Example (uniform distribution). Let X1, . . . , Xn
iid∼ Unif(0, θ). To �nd the MM estimator for

θ we write

E(X1) =
θ

2
= X̄,

thus, θ̂ = 2X̄. This estimator is not the same as X(n), the MLE of θ. Moreover, for some obser-
vations, 2X̄ is smaller than X(n), and hence, the MM estimator doesn't always make sense. For
example, if X1 = 1, X2 = 1, X3 = 2, and X4 = 8. Then 2X̄ = 6, whereas X(4) = 8, so we have an
observation that exceeds our MM estimate of θ. 2

Example (exponential distribution). Let X1, . . . , Xn
iid∼ Exp with mean β. The MM estimator

for β is the solution of the equation E(X1) = β = X̄, thus, β̂ = X̄, and is equal to the MLE. 2

Example (normal distribution). Let X1, . . . , Xn
iid∼ N(µ, σ2). To �nd the MM estimators of µ

and σ2, we equate the �rst and second theoretical and empirical moments, respectively:
E(X1) = µ =

∑n
i=1 Xi

n
= X̄,

E(X2
1 ) = σ2 + µ2 =

∑n
i=1 X

2
i

n
.

The solution of this system is µ̂ = X̄, and σ̂2 =

∑n
i=1 X

2
i

n
− X̄2 =

∑n
i=1(Xi − X̄)2

n
. Note that the

MM estimators of µ and σ2 coincide with the corresponding MLEs. 2

PROPERTIES OF ESTIMATORS: UNBIASEDNESS AND CONSISTENCY

Let X1, . . . , Xn
iid∼ pmf or pdf f(x; θ). We can look at di�erent estimators of θ, for example,

θ̂MLE, θ̂MM , θ̂1 = X1, θ̂2 = (X1 + X2)/2, and θ̂3 = 1. Which one is better? Good estimators should
have two properties: (i) unbiasedness, and (ii) consistency.

De�nition. An estimator θ̂ is called unbiased if E(θ̂) = θ. An estimator that is not unbiased

is called biased. Simply put, unbiasedness means that θ̂, on average, estimates θ. It doesn't
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systematically underestimates or overestimates it.

De�nition. An estimator θ̂ is a function of X1, . . . , Xn. We will index this estimator by n and
write θ̂n. This estimator is a consistent estimator of θ if it is unbiased and Var(θ̂n)→ 0 as n→∞.

Note that a consistent estimator is necessarily unbiased.

Example (Bernoulli distribution). Let X1, . . . , Xn
iid∼ Ber(p), and consider p̂ = X̄, the MLE

and MM estimator of p. This estimator is unbiased because E(p̂) = E(X̄) = E(X1) = p. The
estimator is consistent since Var(X̄) = Var(X1)/n = p(1− p)/n→ 0 as n→∞. 2.

Note: For any distribution, an estimator X̄ is an unbiased estimator of the mean since E(X̄) =
E(X1). And also, this estimator is consistent because Var(X̄) = Var(X1)/n → 0 as n→∞.

Example (geometric distribution). Let X1, . . . , Xn
iid∼ Geom(p). We will show that the MLE

and MM estimator p̂ = 1/X̄ is a biased estimator of p. The sum
∑n

i=1 Xi of n independent Geom(p)
random variables has a negative binomial distribution with parameters n and p. Its pmf can be
written as

P
( n∑
i=1

Xi = x
)

=

(
x− 1

n− 1

)
pn(1− p)x−n, x = n, n+ 1, . . . .

So, we write

E(p̂) = E
( 1

X̄

)
= E

( n∑n
i=1 Xi

)
=
∞∑
x=n

n

x

(
x− 1

n− 1

)
pn(1− p)x−n 6= p.

Thus, the estimator is biased, and so it is not consistent. 2

Example (Poisson distribution). Let X1, . . . , Xn
iid∼ Poi(λ). The MLE and MM estimator

λ̂ = X̄ is an unbiased and consistent estimator of λ since, as pointed out above E(X̄) = E(X1) = λ
and Var(X̄) = Var(X1)/n = λ/n →∞ as n increases. 2

Example (uniform distribution). Let X1, . . . , Xn
iid∼ Unif(0, θ). Consider �rst the MM estima-

tor 2X̄. Its mean is E(2X̄) = 2E(X1) = (2)(θ/2) = θ, so this estimator is unbiased. Further, this
estimator is consistent since

Var(2X̄) = 4 · Var(X1)

n
=

4

n
· θ

2

12
=
θ2

3n
→ 0, as n→∞.
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Next, consider the MLE estimator X(n). We will show that it is a biased estimator of θ and modify it
to give an unbiased estimator. We start by �nding the cdf of X(n). The cdf of a Unif(0, θ) random
variable is F (x) = x/θ, 0 ≤ x ≤ θ, and therefore, the cdf of the maximum is FX(n)

(x; θ) = F n(x) =
xn

θn
, 0 ≤ x ≤ θ. From here, the density of X(n) is fX(n)

(x; θ) = F ′X(n)
(x; θ) = nxn−1/θn, 0 ≤ x ≤ θ.

And thus the expected value is derived as

E(X(n)) =

∫ θ

0

xn
xn−1

θn
dx =

n

n+ 1
θ =

(
1− 1

n+ 1

)
θ < θ.

We can see that X(n) is a biased estimator of θ, and, in fact, it underestimates θ by 1/(n+ 1)th of

θ, on average. An unbiased estimator of θ based on the maximum value is
n+ 1

n
X(n).

Note: If θ̂ is biased and E(θ̂) = cθ, then θ̂/c is an unbiased estimator of θ since E(θ̂/c) =

(1/c)E(θ̂) = (1/c)(cθ) = θ.

Finally, because X(n) is biased, it is not consistent. However, the unbiased estimator
n+ 1

n
X(n) is a

consistent estimator of θ as shown via some algebraic manipulations. We write Var
(n+ 1

n
X(n)

)
=(n+ 1

n

)2

Var(X(n)). Next, Var(X(n)) = E(X2
(n)) −

(
E(X(n))

)2

=

∫ θ

0

x2 nx
n−1

θn
dx −

( n

n+ 1
θ
)2

=( n

n+ 2
− n2

(n+ 1)2

)
θ2 = nθ2

(n2 + 2n+ 1− n2 − 2n

(n+ 2)(n+ 1)2

)
=

nθ2

(n+ 2)(n+ 1)2
. Thus, Var

(n+ 1

n
X(n)

)
=(n+ 1

n

)2

Var(X(n)) =
θ2

n(n+ 2)
→ 0 as n→∞, and so the estimator is consistent. 2

Example (exponential distribution). Let X1, . . . , Xn
iid∼ Exp with mean β. The MLE and MM

estimators of β are X̄, and as noted earlier, it is an unbiased and consistent estimator. 2

Example (normal distribution). Let X1, . . . , Xn
iid∼ N(µ, σ2). The MLE and MM estimator of

µ, X̄, is unbiased and consistent. The MLE and MM estimator of σ2 is σ̂2 =
1

n

n∑
i=1

(Xi − X̄)2. We

will show that it is biased. We write

E(σ̂2) = E
[ 1

n

n∑
i=1

(Xi − X̄)2
]

=
1

n
E
( n∑
i=1

X2
i − n X̄2

)
= E(X2

1 )− E(X̄2) = Var(X1) + (E(X1))2 −
[
Var(X̄) + (E(X̄))2

]
= σ2 + µ2 −

(σ2

n
+ µ2

)
=
n− 1

n
σ2.
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Hence, s2 =
n

n− 1
σ̂2 =

1

n− 1

n∑
i=1

(Xi− X̄)2 is an unbiased estimator of σ2. Its variance is equal to

2σ4

n− 1
. The easiest way to see that is by using the fact that

(n− 1)s2

σ2
∼ χ2(n−1). The variance of a

random variable with a χ2(k) distribution is 2k. Therefore, Var(s2) =
σ4

(n− 1)2
Var

((n− 1)s2

σ2

)
=

σ4

(n− 1)2
· 2(n− 1) =

2σ4

n− 1
→ 0, as n→∞. Hence, s2 is a consistent estimator of σ2. 2

PROPERTY OF ESTIMATORS: SUFFICIENCY

De�nition. Any function of observations x1, . . . , xn is called statistic.

Note that a parameter estimator θ̂ is a statistic since it depends on observations. We write
θ̂ = θ̂(x1, . . . , xn).

Here is a formal de�nition of a su�cient statistic.

De�nition. Let X1, . . . , Xn
iid∼ f(x|θ). A statistic θ̂ = θ̂(X1, . . . , Xn) is called a su�cient statis-

tic for θ if the conditional distribution of X1, . . . , Xn given θ̂ doesn't depend on θ.

On an intuitive level, a statistic is su�cient for θ if it alone can be used to estimate θ. No additional
information about the sample is needed.

Example. Suppose X1, . . . , Xn
iid∼ N(µ, 1). Note that X̄ ∼ N(µ, 1/n). We know that X̄ is an

estimator of µ, so X̄ (or, equivalently, (
∑n

i=1 Xi, n)) is a su�cient statistic for µ. We can see that
it satis�es the formal de�nition. The conditional joint density of X1, . . . , Xn given X̄ can be found
as follows.

fX1,...,Xn|X̄(x1, . . . , xn | x̄) =
fX1(x1) · · · fXn(xn)

fX̄(x̄)
(where x1 + · · ·+ xn = nx̄)

=
(2π)−n/2

(2π/n)−1/2
exp

{
− 1

2

(
(x1 − µ)2 + (xn − µ)2 − n(x̄− µ)2

)}
=
√
n (2π)−(n−1)/2 exp

{
− 1

2

(
x2

1 + · · ·+ x2
n − 2nx̄ µ+ nµ2 − nx̄2 + 2nx̄ µ− nµ2

)}
=
√
n (2π)−(n−1)/2 exp

{
− 1

2

(
x2

1 + · · ·+ x2
n − nx̄2

)}
,

which doesn't depend on µ. 2
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In practice, to �nd a su�cient statistic for a parameter, the following theorem is utilized.

Factorization Theorem. Let X1, . . . , Xn
iid∼ f(x; θ). Then θ̂ = θ̂(X1, . . . , Xn) is a su�cient statis-

tic for θ if and only if there exist functions g and h such that

n∏
i=1

f(Xi | θ) = g(X1, . . . , Xn)h(θ̂, θ).

Proposition. Any function of a su�cient statistic is su�cient.

Example. By this proposition, if, for instance,
∑n

i=1 Xi is su�cient, then X̄ is also su�cient. 2

Example (Bernoulli distribution). Suppose X1, . . . , Xn
iid∼ Ber(p). To �nd a su�cient statistic

for p, we apply the Factorization theorem. We write

n∏
i=1

f(Xi | p) =
n∏
i=1

pXi(1− p)1−Xi = p
∑
Xi(1− p)n−

∑
Xi .

Now, since
∑
Xi cannot be factored out (that is, separated from p in a multiplicative fashion), it

has to be a su�cient statistic. We have p̂ =
∑
Xi, h(p̂, p) = pp̂(1 − p)n−p̂ and g(X1, . . . , Xn) ≡ 1.

Note that here we assume that n is a known constant. Also, by the above proposition, since
∑
Xi

is su�cient for p, X̄ is also su�cient. 2

Example (geometric distribution). Suppose X1, . . . , Xn
iid∼ Geom(p). Using the Factorization

theorem, we write

n∏
i=1

f(Xi | p) =
n∏
i=1

p(1− p)Xi−1 = pn(1− p)
∑
Xi−n.

Here p̂ =
∑
Xi is a su�cient statistic, h(p̂, p) = pn(1−p)p̂−n and g(X1, . . . , Xn) ≡ 1. Consequently,

X̄ is also su�cient. 2

Example (Poisson distribution). Suppose X1, . . . , Xn
iid∼ Poi(λ). Applying the Factorization

theorem, we get

n∏
i=1

f(Xi |λ) =
n∏
i=1

λXi

Xi!
e−λ =

( n∏
i=1

Xi!
)−1

λ
∑
Xi e−nλ.

Denoting by λ̂ =
∑
Xi a su�cient statistic for λ, we have h(λ̂, λ) = λ

∑
Xi e−nλ and g(X1, . . . , Xn) =(∏n

i=1 Xi!
)−1

. Consequently, X̄ is also su�cient. 2
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Example (uniform distribution). Suppose X1, . . . , Xn
iid∼ Unif(0, θ). By the Factorization the-

orem,

n∏
i=1

f(Xi | θ) =
n∏
i=1

1

θ
I(0 ≤ Xi ≤ θ) = I(0 ≤ X(1))

1

θn
I(X(n) ≤ θ).

We see that θ̂ = X(n) is su�cient for θ. The functions are h(θ̂, θ) =
1

θn
I(θ̂ ≤ θ) and g(X1, . . . , Xn) =

I(0 ≤ X(1)). 2

Example (exponential distribution). Let X1, . . . , Xn be iid exponential random variables with
mean β. We use the Factorization Theorem and write

n∏
i=1

f(Xi | β) =
n∏
i=1

1

β
e−Xi/β =

1

βn
exp{−

∑
Xi/β}.

Now, we identify β̂ =
∑
Xi as a su�cient statistic for β that gives h(β̂, β) = 1

βn exp{−β̂/β} and
g(X1, . . . , Xn) ≡ 1. Hence, X̄ is also su�cient. 2

Example (normal distribution). Assume X1, . . . , Xn
iid∼ N(µ, σ2). Applying the Factorization

Theorem, we write

n∏
i=1

f(Xi |µ, σ2) =
n∏
i=1

1√
2πσ2

exp
{
− (Xi − µ)2

2σ2

}
= (2π)−n/2 (σ2)−n/2 exp

{
−
∑

X2
i /(2σ

2) + (µ/σ2)
∑

Xi − nµ2/(2σ2)
}
.

It is clear that µ̂ =
∑
Xi is su�cient for µ and σ̂2 = (

∑
Xi,
∑
X2
i ) is su�cient for σ2. The function

g in this case is g(X1, . . . , Xn) = (2π)−n/2. As a result, X̄ is su�cient for µ, and

s2 =
1

n− 1

∑
(Xi − X̄)2 =

1

n− 1

(∑
X2
i − nX̄2

)
=

1

n− 1

(∑
X2
i −

1

n
(
∑

Xi)
2
)

is su�cient for σ2. 2

Why do we need su�cient statistics? In a nutshell, unbiased su�cient statistics have the smallest
variance among all unbiased statistics and thus are the best possible. Before formulating this state-
ment in the form of a theorem, let's consider an example of a shifted exponential distribution.

Example (shifted exponential distribution). Consider X1, . . . , Xn
iid∼ f(x | θ) = e−(x−θ), x >

θ. First, we �nd the method of moments estimator and study its properties. We have
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E(X1) =

∫ ∞
θ

x e−(x−θ) dx = {y = x−θ} =

∫ ∞
0

(y+θ) e−y dy =

∫ ∞
0

y e−y dy+ θ

∫ ∞
0

e−y dy = 1+θ,

hence 1+ θ̂MM = X̄ and θ̂MM = X̄−1. It is an unbiased estimator of θ since E(θ̂MM) = E(X̄−1) =
E(X1)− 1 = 1 + θ − 1 = θ, Its variance is equal to

Var(θ̂MM) = Var(X̄ − 1) = Var(X̄) =
Var(X1)

n

=
1

n

∫ ∞
θ

(x− θ − 1)2 e−(x−θ) dx = {y = x− θ} =
1

n

∫ ∞
0

(y − 1)2 e−y dy =
1

n
.

Consider now the maximum likelihood estimator. We have shown earlier that θ̂MLE = X(1). Its cdf is

FX(1)
(x) = 1− P(X(1) ≥ x) = 1− P(X1 ≥ x) · · · · · P(Xn ≥ x) = 1− e−n(x−θ), x > θ.

The pdf is fX(1)
(x) = n e−n(x−θ), x > θ. The mean is

E(X(1)) =

∫ ∞
θ

xn e−n(x−θ) dx = {y = n(x− θ), dy = ndx} =

∫ ∞
0

(y + nθ) e−y
1

n
dy

=
1

n

∫ ∞
0

y e−y dy + θ

∫ ∞
0

e−y dy =
1

n
+ θ.

The variance is calculated as

Var(X(1)) =

∫ ∞
θ

(x− 1

n
−θ)2 n e−n(x−θ) dx = {y = n(x−θ), dy = ndx} =

∫ ∞
0

1

n2
(y−1)2 e−y dy =

1

n2
.

An unbiased estimator that is based on θ̂MLE = X(1) is θ̂ = X(1)− 1
n
. It is unbiased and its variance

is Var(θ̂) = Var(X(1)) = 1
n2 . Note that θ̂MM = X̄ − 1 and θ̂ = X(1) − 1

n
and both unbiased but

Var(θ̂) =
1

n2
<

1

n
= Var(θ̂MM) for all n > 1. It means that for every �xed n > 1, θ̂ performs better

than θ̂MM . Why is it so? Because θ̂ is based on a su�cient statistic X(1). To see this, we apply the
Factorization Theorem. We have

n∏
i=1

f(Xi | θ) =
n∏
i=1

e−(Xi−θ) I(Xi > θ) = exp{−
∑

Xi + nθ} I(X(1) > θ).

We see that X(1) has to be a su�cient statistic. The functions are g(X1, . . . , Xn) = exp{−
∑
Xi}

and h(X(1), θ) = exp{nθ} I(X(1) > θ). 2

Further, we state a theorem that explains not only what estimators perform better than others but
also how to �nd the best-performing estimators.
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THE RAO-BLACKWELL THEOREM

Theorem (Rao-Blackwell (R-B) Theorem). Let X1, . . . , Xn be iid with pmf or pdf f(x; θ),

and let u = u(X1, . . . , Xn) be a su�cient statistic for θ. Suppose θ̂ is an unbiased estimator of θ.
Consider a new estimator of θ de�ned as the conditional expected value

E(θ̂ |u) =

{∑
θ̂=x xP(θ̂ = x |u), in discrete case∫∞
−∞ x fθ̂(x |u) dx, in continuous case.

This estimator has the following properties: (i) it depends on the su�cient statistic u (by the def-

inition of conditional expectation); (ii) it is unbiased since E
(
E(θ̂ |u)

)
= E(θ̂) = θ (by the double-

expectation formula); and (iii) its variance is smaller than the variance of θ̂, that is, Var
(
E(θ̂ |u)

)
≤

Var(θ̂) (that's the main assertion of this theorem which we will not prove here).

Note. Calyampudi Radhakrishna (CR) Rao (b. 1920) is a celebrated Indian-American mathe-
matician and statistician (yes, aged 102), and David Blackwell (1919-2010) was a renown African-
American mathematician and statistician.

De�nition. An unbiased estimator with the smallest variance is called the uniform minimum
variance unbiased estimator (UMVUE) or the best estimator.

Remark. If an unbiased estimator of θ already depends on a su�cient statistic u, then it the
UMVUE and its performance cannot be improved. This is so because E(θ̂(u) |u) = θ̂(u).

Remark. Given a su�cient statistic u and any unbiased estimator θ̂ of θ, we can produce the
UMVUE of θ by computing the conditional expectation E(θ̂ |u). Generally speaking, computing
this conditional expectation is a formidable task, but in some special cases it is relatively easy and
explicit results exist. We will consider some examples later.

Remark. The UMVUE is necessarily unique. This statement needs a proof which is omitted here.

Example (Bernoulli distribution). Let X1, . . . , Xn be iid Ber(p) random variables. We know
that p̂MLE = p̂MM = X̄ and X̄ is an unbiased estimator and a su�cient statistic for p. Therefore,
by the R-B theorem, X̄ is the UMVUE of p. 2

Example (geometric distribution). Suppose X1, . . . , Xn
iid∼ Geom(p). We have proven earlier

that p̂MLE = p̂MM = 1/X̄ is a biased estimator of p. It means that it cannot be the best estimator
of p. 2
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Example (Poisson distribution). Let X1, . . . , Xn be iid Poi(λ) random variables. We have

shown that λ̂MLE = λ̂MM = X̄ which is unbiased and su�cient and hence, it is the UMVUE of
λ. 2

Example (uniform distribution). Consider X1, . . . , Xn
iid∼ Unif(0, θ). We know that θ̂MLE =

X(n) is a biased estimator of θ, but
n+ 1

n
X(n) is unbiased. Also, X(n) is a su�cient statistic. There-

fore, by the R-B theorem,
n+ 1

n
X(n) is the UMVUE estimator of θ.

Consider now the method of moments estimator θ̂MM = 2X̄. We know that it is an unbiased
estimator of θ, but it is not based on a su�cient statistic X(n) and thus, by the R-B theorem, it
can be improved upon by computing the conditional expectation E

(
2X̄ |X(n)

)
, which will be the

UMVUE of θ. Note that we know that the UMVUE is unique, and
n+ 1

n
X(n) is the UMVUE of

θ. Hence, we know that E
(
2X̄ |X(n)

)
must equal to

n+ 1

n
X(n). To verify that, we consider two

cases: (i) X(n) = X1 which happens with probability 1/n, and (i) X1 < X(n) which has probability
1− 1/n, and in this case, X1 ∼ Unif(0, X(n)). We write

E
(
2X̄ |X(n)

)
= 2E

(
X1 |X(n)

)
= 2

(
X(n)

1

n
+
X(n)

2

(
1− 1

n

))
=

2X(n)

n
+ X(n) −

X(n)

n
= =

X(n)

n
+ X(n) =

n+ 1

n
X(n). 2

Example (exponential distribution). Consider X1, . . . , Xn that are independent and exponen-

tially distributed with mean β. We have shown that β̂MLE = β̂MM = X̄ is an unbiased estimator
of β and X̄ is su�cient, therefore, it is the UMVUE estimator of β. 2

Example (normal distribution). Let X1, . . . , Xn be iid N(µ, σ2) random variables. We know
that µ̂MLE = µ̂MM = X̄ is unbiased and su�cient and therefore, is the best estimator (UMVUE)
of µ.

We also know that σ̂2
MLE = σ̂2

MM =
1

n

n∑
i=1

(Xi − X̄)2 is biased but s2 =
1

n− 1

n∑
i=1

(Xi − X̄)2 is an

unbiased estimator of σ2. It is based on a su�cient statistic (
∑
Xi,
∑
X2
i ), and therefore, s2 is the

UMVUE of σ2.

Further, recall that we have shown earlier that the variance of s2 is equal to
2σ4

n− 1
. The proof was

based on the fact that
(n− 1)s2

σ2
∼ χ2(n − 1) which variance is 2(n − 1). By the same token, we

can �nd the variance of σ̂2
MLE. It is computed as

25



Var(σ̂2
MLE) = Var

( 1

n

n∑
i=1

(Xi − X̄)2
)

=
1

n2
Var

( n∑
i=1

(Xi − X̄)2
)

=
σ4

n2
Var

((n− 1)s2

σ2

)
=

σ4

n2
· 2(n− 1) = 2σ4n− 1

n2
< 2σ4 1

n− 1
= Var(s2) for all n > 1.

How can it happen that s2 is the UMVUE and thus has the smallest possible variance, but we
produced an estimator with a smaller variance? The answer is that the estimator with the smaller
variance is a biased estimator of σ2. This illustrates that it is possible to come up with an estimator
with a smaller variance than the UMVUE but at the expense of unbiasedness. 2

Next, we consider a few examples, where the explicit form of the UMVUE is hard to guess but it
can be found by computing the conditional expectation in the R-B Theorem.

Example. Let X1, . . . , Xn be iid Poi(λ) random variables. Suppose we would like to �nd the

UMVUE of p(0) = P(X1 = 0) = e−λ. A natural candidate to try is the MLE e−λ̂ = e−X̄ but it is
a biased estimator of p(0). To convince ourselves, we compute its mean. Recall that the moment
generating function of X ∼ Poi(λ) is

MX(t)
def
= E

(
etX
)

=
∞∑
x=0

etxλx

x!
e−λ = e−λ

∞∑
x=0

(λ et)x

x!
= e−λ exp{λ et} = exp{λ(et − 1)}.

Thus,

E
(
e−X̄

)
= E

(
e−

1
n

(X1+···Xn)
)

= {by independence} = E
(
e−

1
n
X1
)
· · · · · E

(
e−

1
n
Xn
)

=
(

exp{λ
(
e−1/n − 1

)
}
)n

= exp{nλ
(
e−1/n − 1

)
} 6= e−λ.

Note that e−X̄ is asymptotically unbiased since for large n, E
(
e−X̄

)
= exp{nλ

(
e−1/n − 1

)
} ≈

exp
{
nλ
(
1− 1

n
− 1
)}

= e−λ. However, the UMVUE has to be unbiased for any �xed n.

Further, to �nd the UMVUE of e−λ we need to take any unbiased estimator and compute its
expected value conditioned on the value of a su�cient statistic X̄. Since we want to estimate a the-
oretic probability of zero, an estimator that always works as its unbiased estimator is the empirical

estimator P̂ (X1 = 0) =
# of zeros in the sample

n
=

∑n
i=1 I(Xi = 0)

n
. Indeed, its mean is

E
(∑n

i=1 I(Xi = 0)

n

)
= E

(
I(X1 = 0)

)
= (1)P(X1 = 0) + (0)P(X1 6= 0) = P(X1 = 0).

To produce the UMVUE of P(X1 = 0), we assume that
∑n

i=1 Xi = x and compute the conditional

expectation E
(∑n

i=1 I(Xi = 0)

n

∣∣ n∑
i=1

Xi = x
)
. The �nal answer will depend on x which we will
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replace with
∑n

i=1 Xi or better nX̄. We write

E
(∑n

i=1 I(Xi = 0)

n

∣∣ n∑
i=1

Xi = x
)

= E
(
I(X1 = 0) |

n∑
i−1

Xi = x
)

= (1)P(X1 = 0 |
n∑
i=1

Xi = x) + (0)P(X1 6= 0 |
n∑
i=1

Xi = x) = P(X1 = 0 |
n∑
i=1

Xi = x)

=
P(X1 = 0,

∑n
i=1 Xi = x)

P(
∑n

i=1 Xi = x)
=

P(X1 = 0,
∑n

i=2 Xi = x)

P(
∑n

i=1 Xi = x)

= {independence} =
P(X1 = 0)P(

∑n
i=2 Xi = x)

P(
∑n

i=1 Xi = x)

=
{ n∑

i=2

Xi ∼ Poi
(
(n− 1)λ

)
,

n∑
i=1

Xi ∼ Poi(nλ)
}

=
e−λ · ((n−1)λ)x

x!
e−(n−1)λ

(nλ)x

x!
e−nλ

=
(

1− 1

n

)x
=
(

1− 1

n

)nX̄
.

We procured the UMVUE of e−λ. It is
(

1− 1

n

)nX̄
. Note that as n increases, it tends to e−X̄ . Thus,

in the limit, it coincides with the MLE estimator. 2

Example. Let X1, . . . , Xn
iid∼ Ber(p). Suppose we need to �nd the UMVUE of p2. We can try an

MLE-based estimator p̂2 = X̄2. Its mean is E(X̄2) = Var(X̄) + (EX̄)2 =
Var(X1)

n
+ (EX1)2 =

p(1− p)
n

+ p2 6= p2, and thus, it is not an unbiased estimator.

We now resort to the R-B theorem. As an unbiased estimator of p2 we will take X1 ·X2. Indeed,
E(X1 · X2) = {independence} = EX1 · EX2 = p · p = p2. Conditioning on a su�cient statistic∑
Xi = x, we obtain

E
(
X1 ·X2 |

n∑
i=1

Xi = x
)

= P
(
X1 = 1, X2 = 1 |

n∑
i=1

Xi = x
)

=
P
(
X1 = 1, X2 = 1,

∑n
i=3 Xi = x− 2

)
P
(∑n

i=1 Xi = x
)

= {independence} =
P(X1 = 1)P(X2 = 1)P

(∑n
i=3 Xi = x− 2

)
P
(∑n

i=1 Xi = x
)

= {X1 ∼ Ber(p), X2 ∼ Ber(p),
n∑
i=1

Xi ∼ Bi(n, p),
n∑
i=3

Xi ∼ Bi(n− 2, p)}
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=
p · p ·

(
n−2
x−2

)
px−2(1− p)(n−2)−(x−2)(

n
x

)
px(1− p)n−x

=

(
n−2
x−2

)(
n
x

)
=

(n− 2)!

(x− 2)!(n− x)!
· x!(n− x)!

n!
=

x(x− 1)

n(n− 1)
=

nX̄(nX̄ − 1)

n(n− 1)
=

X̄(nX̄ − 1)

n− 1

is the UMVUE of p2. Note that as n increases, this estimator goes to the MLE X̄2. 2

Example. Let X1, . . . , Xn be iid exponential random variables with mean β. Suppose we need
to �nd P(X1 ≤ 2) = 1 − e−2/β. The MLE estimator 1 − e2/X̄ is not unbiased. We turn to the

R-B theorem. An unbiased estimator of P(X1 ≤ 2) is the empirical estimator
n∑
i=1

I(Xi ≤ 2)/n.

Conditioning on a su�cient statistic
∑
Xi = x, we compute

E
(∑n

i=1 I(Xi ≤ 2)

n

∣∣ n∑
i=1

Xi = x
)

= E
(
I(X1 ≤ 2)

∣∣ n∑
i=1

Xi = x
)

=

∫ 2

0

fX1|
∑n

i=1 Xi
(u|x) du =

∫ 2

0

fX1,
∑n

i=1 Xi
(u, x)

f∑n
i=1 Xi

(x)
du

=

∫ 2

0

fX1,
∑n

i=2 Xi
(u, x− u)

f∑n
i=1 Xi

(x)
du = {independence} =

∫ 2

0

fX1(u) f∑n
i=2 Xi

(x− u)

f∑n
i=1 Xi

(x)
du

=
{ n∑

i=1

Xi ∼ Gamma(n, β),
n∑
i=2

Xi ∼ Gamma(n− 1, β)
}

=

∫ 2

0

1
β
e−u/β (x−u)n−2

(n−2)!βn−1 e
−(x−u)/β

xn−1

(n−1)!βn e−x/β
du =

n− 1

xn−1

∫ 2

0

(x− u)n−2 du

= {y = u/x, dy = du/x} = (n− 1)

∫ 2/x

0

(1− y)n−2 dy = −(1− y)n−1
∣∣∣2/x
0

= 1− (1− 2/x)n−1.

Therefore, the UMVUE of P(X1 ≤ 2) is 1 −
(

1 − 2

nX̄

)n−1

. Note that as n goes to in�nity, this

estimator approaches the MLE 1− e−2/X̄ . 2
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INTERVAL ESTIMATOR

The estimators that we have been studying so far are called point estimators because they es-
timate an unknown parameter by a single value computed from the given sample. The major
drawbacks of point estimators are that they depend on data (for di�erent samples point estimators
are di�erent), and that the true parameter value is not equal to the estimated value. It is better to
compute interval estimators.

De�nition. Let X1, . . . , Xn
iid∼ f(x|θ), and let θ̂ be the point estimator of θ. An interval estima-

tor of θ has the form θ̂ ±margin of error.

Note. The margin of error is typically denoted by m. The endpoints of an interval estimator are
θ̂ −m and θ̂ +m. The length of an interval estimator is 2m.

Note. A theoretical construct θ̂ is referred to as estimator, whereas an empirically computed
value is termed estimate.

Properties of Interval Estimators. (1) For some samples, interval estimates will cover the true
population parameter, but for some samples, the interval estimates will be o�. We want to limit
these mistakes to some small pre-determined percent of the samples. For example, we might want
95% of the interval estimates to cover the true parameter, and, respectively, 5% to be o�. Or we
might want to increase the percentage of correct coverage to 99% and erroneous interval estimates
not to exceed 1%. What should be true about interval estimators is that intervals with larger per-
cent coverage (respectively, smaller percent of error) should be wider. For example, intervals with
99% true coverage should be wider than those with 95% true coverage. Indeed, if we take 5% of
erroneous intervals and compute a wider interval, then some of them will cover the true parameter,
leaving only 1% non-coverage.

(2) If we increase a sample size, the margin of error of an interval estimator should become smaller
(and thus, the interval should become narrower). If we sample the entire population, then we would
know the exact value of the parameter and so the interval estimator would collapse to a point.

De�nition. A 100(1− α)% con�dence interval (CI) for θ is of the form θ̂ ±m, where m is the
margin of error. For 100(1−α)% of samples, the CI covers the true parameter θ, and for 100α% of
samples, it doesn't cover. The quantity 100(1− α)% is called con�dence level.

Note. In view of the properties of interval estimators, margin of error of a CI should increase as
con�dence level increases, and decrease as sample size increases.

Note. Since a population parameter has a �xed value but endpoints of a CI are random (depend
on sample), it is correct to say that "CI covers the true parameter" and it is incorrect to say that
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"parameter lies within the CI".

Note. CIs that are mostly commonly used in practice are 90%, 95%, and 99% (with 95% CI being
the most widespread). The corresponding values of α are 0.1 for 90% CI, 0.05 for 95% CI, and 0.01
for 99% CI. Sometimes, especially in medical �eld, when even higher accuracy is desired, 99.9% CIs
are computed (the corresponding value of α is 0.001).

Example. Before we study a general theory of how CIs are constructed, we consider an example of
a sample X1, . . . , Xn drawn from normal distribution with unknown mean µ and a known variance
σ2. We would like to construct a 100(1 − α)% CI for µ. We know that µ̂ = X̄ is the UMVUE for

µ. By the CLT,
X̄ − µ
σ/
√
n
∼ N(0, 1).

De�ne by zα/2 the critical value (or a cut-o� point) for a standard normal distribution such that
P(Z > zα/2) = α/2 where Z ∼ N(0, 1). For α = 0.1 (90% CI), zα/2 = z0.05 = 1.645; for α = 0.05
(95% CI), zα/2 = z0.025 = 1.96; and for α = 0.01 (99% CI), zα/2 = z0.005 = 2.576.

Continuing with construction of a CI, we write

P
(
− zα/2 <

X̄ − µ
σ/
√
n
< zα/2

)
= 1− α.

From here,

P
(
X̄ − zα/2

σ√
n
< µ < X̄ + zα/2

σ√
n

)
= 1− α.

This de�nes a 100(1−α)% CI for µ, which covers the true µ with probability 1−α, or roughly, for
100(1− α)% of the samples. The CI for µ is[

X − zα/2
σ√
n
, X + zα/2

σ√
n

]
,

or, X ± zα/2
σ√
n
.

Note that the margin of error of this CI is m = zα/2
σ√
n
, and it satis�es the two properties discussed

earlier. It is directly proportional to the critical value zα/2 which increases as the con�dence level
increases, and it is inversely proportional to the sample size n, so as n grows, the margin of error
shrinks.

Example. Suppose a sample of size 100 is drawn from a normally distributed population with a
known standard deviation of 11.5. The sample mean is found to be 40.2. We would like to compute
a 95% CI for the mean. We are given that n = 100, α = 0.05, σ = 11.5, and X̄ = 40.2. We compute
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X̄ ± zα/2σ/
√
n = 40.2± (1.96)(11.5)/

√
100 = 40.2± 2.25 = [37.95, 42.45]. 2

CALCULATING REQUIRED SAMPLE SIZE FOR A GIVEN MARGIN OF ERROR

Assume that a population has a normal distribution with a known standard deviation σ, and sup-
pose we would like to compute a 100(1−α)% CI for the mean such that its margin of error doesn't
exceed a speci�c value m. How many individuals should we sample, that is, what is the required
sample size n that would give us the desired margin of error?

To answer this question, we proceed as follows. We are given σ, Zα/2, and the upper bound for the
margin of error m. We need to calculate n. We write

zα/2
σ√
n
≤ m,

from where

n ≥
(zα/2σ

m

)2

.

Thus, it is su�cient to take n as the smallest integer just above
(zα/2σ

m

)2

. It means that

n =
⌈(zα/2σ

m

)2⌉
.

Example. In the previous example, the margin of error was 2.25. Suppose we would like the mar-
gin of error not to exceed 2. We are given α = 0.05, zα/2 = 1.96, σ = 11.5, and m = 2. We need to
�nd a minimum required sample size. We compute

n =
⌈(zα/2σ

m

)2⌉
= n =

⌈((1.96)(11.5)

2

)2⌉
= n =

⌈
127.0129

⌉
= 128.

For a sample of size 128, the actual margin of error will be (1.96)(11.5)/
√

128 = 1.992 < 2. 2

PIVOTAL METHOD FOR CONSTRUCTION OF CONFIDENCE INTERVALS

De�nition. Suppose X1, . . . , Xn ∼ f(x|θ). A pivotal quantity (or pivot) is a random variable
that depends on X1, . . . , Xn and θ which distribution doesn't depend on θ.

31



Example. ForX1, . . . , Xn ∼ N(µ, σ2), the random variable
X̄ − µ
σ/
√
n
∼ N(0, 1) is a pivotal quantity. 2

How to construct a CI based on a pivotal quantity? Let T (X1, . . . , Xn, θ) denote a pivotal
quantity. To construct a 100(1−α)% CI for θ, we �rst �nd the cut-o� points of the middle interval
above which 100(1 − α)% of the area under the density curve lies. Call these cut-o�s z1−α/2 and
zα/2. We have P

(
z1−α/2 < T (X1, . . . , Xn, θ) < zα/2

)
= 1 − α. The next step is to solve the

double inequality for θ and obtain the lower and upper bounds of the con�dence interval [A,B]:
P(A < θ < B) = 1− α.

Example. In the case of normal distribution, we take the pivot
X̄ − µ
σ/
√
n
∼ N(0, 1) and two cut-o�s

z1−α/2 = −zα/2 (because of symmetry) and zα/2, and write

P
(
− zα/2 ≤

X̄ − µ
σ/
√
n
≤ zα/2

)
= 1− α.

Solving for µ, we get

P
(
X̄ − zα/2

σ√
n
≤ µ ≤ X̄ + zα/2

σ√
n

)
= 1− α,

which gives us the CI for µ as
[
X̄ − zα/2

σ√
n
, X̄ + zα/2

σ√
n

]
. 2

Example. Suppose n = 1 and X is exponentially distributed random variable with mean β. The

pdf is fX(x) =
1

β
e−x/β, x > 0, and the cdf is FX(x) = 1 − e−x/β, x > 0. The random variable

Y = X/β is a pivotal quantity since its cdf is

FY (y) = P(Y < y) = P
(X
β
< y
)

= P(X < yβ) = FX(yβ) = 1− e−(yβ)/β = 1− e−y,

which doesn't depend on β. Using this pivotal quantity, we write P(a < Y < b) = 1 − α where a
and b are the lower and upper cut-o�s for an exponential distribution with mean 1. They can be
found from equations FY (a) = α/2 and FY (b) = 1 − α/2. Therefore, a 100(1 − α)% CI for β is
found from the system of three equations:

P
(
a < X

β
< b
)

= 1− α
1− e−a = α

2

1− e−b = 1− α
2
.

Solving, we obtain that a = − ln(1− α/2), b = − ln(α/2), and P
(X
b
< β <

X

a

)
= 1− α. Thus, a
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CI for β is [X
b
,
X

a

]
=
[
− X

ln(α/2)
, − X

ln(1− α/2)

]
.

For example, if the observed value of X is 2.5, then a 95% CI for β is[
− X

ln(α/2)
, − X

ln(1− α/2)

]
=
[
− 2.5

ln(0.025)
, − 2.5

ln(0.975)

]
= [0.68, 98.74].

Note how wide this interval is since it is based on a sample size of 1. 2

How to determine a pivotal quantity for a given distribution?

De�nition. If pdf of a distribution has the form f
(x− θ1

θ2

)
, then θ1 is called a location param-

eter, and θ2 is termed a scale parameter.

Proposition. If X ∼ f, F
(x− θ1

θ2

)
, then Y =

X − θ1

θ2

is a pivotal quantity.

Proof. FY (y) = P(Y < y) = P
(X − θ1

θ2

< y
)

= P(X < θ1+yθ2) = FX(θ1+yθ2) = F
(θ1 + yθ2 − θ1

θ2

)
=

F (y), which doesn't depend on the parameters. 2

Example. For a N(µ, σ2) distribution, the parameter µ is responsible for location of the density
and σ for the scale. The density curve slides along the x-axis as µ changes (thus, location), whereas
as σ changes, the density becomes more stretched out or squeezed. We illustrate it with the �gure.
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The variable (X − µ)/σ is a pivotal quantity. 2

Example. For an exponential distribution with mean β, the density is
1

β
e−x/β, x > 0. Since we

divide by β, it is a scale parameter and X/β ∼ Exp(1) is a pivotal quantity. 2

Example. Consider X ∼ Unif(0, θ). The density is fX(x) =
1

θ
, 0 < x < θ. Here θ is a scale

parameter, and U = X/θ ∼ Unif(0, 1) is a pivotal quantity. We can �nd a 100(1 − α)% CI for θ

by computing P
(
a <

X

θ
< b
)

= 1−α where P(U < a) = α/2 and P(U < b) = 1−α/2. From here,

a = α/2 and b = 1− α/2. Thus, the CI is
[
X
b
, X

a

]
=
[

X
1−α/2 ,

X
α/2

]
. If, for instance, X = 6.7, a 95%

CI for θ is
[

6.7
0.975

, 6.7
0.025

]
= [6.89, 268.00]. Note how wide this CI is because it is based on a single

observation. 2

Example. Consider X1, . . . , Xn ∼ Unif(0, θ). The MLE X(n) ∼ nxn−1

θn
, 0 < x < θ, where θ is a

scale parameter, and thus, X(n)/θ is a pivot. Its pdf is nxn−1 and cdf is F (x) = xn, for 0 < x < 1,
and hence a 100(1− α)% CI for θ is found from the following equations:

P
(
a <

X(n)

θ
< b
)

= 1− α, F (a) = an = α/2, and F (b) = bn = 1− α/2.

Consequently, the CI is
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[X(n)

b
,
X(n)

a

]
=
[ X(n)

(1− α/2)1/n
,

X(n)

(α/2)1/n

]
.

As a numerical example, assume that we observed 4.5, 1.8, 3.2, 2.2, 6.7, and 5.7. The maximum is

X(6) = 6.7, and thus, a 95% CI, say, for θ is
[ 6.7

(0.975)1/6
,

6.7

(0.025)1/6

]
= [6.73, 12.39]. 2

CONFIDENCE INTERVAL FOR DIFFERENCE OF TWO MEANS

Suppose we have a sample of size n1 drawn from a N(µ1, σ
2
1) distribution, and another independent

sample of size n2 drawn from a N(µ2, σ
2
2) distribution. We would like to compute a 100(1 − α)%

CI for µ1 − µ2. To this end, we notice that X̄1 ∼ N
(
µ1,

σ2
1

n1

)
and X̄2 ∼ N

(
µ2,

σ2
2

n2

)
. Therefore,

X̄1 − X̄2 ∼ N
(
µ1 − µ2,

σ2
1

n1

+
σ2

2

n2

)
,

and thus,

X̄1 − X̄2 − (µ1 − µ2)√
σ2
1

n1
+

σ2
2

n2

∼ N(0, 1)

is a pivotal quantity. The CI has the form

[
X̄1 − X̄2 − zα/2

√
σ2

1

n1

+
σ2

2

n2

, X̄1 − X̄2 + zα/2

√
σ2

1

n1

+
σ2

2

n2

]
.

To show how computations work, let's assume that X̄1 = 1.2, n1 = 36, and σ1 = 0.8, and
X̄2 = 2.7, n2 = 42, and σ2 = 1.1. A 99% CI for µ1 − µ2 is

1.2− 2.7 ± 2.576

√
(0.8)2

36
+

(1.1)2

42
= −1.5 ± 0.56 =

[
− 2.06,−0.94

]
. 2

CALCULATING REQUIRED SAMPLE SIZE FOR A GIVEN MARGIN OF ERROR

Consider two independent samples from normal distributions and assume that variances are equal
and known, that is, σ1 = σ2 = σ where the value of σ is given. Suppose we want to sample a total
of N individuals.

Claim. The variance Var(X̄1 − X̄2) is minimal if n1 = n2 = N/2.
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Proof: We assume that one sample has size n and the second sample has size N − n. We need to

minimize with respect to n the variance Var(X̄1 − X̄2) =
σ2

n
+

σ2

N − n
. Taking the derivative with

respect to n and setting it equal to zero, we get

−σ
2

n2
+

σ2

(N − n)2
= 0.

From here, N − n = n or n = N/2. 2

Further, suppose we need to �nd a minimal required sample size per group for a 100(1 − α)% CI
for µ1 − µ2 with a margin of error not exceeding a pre-speci�ed value of m. We have

zα/2

√
σ2

N/2
+

σ2

N/2
≤ m, or

2zα/2σ√
N
≤ m.

Thus,

N =
⌈(2zα/2σ

m

)2⌉
,

and the minimal required sample size per sample is dN/2e.

Example. To see how calculations are carried out, suppose we know that σ = 1.1 and we want
the margin of error of a 95% CI for µ1 − µ2 to be 0.5 or smaller. We compute

N =
⌈((2)(1.96)(1.1)

0.5

)2⌉
= d74.4e = 75,

and thus, we need to sample at least dN/2e = d75/2e = 38 individuals per sample. The actual
margin of error that corresponds to this sample size is

1.96

√
(2)(1.1)2

38
= 0.495 < 0.5. 2

CONFIDENCE INTERVAL FOR ONE PROPORTION

Let X be the number of successes in a sample of size n with the probability of success p. We
need to construct a 100(1 − α)% CI for p. We know that X ∼ Bi(n, p). The MLE and MM
estimators are p̂ = X/n (show it!). The mean is Ep̂ = E(X/n) = np/n = p (unbiased) and the

variance is Var(p̂) = Var(X/n) =
np(1− p)

n2
=
p(1− p)

n
→ 0 as n→∞ (consistent). By the CLT,
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p̂
appr.∼ N

(
p,
p(1− p)

n

)
. A 100(1− α)% CI for p is p̂± zα/2

√
p̂(1− p̂)

n
.

Suppose we draw a sample of 100 students and �nd that 65 of them are full-time students. We
need to construct a 90% CI for the true proportion of full-time students on campus. We write

p̂± zα/2
√

p̂(1−p̂)
n

= 0.65± 1.645
√

0.65(1−0.65)
100

= 0.65± 0.078 = [0.572, 0.728]. 2

CALCULATING REQUIRED SAMPLE SIZE FOR A GIVEN MARGIN OF ERROR

Suppose we need to �nd a minimal required sample size for a 100(1−α)% CI for p with the margin
of error not exceeding m. We write

zα/2

√
p̂(1− p̂)

n
≤ m.

Since we don't know the value of p̂, we need to consider the worst case scenario, that is, we need
to �nd the maximum value of p̂(1− p̂). It's an upside-down parabola that reaches its maximum in
the center where p = 1/2. The maximum value is 1/2(1− 1/2) = 1/4. Thus, we have

zα/2

√
p̂(1− p̂)

n
≤ zα/2

√
1/4

n
=
zα/2
2
√
n
≤ m.

The value n =
⌈(zα/2

2m

)2⌉
is called the most conservative estimate of n.

Example. Suppose we want to �nd the most conservative estimate of n for a 99% CI for p if we
don't want the width of the interval (2m) to exceed 10%. We are given zα/2 = z0.005 = 2.576, and
2m = 0.1. We compute

n =
⌈(2.576

0.1

)2⌉
= d663.6e = 664. 2
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CONFIDENCE INTERVAL FOR DIFFERENCE OF TWO PROPORTIONS

Suppose X1 ∼ Bi(n1, p1) and X2 ∼ Bi(n2, p2). We would like to construct a 100(1 − α)% CI for
p1 − p2. We note that by the CLT,

p̂1 − p̂2
appr.∼ N

(
p1 − p2,

p1(1− p1)

n1

+
p2(1− p2)

n2

)
.

Hence, a 100(1− α)% CI is

p̂1 − p̂2 ± zα/2

√
p̂1(1− p̂1)

n1

+
p̂2(1− p̂2)

n2

.

Example. Suppose we sample 500 freshmen and 500 sophomores, and �nd that 240 freshmen and
170 sophomores work full-time. We need to �nd a 90% CI for the di�erence in true population
proportions. We estimate p̂1 = 240/500 = 0.48 and p̂2 = 170/500 = 0.34, and calculate the CI as

0.48− 0.34± 1.645

√
(0.48)(1− 0.48)

500
+

(0.34)(1− 0.34)

500
= 0.14± 0.051 = [0.089, 0.191]. 2

HYPOTHESES TESTING

Suppose we collect a sample and would like to verify a claim that µ > 5, say. We write the null
hypothesis H0 : µ = 5 and the alternative hypothesis H1 : µ > 5. This is a one-sided,
upper-tailed hypothesis. There can potentially also be lower-tailed hypothesis H1 : µ < 5 or
two-tailed hypothesis H1 : µ 6= 5.

In a word problem, the statement that we need to verify becomes our alternative hypothesis. For
example, we might want to check if an average weight of 20-oz Coke bottles is less than 20 oz.
(H1 : µ < 20), or that average night stay in a hotel di�ers from 2.5 nights (H1 : µ 6= 2.5).

Technically speaking, the null hypothesis should complement the alternative. For example, if the
claim is that H1 : µ > 5, then the null hypothesis should be H0 : µ <= 5. To simplify explana-
tions(and calculations), we will always assume exact equality in null hypotheses. In our example,
we will write H0 : µ = 5.

A null hypothesis is called "null" because it essentially symbolizes null change, no improvement, no
e�ect.

After we do some statistical testing, we make a decision: we either accept H1 (at the same time
reject H0), or reject H1 (at the same time accept H0, or fail to reject H0, and draw conclusion
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(in plain English).

When making a decision of accepting or rejecting H1, we can potentially commit either of two types
of error.

De�nition. Type I error is rejecting a true null hypothesis. It is also termed false positive or
false alarm. The probability of type I error is denoted by α = P(reject H0 |H0 is true).

De�nition. Type II error is rejecting a true alternative hypothesis. It is also called false neg-
ative or failure to detect. The probability of type II error is denoted by β = P(reject H1 |H1 is
true).

De�nition The power of a test is the probability to accept a true alternative hypothesis, 1−β =
P(accept H1 |H1 is true).

Example. A smoke detector in a building goes o� by mistake when there is no �re. No �re means
that the null hypothesis is true, but we accept the alternative hypothesis concluding that there is a
�re, thus committing a type I error, commonly termed "false alarm". The other type of mistake is
when there is �re but the smoke detector fails to go o�. This is a type II error (failure to detect).
Note that in this example, a type II error is much more serious than a type I error, since it might
result in fatalities as opposed to a charge for a false call to 911.
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The power of a test in this case is to detect �re when �re is actually present. To increase the power
(and, respectively, decrease type II error), buildings often have several smoke detectors working
independently. If, say, there are three independent smoke detectors and the probability of failing to
detect a �re is 0.05 for each of them, then in combination, the probability to detect �re is P(at least
one detector works) = 1−P(all three detectors fail) = 1−P(detector fails)3 = 1− 0.053 = 0.999875
as opposed to 0.95, if there only one smoke detector. 2

Example. Suppose a new medical device can detect a certain type of cancer. A type I error (false
alarm) is when the device diagnoses cancer in a cancer-free patient, and a type II error (failure to
detect) is when the device fails to diagnose cancer in a patient with cancer. Note that here again
type I error is much milder than type II error which will result in the death of an untreated cancer
patient. Type I error will probably result in unnecessary chemotherapy of a healthy patient, which
in itself is not very good but most likely not fatal. Note that all medical devices are required to
have a very small probability of type II error, speci�cally, because it results in death of a patient. 2

Note. Why can't we have a smoke detector or a medical device that has both α and β, probabilities
of type I and type II errors, equal to zero? As we will show later in this course, α and β work in
opposite directions. As α decreases, β increases. So, it is not possible to make them both equal to
zero. The relation between α and β is quite complicated even in the simplest case of the normal
underlying distribution. Derivation of this relation is forthcoming.

De�nition. Another name for the probability of type I error, α, is the signi�cance level of a
test (or level of signi�cance). In hypotheses testing, α is typically taken as 0.05 or 0.01. If not
speci�ed, we will assume α = 0.05.

Note. Recall that when we compute con�dence intervals, we also use α. This is not a coincidence.
Later we will show that it is the same α. 2

Explanation of how hypotheses testing works and why

Suppose we observe a sample of size n = 49 for which x̄ = 12.2. Assume that σ is known to be 0.7.
We would like to test that the true population mean exceeds 12 at the 5% signi�cance level (that
is, α = 0.05). Note that the sample mean exceeds 12, but it might be due to chance, and the true
µ is, in fact, less than 12.

We want to test H0 : µ = 12 against H1 : µ > 12. By the CLT, X̄
appr.∼ N(µ, σ2/n). We will assume

that the null is true. Under H0, x̄ ∼ N(12, 0.72/49). How likely is it to observe x̄ = 12.2, if x̄ has this
distribution? We can tell how unusual this observation is under the null hypothesis by computing the

probability to fall above the observed value, P(x̄ > 12.2) = P
(
Z >

12.2− 12

0.7/
√

49

)
= P(Z > 2) = 0.0228.
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This is not a large probability, so H0 is likely not to be true, and we should be leaning more towards
accepting H1. The decision should be to accept H1 and conclude that the claim is true.

STEPS TO CONDUCT HYPOTHESES TESTING

Step 1. Write down H0 : θ = θ0 vs. H1 : θ ≥ θ0 (upper-tailed), or H1 : θ ≤ θ0 (lower-tailed), or
H1 : θ 6= θ0 (two-sided).

Step 2. Write down all given quantities, including α (use 0.05 by default).

Step 3. Compute test statistic and specify its distribution under the null hypothesis. In the above
example, the test statistic is z = x̄−µ0

σ/
√
n
, which under H0 : µ = µ0 has a N(0, 1) distribution.

Step 4. Compute the p-value that measures how unusual the observed test statistic is assuming
the null is true. The formal rule to compute p-value is as follows:

If H1 : θ > θ0, then p-value= P(Z > z0) where z0 denotes the observed test statistic, and Z is
the random variable that has the same distribution as the test statistic under H0.

If H1 : θ < θ0, then p-value= P(Z < z0). Note that Z0 is necessarily negative.

If H1 : θ 6= θ0, then p-value= P(Z > |z0| or Z < −|z0|) = P(Z > |z0|) +P(Z < −|z0|) = 2P(Z >
|z0|), if the underlying distribution is symmetric.

Step 5. Compare the p-value with signi�cance level α.

If p-value> α, then the observed test statistic is a usual observation under H0, so the null should
not be rejected. If, however, p-value< α, then the observed test statistic lies way out in the tail
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and should be considered an unusual observation under H0, so we should reject H0 in favor of H1.

Step 6. Once we state our decision, we need to write the conclusion in plain English (using the claim
as the guideline for terminology). Conclusions are written in non-technical language for clients. As
an example, we might want to say "There is enough evidence in the data to conclude that the new
medical device is e�cient".

ONE-SAMPLE z-TEST FOR µ

Step 1. Identify x̄, σ, n ≤ 30, µ0 and α.
Step 2. Write down the hypotheses: H0 : µ = µ0 vs. H1 : µ ≥ µ0, or µ ≤ µ0, or µ 6= µ0.

Step 3. Compute the test statistic z =
x̄− µ0

σ/
√
n
.

Step 4. Compute the p-value: (i) if H1 : µ ≥ µ0, p-value= P(Z > z) where Z ∼ N(0, 1); (ii) if
H1 : µ ≤ µ0, p-value= P(Z < z); and (iii) if H1 : µ 6= µ0, p-value= 2P(Z > |z|).
Step 5. Compare the p-value to α and make a decision: (i) if p-value> α, fail to reject H0; (ii) if
p-value< α, reject H0.
Step 6. State the conclusion in a simple non-technical language.

Example. In our previous example, x̄ = 12.2, σ = 0.7, n = 49, µ0 = 12, and α = 0.05. We
test H0 : µ = 12 against H1 : µ ≥ 12 (upper-tailed test). We compute the test statistic

z =
x̄− µ0

σ/
√
n

=
12.2− 12

0.7/
√

49
= 2. The test statistic has N(0, 1) distribution under H0. The p-

value= P(Z > 2) = 0.0228 < 0.05 = α. So, we reject H0 and conclude that there is su�cient
evidence to support the claim that µ > 12. 2

Example. Suppose we have a machine that �lls bottles with 20oz of soda. We randomly collect
100 bottles and �nd that x̄ = 19.85. We assume that σ is known to be 1oz. We also have n = 100.
We want to test H0 : µ = 20 vs. H1 : µ < 20 (lower-tailed test). We compute the test statistic

z =
19.85− 20

1/
√

100
= −1.5. The p-value= P(Z < −1.5) = P(Z > 1.5) = 0.0668 > 0.05 = α. So, we fail

to reject H0 and conclude that there is not enough evidence in the data to support the claim that
the machine �lls bottles with less than 20oz of soda (that is, the machine is working properly). 2

Example. Bus transportation claims that the mean wait time for a bus is 5 minutes. We would
like to test at the 1% signi�cance level the claim that the mean wait time di�ers from 5 minutes.
Suppose we record wait times for 36 buses and observe a mean wait of 5.9 minutes. We also assume
that the standard deviation is known to be 2 minutes. We test H0 : µ = 5 against H1 : µ 6= 5. We
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are given x̄ = 5.9, σ = 2, n = 36, µ0 = 5, and α = 0.01. The test statistic is z =
5.9− 5

2/
√

36
= 2.7. The

p-value= 2P(Z > 2.7) = 0.0069 < 0.01, thus, we reject the null and conclude that the average wait
time di�ers from 5 minutes. 2

REJECTION REGION AS AN ALTERNATIVE TO P -VALUE

Instead of computing p-value= P(Z > z), and comparing it to an α, we can compute the critical
value zα corresponding to α, that is, P(Z > zα) = α, and compare the observed test statistic z0 to
the critical value zα. If z0 < zα, we see that the observation is not unusual under H0 and so we
don't reject the null hypothesis. If, however, z0 ≥ zα, then we observed something way in the tail
and so we reject H0.

De�nition. Rejection region is a set of all values of the test statistic for which the null hypoth-
esis is rejected. The complement of the rejection region is termed the acceptance region. The
rejection region is denoted by RR, and the acceptance region is denoted by AR.

• If H1 : µ µ0 (upper-tailed), RR = {z : z > zα}.
• If H1 : µ < µ0 (lower-tailed), RR = {z : z < −zα}.
• If H1 : µ 6= µ0 (two-tailed), RR = {z : z < −zα/2 or z > zα/2} = {z : |z| > zα/2}.

CONNECTION BETWEEN CONFIDENCE INTERVAL AND HYPOTHESES
TESTING

Hypotheses testing can be conducted by computing the appropriate con�dence interval. Here is the
explanation:

• If H1 : µ > µ0, then RR = {z : z > zα} =
{
x̄−µ0
σ
√
n
> zα

}
=
{
µ0 < x̄ − zα σ√

n

}
. It means that

we can construct a 100(1 − α)% one-sided con�dence interval
[
x̄ − zα σ√

n
, ∞

)
, and, if µ0 is below

this interval, we reject H0 (and accept H1).

• If H1 : µ < µ0, then RR = {z : z < −zα} =
{
x̄−µ0
σ
√
n

< −zα
}

=
{
µ0 > x̄ + zα

σ√
n

}
. It

means that we can construct a 100(1− α)% one-sided con�dence interval
(
−∞, x̄+ zα

σ√
n

]
, and,

if µ0 is above this interval, we reject H0 (and accept H1).

• If H1 : µ 6= µ0, then RR = {z : |z| > zα/2} =
{∣∣∣ x̄−µ0σ

√
n

∣∣∣ > zα/2

}
=
{
x̄−µ0
σ
√
n

< −zα/2 or
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x̄−µ0
σ
√
n
> zα/2

}
=
{
µ0 > x̄+ zα/2

σ√
n
or µ0 < x̄+ zα/2

σ√
n

}
. It means that we can construct a regu-

lar, two-sided 100(1− α)% con�dence interval
[
x̄− zα/2 σ√

n
, x̄ + zα/2

σ√
n

]
, and, if µ0 is not covered

by this interval, we reject H0 (and accept H1).

RELATION BETWEEN α AND β FOR z-TEST FOR µ, WHEN σ IS KNOWN

Below we derive the formula that relates the probability of type I error α and the probability of type
II error β for the simplest case of a one-sample z-test for the mean µ when standard deviation σ is
known. We write α = P(reject H0 | H0 is true) = P(z ∈ RR |H0 is true) = P(Z > k | Z ∼ N(0, 1)).
Therefore, the critical value for the rejection region k = Φ−1(1− α) = zα.

Turning now to β, we write β = P(not reject H0 | H1 is true) = P(z ∈ AR | H1 is true) = P(z <
zα | H1 : µ > µ0). Next, even if we know that µ > µ0 holds, we still need to provide a speci�c
value of µ. We denote by δ = µ − µ0 the e�ect size. Note that under H1, the speci�c value of µ
is δ + µ0. We can then continue,

β = P
(
Z < zα | Z =

x̄− µ0

σ/
√
n
, x̄ ∼ N(δ + µ0, σ

2/n)
)

= P
(
x̄ < µ0 + zα

σ√
n
| x̄ ∼ N(δ + µ0, σ

2/n)
)

= P
(
Z <

µ0 + zα
σ√
n
− (δ + µ0)

σ/
√
n

)
= P

(
Z < zα −

δ

σ

√
n
)

= Φ
(
zα −

δ

σ

√
n
)

= Φ
(

Φ−1(1− α)− δ

σ

√
n
)
.

Note that if the e�ect size δ is close to zero, β ≈ Φ(Φ−1(1− α)) = 1− α, so if we want to decrease
α, β will increase. On the other hand, if δ is very large, then β goes to zero. It is an intuitive result,
because a large e�ect size means that, for instance, a medical device is very e�cient, so it is almost
without an error we will accept the alternative and market the device.

RECEIVER OPERATING CHARACTERISTIC CURVE

De�nition. The Receiver Operating Characteristic (ROC) Curve is the plot of power=

1− β = 1− Φ
(

Φ−1(1− α)− δ

σ

√
n
)
against α for di�erent values of

δ

σ

√
n.

In this coordinate system, there is an "ideal" point (0,1), where α = 0 and power= 1 (or, equiva-

lently, β = 0). This point is unattainable in practice. As depicted in the �gure, for
δ

σ

√
n = 0, it
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is just the bisector power = α, and once this quantity increases, the ROC curve become more and
more convex, getting closer and closer to the "ideal" point.

ROC curves are used by quality control engineers to �nd appropriate sample size n that corresponds
to �xed α, β, and δ/σ, or to �nd δ/σ for �xed α, β, and n.

ONE-SAMPLE TEST FOR POPULATION PROPORTION

Suppose a sample of size n(n ≤ 30) is drawn and the sample proportion p̂ is observed. We want
to test H0 : p = p0 against H1 : p > p0 or p < p0 or p 6= p0 where p is the true population
proportion. By the CLT, an approximate distribution of p̂ is normal with mean p and standard

deviation

√
p(1− p)

n
. Thus, under H0 : p = p0, the approximate distribution is normal with mean
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p0 and standard deviation

√
p0(1− p0)

n
. And the test statistic is

z =
p̂− p0√
p0(1−p0)

n

which under H0 has approximately a standard normal distribution.

Example. In a random sample of 100 voters, 63% said that they will vote in favor of a proposal.Can
it be claimed at the 1% signi�cance level that a majority of voters favor the proposal?

We test H0 : p = 0.5 against H1 : p > 0.5. We are given n = 100, p̂ = 0.63, and α = 0.01. The
test statistic is

z =
0.63− 0.5√

(0.5(1−0.5)
100

= 2.6.

The p-value= P(Z > 2.6) = 0.0047 < 0.01 = α, thus we reject H0 and conclude that the data
support the claim that a majority of voters favor the proposal. 2

Example. To check whether a machine is producing fewer than 4% defective items, a random
sample of size 200 is drawn, and 6 items are found to be defective. We need to test H0 : p = 0.04
vs. H1 : p < 0.04. We are given n = 200, p̂ = 6/200 = 0.03, p0 = 0.04, and α = 0.05 (by default).

The test statistic is z =
0.03− 0.04√

0.04(1−0.04)
200

= −0.72. The p-value= P(Z < −0.72) = 0.2358 > 0.05 = α.

Hence, we fail to reject H0 and conclude that there is not enough evidence to state that the machine
produces fewer than 4% defective items. 2

Example. A transportation authority claims that 80% of all bus trips are as-scheduled. To ver-
ify this claim, a random sample of 60 bus trips was drawn and 68% of the trips were found
to be as-scheduled. We want to test H0 : p = 0.8 against H1 : p 6= 0.8. We know that
n = 60, p̂ = 0.68, p0 = 0.8 and α = 0.05 since it is not given. We compute the test statistic

z =
0.68− 0.8√

0.8(1−0.8)
60

= −2.32. The p-value= 2P(Z < −2.32) = (2)(0.0102) = 0.0204 < 0.05 = α. Thus,

we reject H0 and conclude that the proportion of on-schedule bus trips di�ers from 80%. 2
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TWO-SAMPLE TEST FOR TWO POPULATION PROPORTIONS

Suppose two random samples of sizes n1 and n2 are drawn from two independent populations. We
assume that the sample sizes are comparable in magnitude and are both larger than 30. Let x1 and

x2 denote the number of objects of interest in these samples, and let p̂1 =
x1

n1

and p̂2 =
x2

n2

be the

two sample proportions. Denoteby p1 and p2 the true unknown population proportions. Suppose
we want to test H0 : p1 = p2 againt H1 : p1 > p2, or p1 < p2, or p1 6= p2. Under H0, the two
population proportions are equal. To estimate this common proportion p1 = p2 = p, we pool the
samples to obtain the pooled estimate

p̂ =
x1 + x2

n1 + n2

.

By the CLT,p̂1 is approximately normally distributed with mean p and variance
p(1− p)
n1

. Similarly,

p̂2 is approximately normal with mean p and variance
p(1− p)
n2

. Thus, the di�erence p̂1 − p̂2 is ap-

proximately normal with mean p− p = 0 and variance
p(1− p)
n1

+
p(1− p)
n2

= p(1− p)
( 1

n1

+
1

n2

)
.

Therefore, the test statistic is

z =
p̂1 − p̂2√

p̂(1− p̂)
(

1
n1

+ 1
n2

)
which under H0 has approximately a standard normal distribution.

Example. To test whether vitamin C is a preventive measure for the common cold, 500 people
took vitamin C, and 500 people took a sugar pill (placebo). In the �rst group, 200 people had a cold,
while in the second group, 230 had a cold. Suppose we would like to test the claim at the 1% signif-
icance level. We are given: n1 = n2 = 500, x1 = 200, x2 = 230, p̂1 = x1/n1 = 200/500 = 0.40, p̂2 =
x2/n2 = 230/500 = 0.46, and α = 0.01. We need to test H0 : p1 = p2 against H1 : p1 < p2. We cal-
culate the pooled estimate p̂ = (200+230)/(500+500) = 430/1000 = 0.43, and so the test statistic is

z =
0.40− 0.46√

0.43(1− 0.43)
(

1
500

+ 1
500

) = −1.92.

The p-value is P(Z < −1.92) = 0.0274 > 0.01, hence we fail to reject H0 at the 1% level of
signi�cance and conclude that vitamin C is not a preventive measure for the common cold. 2

Example. In a sample of 70 seniors, 30% have a job, whereas in a sample of 50 freshmen, 12%
have a job. Suppose we would like to test a claim that a higher proportion of seniors have a job than
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freshmen. We need to test H0 : p1 = p2 against H1 : p1 > p2. We are given p̂1 = 0.30, p̂2 = 0.12,
and α = 0.05. The pooled estimate is

p̂ =
(0.30)(70) + (0.12)(50)

70 + 50
=

21 + 6

120
=

27

120
= 0.225.

The test statistic is computed as

z =
0.30− 0.12√

(0.225)(1− 0.225)
(

1
70

+ 1
50

) = 2.328.

The p-value is P(Z > 2.328) = 0.009956 < 0.05. Thus, we reject H0 and conclude that a higher
proportion of seniors have a job than freshmen. 2

Example. A survey of moviegoers during morning hours and evening hours revealed that 78 out
of 100 morning visitors buy popcorn, and 94 out of 100 evening visitors buy popcorn. The manager
would like to know if the true proportions di�er. We test H0 : p1 = p2 vs. H1 : p1 6= p2. Given
p̂1 = 78/100 = 0.78, p̂2 = 94/100 = 0.94, and α = 0.05. The pooled estimate of the common
proportion under the null is

p̂ =
78 + 94

100 + 100
=

172

200
= 0.86.

The test statistic is

z =
0.78− 0.94√

0.86(1− 0.86)
(

1
100

+ 1
100

) = −3.2606.

The p-value= 2P(Z < −3.2606) = (2)(0.0006) = 0.0012 < 0.05, so we reject H0 and conclude that
the proportions di�er. 2

THE T-DISTRIBUTION

De�nition. The t-distribution has density function

f(x) =
Γ
(
k+1

2

)
√
kπΓ

(
k
2

) (1 +
x2

k

)− k+1
2
, −∞ < x <∞,

where the parameter k is called the number of degrees of freedom (or, simply, degrees of
freedom).
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Note. The number of degrees of freedom (df) is the number of choices minus the number of
constraints that the choices must satisfy. For example, if we can choose any 5 numbers, then the
number of degrees of freedom is 5. But if we want these numbers to add up to 100, we are free to
choose 4 numbers and calculate the last one by subtraction from 100, so the number of degrees of
freedom is 4 (5 numbers minus one constraint). 2

Note. William Sealy Gosset (1876-1937) was an English statistician. He published under the pen
name Student, and developed the Student's t-distribution in 1908.

Note. The density of t-distribution is de�ned on the entire real line. It is bell-shaped and sym-
metric around zero. As the number of degrees of freedom increases, the distribution approaches the
standard normal distribution. For smallers values of df , the distribution has heavier tails (that is,
more probabilities are in the tails, as illustrated below).

HYPOTHESES TESTS ABOUT MEAN WHEN VARIANCE IS UNKNOWN

Suppose we are given a sample of size n, where either n ≥ 30 and the CLT can be applied, or
n < 30 but the distribution is known to be normal. Assume also that the sample mean x̄ and
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sample standard deviation s =

√∑n
i=1(xi − x̄)2

n− 1
are available. We need to test H0 : µ = µ0

against H1 : µ > µ0 or µ < µ0 or µ 6= µ0. The test statistic is t =
x̄− µ0

s/
√
n

which under H0 has a

t-distribution with n− 1 degrees of freedom.

Note. The number of degrees of freedom is n−1 because there are n values x1− x̄ through xn− x̄,
but there is one constraint

∑n
i=1(xi − x̄) =

∑n
i=1 xi − nx̄ = 0.

Example. A company that manufactures light bulbs claims that their light bulbs last, on average,
at least 1100 hours. A sample of 25 light bulbs gave a mean life of 1160 hours with a sample standard
deviation of 85 hours. Suppose we need to test the claim at the 1% signi�cance level. Since n < 30,
we need to make an additional assumption that the life of a bulb is normally distributed. We are test-
ing H0 : µ = 1100 against H1 : µ >= 1100. We are given that n = 25, x̄ = 1160, s = 85, µ0 = 1100,
and α = 0.05. We compute the test statistic

t =
1160− 1100

85/
√

25
= 3.529.

The number of degrees of freedom is df = 25− 1 = 24. The p-value= P(T > 3.529) = 0.000857 (by
Excel, after typing "=1-t.dist(3.529,24,true)"). Alternatively, using the table for t-distribution, we
can �nd the bounds for the p-value:

0.001 > P(T > 3.529) > 0.0005.

We see that p-value< 0.01, thus, we reject the null hypothesis and conclude that the population
mean life of a light bulb is at least 1100 hours. 2

Example. A researcher wants to test if the mean annual salary of all lawyers in a city is less than
$125,000. A sample of 45 lawyers reveals a sample mean annual salary $108,400 and a sample
standard deviation of $34,700. Test the hypothesis at the 5% level. We would like to test H0 : µ =
125, 000 against H1 : µ < 125, 000. We have that n = 45, x̄ = 108, 400, s = 34, 700, µ0 = 125, 000,
and α = 0.05. The test statistic is

t =
108, 400− 125, 000

34, 700/
√

45
= −3.209,

which by the CLT, under the null hypothesis, has approximately t-distribution with 45 − 1 = 44
degrees of freedom. From Excel, the p-value is P(T < −3.209) = P(T > 3.209) = 0.001243 < 0.05.
If we use the table for t-distribution, we get that p-value< 0.005 < 0.05. Hence, we reject H0 and
conclude that there is enough evidence in the data to support the researchers' hypothesis. 2
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Example. The mean �ight delay was 15 minutes before the merger of the two companies. The
CEO wants to �nd out whether the mean �ight delay has changed since the merger. A random
sample of size 81 �ights is drawn, and it is obtained that the sample average delay time is 20 minutes
with a sample standard deviation of 17 minutes. To test the claim, we state H0 : µ = 15 against
H1 : µ 6= 15. We have n = 81, x̄ = 24, s = 17, µ0 = 15 and α = 0.05. The test statistic is

t =
24− 15

17/
√

81
= 2.6471.

The number of degrees of freedom is 81− 1 = 80, and the p-value= 2P(T > 2.6471) = 0.009776 <
0.05. Thus, we reject the null hypothesis and conclude that the mean �ight delay has changed since
the merger. 2

CONFIDENCE INTERVAL FOR MEAN WHEN VARIANCE IS UNKNOWN

De�nition. A 100(1− α)% con�dence interval for µ when σ is not known is

x̄± tα/2,n−1
s√
n

where the critical value tα/2,n−1 satis�es P(T > tα/2,n−1) = α/2 with T ∼ t(df = n− 1).

Example. In the previous example, we conducted a two-sided hypotheses testing, which, as we
know can be equivalently carried out by constructing a two-sided con�dence interval. We have the
quantities: x̄ = 20, s = 17, n = 81, and α = 0.05. We compute the critical value in Excel by typing
"=t.inv(0.975,80)". We get t0.025,80 = 1.99. Now we are ready to construct a 95% CI for µ. We write

x̄± tα/2,n−1
s√
n

= 20± 1.99
17√
81

= [16.2, 23.8].

We see that µ0 = 15 is outside of this interval, so the decision is that the null hypothesis should be
rejected in favor of the alternative, which is in agreement with the earlier decision. 2

HYPOTHESES TEST FOR TWO MEANS BASED ON T-DISTRIBUTION

Suppose we have two independent samples drawn from two populations. The sample sizes and
statistics are n1, x̄1, s1, n2, x̄2, and s2. We further assume that the sample sizes n1 and n2 are of
comparable magnitudes, and either both are 30 or above (and so the CLT applies) or both are
less than 30 but the populations are known to be normally distributed. Suppose we want to test
H0 : µ1 = µ2 against H1 : µ1 ≥ µ2 or µ1 ≤ µ2 or µ1 6= µ2. Two cases are distinguished:
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• It is assumed that the population standard deviations (equivalently, variances) are equal, that is,
σ1 = σ2.

• It is assumed that the population standard deviations (or variances) are not equal, that is, σ1 6= σ2.

Note. The assumption of equal variances is valid typically only if samples are drawn from the same
population before and after some intervention. It is believed that the intervention can only change
the mean but not the variance. In all other cases, when samples are drawn from two di�erent and
independent populations, the equality of variances cannot be assumed.

Hypotheses Test for Two Means when Standard Deviations are Equal

First, we estimate the common standard deviation by the pooled estimate

sp =

√∑
(x− x̄1)2 +

∑
(x− x̄2)2

n1 − 1 + n2 − 1
=

√
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
.

Note. The pooled estimate sp necessarily falls between s1 and s2. This follows from the observation
that s2

p is the weighted average of s2
1 and s2

2. This fact can be used to check that the calculated
value of sp lies within the bounds and thus is reasonable.

Next, we compute the test statistic

t =
x̄1 − x̄2

sp
√

1
n1

+ 1
n2

,

which under H0, has a t-distribution with df = n1 + n2 − 2.

Example. A hotel manager wants to check whether advertisement increases average hotel stay. He
picks at random a sample of 10 visitors before an advertisement takes place and �nds that the mean
stay is 2.2 nights with a standard deviation of 0.9 nights. Post advertisement he selects another
random sample of size 10 and �nds that the mean stay is 2.9 nights and standard deviation is 1.1
nights. We test H0 : µ1 = µ2 against H1 : µ1 < µ2. We will assume that the advertisement can
in�uence only the mean stay and not the variance, so we will assume that σ1 = σ2. We are given
that n1 = n2 = 10, x̄1 = 2.2, s1 = 0.9, x̄2 = 2.9, s2 = 1.1, and α = 0.05. The pooled estimate of
common standard deviation is

sp =

√
(9)(0.9)2 + (9)(1.1)2

10 + 10− 2
= 1.005.
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The test statistic is

t =
2.2− 2.9

1.005
√

1
10

+ 1
10

= −1.557.

The number of degrees of freedom is df = 10 + 10− 2 = 18. The p-value= P(T < −1.557) = P(T >
1.557) > 0.05 = α (from Excel, p-value= 0.0684). We fail to reject the null hypothesis and conclude
that the advertisement didn't increase average hotel stay. 2

Example. Cholesterol levels are measured for 28 heart attack patients (case-patients) and 30 other
hospital patients who didn't have a heart attack (control-patients). The sample quantities are:

Mean Stdev
Case Group 233.7 56.3

Control Group 184.2 49.8

We want to test at α = 0.001 that the mean cholesterol level is higher for the case patients. For
the analysis, we will make an assumption that the population standard deviations are equal. We
test H0 : µ1 = µ2 against H1 : µ1 > µ2. We compute the pooled estimate

sp =

√
(28− 1)(56.3)2 + (30− 1)(49.8)2

28 + 30− 2
= 53.03.

The test statistic is

t =
233.7− 184.2

53.03
√

1
28

+ 1
30

= 3.55.

The number of degrees of freedom is df = 28 + 30− 2 = 56. The p-value= P(T > 3.55) < 0.0005 <
0.001 = α (from Excel, p-value= 0.000394. Therefore, we reject H0 and conclude that the mean
cholesterol level is higher for heart attack patients. 2

Example. A company is interested in �nding out whether mean customer satisfaction scores are
the same for two stores owned by this company. The data for two random samples of sizes 5 and
7 are available, with the respective sample means of 30 and 24, and sample standard deviations of
3.4 and 5.1. We carry out the two-sided test with H0 : µ1 = µ2 and H1 : µ1 6= µ2. We assume
equal standard deviations and a signi�cance level of 0.05. We also need to assume the normality of
measurements since the sample sizes are small. We compute the pooled estimate of the standard
deviation as follows.

sp =

√
(5− 1)(3.4)2 + (7− 1)(5.1)2

5 + 7− 2
= 4.498.
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The test statistic is

t =
30− 24

4.498
√

1
5

+ 1
7

= 2.278.

The number of degrees of freedom is df = 5 + 7 − 2 = 10, and the p-value= 2P(T > 2.278) <
(2)(0.025) = 0.05 = α (from Excel, p-value= 0.046). Hence, we reject H0 and conclude that the
mean customer satisfaction scores di�er for the two stores. 2

Con�dence Interval for Di�erence in Means when Standard Deviations are Equal

De�nition. A 100(1− α)% con�dence interval for µ1 − µ2 when σ1 = σ2 is

x̄1 − x̄2 ± tα/2,df sp
√

1

n1

+
1

n2

where the number of degrees of freedom is df = n1 + n2 − 2.

Example. In the previous example, we computed that sp = 4.498 and df = 10. The critical value
is t0.025,10 = 2.228. Hence, a 95% CI for µ1 − µ2 is

30− 24± (2.228)(4.498)

√
1

5
+

1

7
= 6± 5.9 = [0.1, 11.9].

Since the interval doesn't cover 0, we would decide in favor of the alternative, as we did in the
hypotheses testing. 2

Hypotheses Test for Two Means when Standard Deviations are Unequal

Suppose we want to test H0 : µ1 = µ2 against H1 : µ1 ≥ µ2 or µ1 ≤ µ2 or µ1 6= µ2. We studied how
to conduct testing when it is assumed that σ1 = σ2. Now we will study the case when σ1 6= σ2.

We are given n1, x̄1, s1, n2, x̄2, s2, and α. The test statistic is given by the formula

t =
x̄1 − x̄2√
s21
n1

+
s22
n2

,

which under H0, has a t-distribution with the number of degrees of freedom df approximated by
the largest integer such that
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df ≤

(
s21
n1

+
s22
n2

)2

(
s21
n1

)2

n1−1
+

(
s22
n2

)2

n2−1

.

Example. A random sample of 12 male customers of a clothing store showed that they spent, on
average, $89 with a standard deviation of $27.50. Another random sample of 16 female customers
revealed a sample mean of $105 with a standard deviation of $36.60. We want to test whether the
average amount spent by males is at most that spent by females. We assume that σ1 6= σ2 and
α = 0.05. Since sample sizes are small, we need to make an additional assumption that the number
of hours is normally distributed. We test H0 : µ1 = µ2 against H1 : µ1 < µ2. We compute the test
statistic as

t =
89− 105√

(27.50)2

12
+ (36.60)2

16

= −1.3208.

The number of degrees of freedom is the largest integer satisfying

df ≤

(
(27.50)2

12
+ (36.60)2

16

)2

(
(27.50)2

12

)2

12−1
+

(
(36.60)2

16

)2

16−1

= 25.9957.

That is df = 25. The p-value= P(T < −1.3208) = 0.09923 > 0.05. Thus, we fail to reject H0

and conclude that there is no supporting evidence that the average amount spent by males doesn't
exceed that spent by females. 2

Example. A sample of 50 seniors and a sample of 40 freshmen were surveyed, and it was found
that the mean time seniors spend studying for a �nal exam is 17 hours with a standard deviation
of 6 hours, while freshmen spend, on average, 14 hours with a standard deviation of 9 hours. We
would like to test whether seniors spend, on average, more hours studying for the �nal exam than
freshmen. We will assume that σ1 6= σ2. We will take α = 0.05. We need to test H0 : µ1 = µ2

against H1 : µ1 > µ2. The test statistic is

t =
17− 14√

62

50
+ 92

40

= 1.811.

The number of degrees of freedom is the largest integer such that
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df ≤

(
62

50
+ 92

40

)2

(
62

50

)2

50−1
+

(
92

40

)2

40−1

= 65.1,

so df = 65. The p-value= P(T > 1.811) < 0.05 = α (in Excel, p-value= 0.0374. We reject the null
and conclude that the average number of hours that seniors spend studying for the �nal exam is
larger than that for freshmen. 2

Example. A study found that the mean number of children under 18 per household in Community
A was 1.6 with a standard deviation of 0.7. In Community B, the mean was 2.1 with a standard de-
viation of 1.3. The data were based on two independent samples of sizes 155 and 160, respectively.
We are interested in testing whether the population means di�er. There is no reason to believe
that the population standard deviations are equal, so we assume σ1 6= σ2 and α = 0.05. We write
H0 : µ1 = µ2 against H1 : µ1 6= µ2. The test statistic is found as

t =
1.6− 2.1√

0.72

155
+ 1.32

160

= −4.268.

The number of degrees of freedom is the largest integer such that

df ≤

(
0.72

155
+ 1.32

160

)2

(
0.72

155

)2

155−1
+

(
1.32

160

)2

160−1

= 245.7,

so df = 245. The p-value= 2P(T < −4.268) < 0.001 < 0.05 = α (from Excel, p-value= 0.00003).
We reject H0 and conclude that the population mean number of children is di�erent for these two
communities. 2

Con�dence Interval for Di�erence in Means when Standard Deviations are Unequal

De�nition. A 100(1− α)% con�dence interval for µ1 − µ2 when σ1 6= σ2 is

x̄1 − x̄2 ± tα/2,df

√
s2

1

n1

+
s2

2

n2

where the number of degrees of freedom is the largest integer satisfying

df ≤

(
s21
n1

+
s22
n2

)2

(
s21
n1

)2

n1−1
+

(
s22
n2

)2

n2−1

.
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Example. From the previous example, we have df = 245, and so the critical value is t0.025,245 =
1.9697. We compute a 95% CI for µ1 − µ2 as

1.6− 2.1± (1.9697)

√
0.72

155
+

1.32

160
= −0.5± 0.23 = [−0.73, −0.27].

This con�dence interval doesn't include 0, and thus we reject the null and draw the same conclusion
as in the previous example. 2

THE CHI-SQUARED DISTRIBUTION

De�nition. A continuous random variable X has a chi-squared distribution with k degrees of free-
dom (write X ∼ χ2(k)) if the pdf is

fX(x) =
xk/2−1

Γ(k/2)2k/2
e−x/2, x > 0.

Note. Note that a chi-squared distribution with k degrees of freedom is, in fact, a gamma distri-
bution with parameters α = k/2 and β = 2. In addition, the sum of squared of n independent
standard normal random variables has a chi-squared distribution with n degrees of freedom, that
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is,

n∑
i=1

Z2
i ∼ χ2(n), where Zi

iid∼ N(0, 1), i = 1, . . . , n.

Note. The chi-square distribution was discovered in 1863 by Ernst Karl Abbe (1840 � 1905) who
was a German physicist.

CONFIDENCE INTERVALS FOR VARIANCE AND STANDARD DEVIATION

Theorem. Suppose X1, . . . , Xn
iid∼ N(µ, σ2) (or n ≥ 30 and so, by the CLT, the distribution is

approximately normal). Then

(n− 1)s2

σ2
∼ χ2(n− 1).

"Proof": We give a proof that is not very rigorous mathematically. It is not di�cult to show alge-
braically that

(n− 1)s2

σ2
=

n∑
i=1

(Xi − X̄
σ

)2

=
n∑
i=1

(Xi − µ
σ

)2

−
(X̄ − µ
σ/
√
n

)2

.

The �rst term has a χ2(n) distribution, the second term has a χ2(1) distribution, and the two terms
are independent (the proof of independence is non-trivial). Further, it can be shown (using the
moment generating function, for instance) that the di�erence between χ2(n) and χ2(1) independent
random variables has a χ2(n− 1) distribution. 2

By this theorem, we can use the quantity (n− 1)s2/σ2 as a pivot to construct a con�dence interval
for σ2. We write

P
(
χ2

1−α/2,n−1 ≤
(n− 1)s2

σ2
≤ χ2

α/2,n−1

)
= 1− α,

where P(X > χ2
1−α/2) = 1− α/2 and P(X > χ2

α/2) = α/2, that is, χ2
1−α/2 is the lower critical value

and χ2
α/2 is the upper critical value (see the �gure).
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Note. The critical values can be looked up in the chi-squared table. In Excel, we can type
"=chisq.inv(prob,df)".

De�nition. A 100(1− α)% CI for variance σ2 is[(n− 1)s2

χ2
α/2,n−1

,
(n− 1)s2

χ2
1−α/2,n−1

]
.

De�nition. A 100(1− α)% CI for standard deviation σ is

[√(n− 1)s2

χ2
α/2,n−1

,

√
(n− 1)s2

χ2
1−α/2,n−1

]
.

Example. Suppose we want to compute 95% con�dence intervals for the population variance and
standard deviation of the volume of 20-ounce Coke bottles. A sample of size 60 bottles was measured
and it was obtained that the sample standard deviation is 0.6 oz. We computeχ2

0.975,59 = 39.6619
and χ2

0.025,59 = 82.1174. Thus, a 95% CI for σ2 is[(60− 1)(0.6)2

82.1174
,

(60− 1)(0.6)2

39.6619

]
= [0.26, 0.53],

and a 95% CI for σ is [√
0.26,

√
0.53

]
= [0.51, 0.73]. 2
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THE CHI-SQUARED TEST FOR VARIANCE

Suppose we would like to test H0 : σ2 = σ2
0 against H1 : σ2 > σ2

0 or σ2 < σ2
0 or σ2 6= σ2

0. The test
statistic is

χ2 =
(n− 1)s2

σ2
0

which under H0, has a χ
2 distribution with n− 1 degrees of freedom. Since the chi-squared distri-

bution is not symmetric, for this test, we can't compute p-values. We conduct this test based on
the rejection region which is de�ned as

RR =


{
χ2 |χ2 > χ2

α,n−1

}
, if H1 : σ2 > σ2

0,{
χ2 |χ2 < χ2

1−α,n−1

}
, if H1 : σ2 < σ2

0,{
χ2 |χ2 < χ2

1−α/2,n−1 or χ2 > χ2
α/2,n−1

}
, if H1 : σ2 6= σ2

0.

Example. A sample of size n = 22 revealed a sample variance of s2 = 1.98. We need to test

H0 : σ2 = 2.3 against H1 : σ2 < 2.3. We compute the test statistic χ2 =
(22− 1)(1.98)

2.3
= 18.08.

The critical value is χ2
0.95,21 = 11.59. The test statistic is larger than the critical value. It means that

the test statistic is not in the rejection region, and therefore, we fail to reject the null hypothesis
and conclude that the population variance is not less than 2.3. 2

Example. Suppose that 100 observations produce the sample standard deviation of 6.3. We need

to test H0 : σ = 5 against H1 : σ > 5. The test statistic is χ2 =
(100− 1)(6.3)2

52
= 157.17. The

rejection region is RR =
{
χ2 |χ2 > χ2

0.05,99

}
=
{
χ2 |χ2 > 123.2252

}
. The observed test statistic is

in the rejection region, hence we reject H0, and conclude that the population standard deviation is
larger than 5. 2

Example. In a sample of size 50, the sample variance is 0.78. We need to test H0 : σ2 = 2 against

H1 : σ2 6= 2. We compute the test statistic χ2 =
(50− 1)(0.78)

2
= 19.11. The rejection region is

RR =
{
χ2 |χ2 < χ2

0.975,49 or χ2
0.025,49

}
=
{
χ2 |χ2 < 31.55 or 70.22

}
. The test statistic belongs to

the rejection region, therefore, we reject H0 and conclude that the population variance is di�erent
from 2. 2
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THE F-DISTRIBUTION

De�nition. The F -distribution has the probability density function

f(x) =
(a/b)a/2

B(a/2, b/2)
xa/2−1(1 + ax/b)−(a+b)/2, a, b, x > 0.

Here B(a, b) =
∫ 1

0
xa−1(1− x)b−1 dx is the beta function.

Note. The F -distribution is named after Sir Ronald Aylmer Fisher (1890 � 1962), a famous British
statistician.

Theorem. Consider two independent random variables X1 and X2 that have chi-squared distribu-
tions with df1 and df2 degrees of freedom, respectively. Then

F =
X1/df1

X2/df2

has an F (df1, df2) distribution. The parameters df1 and df2 are termed the degrees of freedom
of numerator and denominator, respectively.
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CONFIDENCE INTERVALS FOR RATIO OF VARIANCES AND STANDARD
DEVIATIONS

Suppose two independent samples of sizes n1 and n2 are drawn and the sample standard deviations
s1 and s2 are measured. We want to construct 100(1− α)% CIs for σ2

1/σ
2
2 and for σ1/σ2. Consider

X1 =
(n1 − 1)s2

1

σ2
1

∼ χ2(n1 − 1) which is independent of X2 =
(n2 − 1)s2

2

σ2
2

∼ χ2(n2 − 1). By the

above theorem,

F =
(n1 − 1)s2

1

σ2
1 (n1 − 1)

÷ (n2 − 1)s2
2

σ2
2 (n2 − 1)

=
s2

1/s
2
2

σ2
1/σ

2
2

∼ F (n1 − 1, n2 − 1).

Note that F is a pivotal quantity. We can construct a con�dence interval based on F . We write

P
(
F1−α/2,n1−1,n2−1 <

s2
1/s

2
2

σ2
1/σ

2
2

< Fα/2,n1−1,n2−1

)
= 1− α,

P
( s2

1/s
2
2

Fα/2,n1−1,n2−1

<
σ2

1

σ2
2

<
s2

1/s
2
2

F1−α/2,n1−1,n2−1

)
= 1− α.

De�nition. A 100(1− α)% con�dence interval for σ2
1/σ

2
2 is[ s2

1/s
2
2

Fα/2,n1−1,n2−1

,
s2

1/s
2
2

F1−α/2,n1−1,n2−1

]
.

Note. To compute a critical value in Excel, we can enter "=f.inv(prob,df1,df2)". Critical values
for F -distribution are tabulated for di�erent values of df1 and df2. Occasionally, the following result
may be used to extract critical values from the table.

Result. The following relation holds for F -distribution:

Fα,df1,df2 =
1

F1−α,df2,df1

.

This relation can be shown by noting that for F = X1/df1
X2/df2

∼ F (df1, df2), P(F > Fα,df1,df2) = α, and so,

P
(X1/df1

X2/df2

> Fα,df1,df2

)
= α,

from where,

P
(X2/df2

X1/df1

<
1

Fα,df1,df2

)
= α.

Thus,

1

Fα,df1,df2
= F1−α,df2,df1 .
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De�nition. A 100(1− α)% con�dence interval for σ1/σ2 is

[√ s2
1/s

2
2

Fα/2,n1−1,n2−1

,

√
s2

1/s
2
2

F1−α/2,n1−1,n2−1

]
=
[ s1/s2√

Fα/2,n1−1,n2−1

,
s1/s2√

F1−α/2,n1−1,n2−1

]
.

Example. Suppose n1 = 65, n2 = 68, s2
1 = 37.1, and s2

2 = 42.3. A 95% CI for σ2
1/σ

2
2 is[ 37.1/42.3

F0.025,64,67

,
37.1/42.3

F0.975,64,67

]
=
[37.1/42.3

1.628
,

37.1/42.3

0.6126

]
= [0.54, 1.43],

and a 95% CI for σ1/σ2 is [
√

0.54,
√

1.43] = [0.73, 1.20]. 2

THE F-TEST FOR RATIO OF TWO VARIANCES

Suppose we need to test H0 : σ2
1 = σ2

2 against H1 : σ2
1 > σ2

2 or σ2
1 < σ2

2 or σ2
1 6= σ2

2. To obtain the

test statistic we use the fact that F =
s2

1/s
2
2

σ2
1/σ

2
2

has an F -distribution with n1 − 1 and n2 − 1 degrees

of freedom. Assuming H0 : σ2
1 = σ2

2 is true, F simpli�es to F = s2
1/s

2
2. This is the test statistic.

The rejection region for this test is de�ned as

RR =


{
F |F > Fα,n1−1,n2−1

}
, if H1 : σ2

1 > σ2
2,{

F |F < F1−α,n1−1,n2−1

}
, if H1 : σ2

1 < σ2
2,{

F |F < F1−α/2,n1−1,n2−1 or F > Fα/2,n1−1,n2−1

}
, if H1 : σ2

1 6= σ2
2.

Example. Suppose n1 = 15, n2 = 13, s1 = 4.7, and s2 = 8.9. We want to test whetherH0 : σ1 = σ2

vs. H1 : σ1 < σ2. The test statistic is F = (4.7)2/(8.9)2 = 0.2789. The critical value for the rejec-
tion region is F0.95,14,12 = 0.3946. The observed test statistic is below the critical value, therefore
we reject the null in favor of the alternative. 2

Example. Suppose n1 = 45, n2 = 45, s2
1 = 65.7, and s2

2 = 40.3. We test H0 : σ2
1 = σ2

2 against
H1 : σ2

1 > σ2
2. The test statistic is F = 65.7/40.3 = 1.63. The critical value for the rejection

region is F0.05,44,44 = 1.65. The test statistic is below the critical value, thus we fail to reject the
null hypothesis and conclude that variances are equal. 2

Example. Suppose n1 = 8, n2 = 11, s1 = 12.3 and s2 = 16.7. We need to test H0 : σ1 = σ2 against
H1 : σ1 6= σ2. The test statistic is F = (12.3)2/(16.7)2 = 0.54. The critical values of the rejection
region are F0.975,7,10 = 0.21 and F0.025,7,10 = 3.95. The test statistic is not in the rejection region,
thus we fail to reject H0 and conclude that population standard deviations don't di�er. 2
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LIKELIHOOD RATIO TEST

De�nition. Let X1, . . . , Xn
iid∼ f(x; θ), and let L(θ) =

∏n
i=1 f(Xi; θ) be the likelihood function.

Suppose we want to test H0 : θ = θ0 against H1 : θ 6= θ0. We de�ne the test statistic that is
termed the likelihood ratio (LR)

Λ =
L(θ) under H0

L(θ) under H1

=
L(θ0)

L(θ̂MLE)
=

∏n
i=1 f(Xi; θ0)∏n

i=1 f(Xi; θ̂MLE)
.

Under H0 : θ = θ0, assuming that θ̂MLE is close to θ0, the likelihood ratio Λ should be close to
1. Thus, H0 should be rejected if Λ is small. We de�ne the rejection region by RR = {Λ |Λ ≤ c}
where the critical value c is found from the expression for the signi�cance level α = P(Λ ∈ RR |H0 is
true) = P(Λ ≤ c | θ = θ0). The test with this rejection region is called the likelihood ratio test
(LRT).

Note. The likelihood ratio test is hard to implement in practice because it is di�cult to �nd the
exact distribution of Λ. Instead, an asymptotic likelihood ratio test is implemented.

De�nition. Suppose we want to test H0 : θ = θ0 against H1 : θ 6= θ0 at a signi�cance level
α. An asymptotic likelihood ratio test has the test statistic χ2 = −2 ln Λ which, under H0

has a chi-squared distribution with one degree of freedom. The rejection region has the form
RR =

{
χ2 |χ2 > χ2

α,1

}
. For α = 0.05, χ2

0.05,1 = 3.84146.

Example (Bernoulli distribution). Suppose X1, . . . , Xn
iid∼ Ber(p) and we want to test H0 :

p = p0 against H1 : p 6= p0 at the 5% level of signi�cance. First, we compute the likelihood ratio
(p̂MLE = X̄)

Λ =

∏n
i=1 p

Xi
0 (1− p0)1−Xi∏n

i=1 X̄
Xi(1− X̄)1−Xi

=
(p0

X̄

)nX̄(1− p0

1− X̄

)n−nX̄
.

Then we compute the asymptotic likelihood ratio test statistic χ2 = −2 ln(Λ), and check if it be-
longs to the rejection region RR = {χ2 : χ2 > 3.84146}.

To consider a numerical example, suppose we �ip a coin and observed the sequence (1 = H, 0 = T )

0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1

and would like to test if it is a fair coin, that is, we are interested in testing H0 : p = 0.5
against H1 : p 6= 0.5. We have n = 14, X̄ = 9/14, and p0 = 0.5. The likelihood ratio is Λ =( 0.5

9/14

)9( 1− 0.5

1− 9/14

)14−9

= 0.5602. The asymptotic likelihood test statistic is χ2 = −2 ln(0.5602) =

1.1589. It doesn't fall in the rejection region, therefore, we fail to reject the null hypothesis and
conclude that the coin is fair. 2
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Example (geometric distribution). Let X1, . . . , Xn
iid∼ geom(p). Suppose we want to test

H0 : p = p0 against H1 : p 6= p0. We compute the LR

Λ =

∏n
i=1 p0(1− p0)Xi−1∏n

i=1

(
1
X̄

)(
1− 1

X̄

)Xi−1
=

pn0 (1− p0)nX̄−n

1
X̄n

(
X̄−1
X̄

)nX̄−n = pn0X̄
nX̄
(1− p0

X̄ − 1

)nX̄−n
.

For instance, a coin is �ipped until a head appears. Suppose the experiment was repeated 25
times and it took 3.2 �ips, on average. We want to test if the �ipped coin is fair. We are given
n = 25, and X̄ = 3.2. We test H0 : p = 0.5 vs. H1 : p 6= 0.5, and so p0 = 0.5. The LR is

Λ = 0.525 3.2(25)(3.2)
(1− 0.5

3.2− 1

)(25)(3.2)−25

= 0.0031. The test statistic for the asymptotic LRT is

χ2 = −2 ln(0.0031) = 11.5297 > 3.84146, so it belongs to the rejection region. Thus, we reject H0

in favor of the alternative, and conclude that the coin is not fair. 2

Example (Poisson distribution). Let X1, . . . , Xn
iid∼ Poi(λ). Suppose we want to test H0 : λ =

λ0 against H1 : λ 6= λ0. The likelihood ratio is

Λ =

∏n
i=1

λ
Xi
0

Xi!
e−λ0∏n

i=1
X̄Xi

Xi!
e−X̄

=
(λ0

X̄

)nX̄
e−n(λ0−X̄).

As a numerical illustration, suppose we observe 0, 4, 2, 1, 2, 0, 1, 0, 3, 2, 1, 0, 0, 2, 1, 1, 5, 0, 1, 1, and
would like to test H0 : λ = 2 against H1 : λ 6= 2. We compute n = 20, X̄ = 27/20 = 1.35, and

λ0 = 2. The likelihood ratio is Λ =
( 2

1.35

)27

e−(20)(2−1.35) = 0.0918. The chi-squared statistics for

the asymptotic LRT is χ2 = −2 ln(0.0918) = 4.7757 > 3.84146, so it lies inside the rejection region,
and thus, we reject the null and conclude that the population parameter is not equal to 2. 2

Example (uniform distribution). Let X1, . . . , Xn
iid∼ Unif(0, θ). We would like to test H0 : θ =

θ0 against H1 : θ 6= θ0. The LR is

Λ =

∏n
i=1 θ

−1
0 I(0 ≤ Xi ≤ θ0)∏n

i=1 X
−1
(n)I(0 ≤ Xi ≤ X(n))

=
(X(n)

θ0

)n
I(X(n) ≤ θ0).

For example, we observed a sample of size 20 and the observed maximum is 7.1. We would like to

test H0 : θ = 7.6 against H1 : θ 6= 7.6. The LR is Λ =
(7.1

7.6

)20

= 0.2564. The asymptotic LRT

statistic is χ2 = −2 ln(0.2564) = 2.7221 < 3.84146. It means that the test statistic doesn't belong
to the rejection region. We fail to reject H0 and conclude that the parameter is equal to 7.6.

Note that if we, for example, wanted to test H0 : θ = 7 against H1 : θ 6= 7, then our LR would
be equal to 0, and thus χ2 would be equal to in�nity and we would reject the null in favor of the
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alternative. So, if θ0 < X(n), we necessarily conclude that θ 6= θ0, which makes sense. 2

Example (exponential distribution). Let X1, . . . , Xn
iid∼ Exp(mean=β). And suppose we want

to test H0 : β = β0 against H1 : β 6= β0. We compute the LR as

Λ =

∏n
i=1 β

−1
0 exp{−Xi/β0}∏n

i=1 X̄
−1 exp{−Xi/X̄}

=
( X̄
β0

)n
exp{−nX̄/β0 + nX̄/X̄} =

( X̄
β0

)n
exp{−nX̄/β0 + n}.

For example, if in a sample of size 10, the mean wait time is 2.2 minutes. We would like to test

H0 : β = 3.5 against H1 : β 6= 3.5. The LR is Λ =
(2.2

3.5

)10

exp{−(10)(2.2)/3.5 + 10} = 0.3950.

The asymptotic LRT test statistic is χ2 = −2 ln(Λ) = −2 ln(0.3950) = 1.8575 < 3.84146. Thus
we don't reject H0 and conclude that the mean is 3.5. 2

Example (normal distribution). Consider X1, . . . , Xn
iid∼ N(µ, σ2) where σ2 is known. Suppose

we want to test H0 : µ = µ0 against H1 : µ 6= µ0 at the signi�cance level α. One way to test

it is to conduct a one-sample z-test with the test statistic z =
X̄ − µ0

σ/
√
n

and the rejection region

RR = {z : | z < z1−α/2 or z > zα/2} = {z : | |z| > zα/2}. We will now show that this test is
equivalent to the asymptotic likelihood ratio test. We obtain the likelihood ratio as

Λ =

∏n
i=1

1√
2πσ2

exp
{
− (Xi−µ0)2

2σ2

}
∏n

i=1
1√

2πσ2
exp

{
− (Xi−X̄)2

2σ2

} = exp
{
−

n∑
i=1

(Xi − µ0)2

2σ2
+

n∑
i=1

(Xi − X̄)2

2σ2

}

= exp
{
− 1

2σ2

[ n∑
i=1

X2
i − 2µ0

n∑
i=1

Xi + nµ2
0 −

n∑
i=1

X2
i + 2X̄

n∑
i=1

Xi − nX̄2
]}

= exp
{
− 1

2σ2

[
− 2µ0 nX̄ + nµ2

0 + 2X̄ nX̄ − nX̄2
]}

= exp
{
− n

2σ2

[
X̄2 − 2µ0 X̄ + µ2

0

]}
= exp

{
− n

2σ2

(
X̄ − µ0

)2
}
.

The test statistic for the asymptotic likelihood ratio test is

χ2 = −2 ln Λ =

(
X̄ − µ0

)2

σ2/n
.

This test statistic has an exact χ2(1) distribution for any n (not just an asymptotic distribution).
The rejection region RR = {χ2 |χ2 > χ2

α,1} = {z : | |z| > zα/2} because z2
α/2 = χα,1. 2
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CHI-SQUARED TESTS FOR CATEGORICAL VARIABLES

De�nition. A contingency table (or a two-way table, or a cross tab) is a table of frequencies
for the level-level combinations of two variables.

A contingency table, its marginal totals (row and column totals), and a grand (overall) total
look like this:

VARIABLE 2
Level 1 Level 2 Level 3 Total

VARIABLE 1
Level 1 n11 n12 n13 n1.

Level 2 n21 n22 n23 n2.

Total n.1 n.2 n.3 n..

There are two types of situations when those contingency tables arise: (1) when one sample is drawn
and two variables are measured for each individual, or (2) several independent samples are drawn
and a single variable is measured on each individual. In case (1), we would be interested in testing
H0 : the two variables are independent against H1 : the two variables are not independent (chi-
squared test for independence). In case (2), we would be interested in testing H0 : at each variable
level, proportions are the same across the samples against H1 : at each variable level, proportions
are not all the same across the samples (chi-squared test for equality of proportions).

Note. In the test for independence, the testing is done assuming the independence of variables
(i.e., the product of marginal probabilities is equal to the joint probability). In the test for equality
of proportions, under the null, the underlying distribution is hypergeometric. Even though the
theories behind these two tests are completely di�erent, the test statistics are the same and so the
two tests are conducted the same way.

How the chi-square tests are conducted

Step 1. Arrange the counts (frequencies) in a contingency table. Denote by nij the observed counts
in row i and column j.
Step 2. Compute row and column totals, and the grand total. Denote these totals, respectively,
ni., n.j, and n...

Step 3. Compute expected values for each cell using the formula eij =
ni.n.j
n..

(as the product of

respective row and column totals divided by the grand total). Note that by de�nition, the expected
values must sum up to respective row and column totals.
Step 4. Compute the test statistic

χ2 =
∑
i,j

(nij − eij)2

eij
,
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which under H0 has a χ
2-distribution with df = (r− 1)(c− 1) where r is the number of rows and c

is the number of columns.
Step 5. Compute the critical value for the rejection region of the form RR = {χ2 : | χ2 > χ2

α,df}.
State decision, draw conclusion.

Note. The chi-squared test is valid only if the expected counts in each cell are at least 5.

Example (test for independence). Suppose a sample of size 65 is chosen and gender (Male/Female)
and opinion (Yes/No/Neutral) are collected for each individual in the sample. The data are sum-
marized in the table.

Opinion
Gender Yes No Neutral Total
Male 10 15 17 42
Female 13 7 3 23
Total 23 22 20 65

We want to test H0 : gender and opinion are independent vs. H1 : they are dependent. We compute
expected counts and place them in each cell in parentheses like this:

Opinion
Gender Yes No Neutral Total
Male 10 (14.86) 15 (14.22) 17 (12.92) 42
Female 13 (8.14) 7 (7.78) 3 (7.08) 23
Total 23 22 20 65

For instance e11 = (42)(23)/65 = 14.86, e12 = (42)(22)/65 = 14.22, etc. Note that even though
one of the observed counts is less than 5, the expected count for that cell is larger than 5, so the
chi-squared test is applicable. The test statistic is

χ2 =
(10− 14.86)2

14.86
+

(15− 14.22)2

14.22
+

(17− 12.92)2

12.92
+

(13− 8.14)2

8.14
+

(7− 7.78)2

7.78
+

(3− 7.08)2

7.08
= 8.25.

The number of degrees of freedom is df = (2 − 1)(3 − 1) = 2. The critical value of the rejection
region is χ2

0.05,2 = 5.99. Since the observed test statistic falls in the rejection region, we reject the
null in favor of the alternative and conclude that gender and opinion are not independent. 2

Example (test for equality of proportions). Suppose 200 residents of each of the three cities
(LA, NY, and Denver) are surveyed and their opinions (Yes/No/No opinion) are recorded. The
frequencies are as follows:
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Opinion
City Yes No No Opinion Total
LA 109 82 9 200
NY 150 35 15 200

Denver 122 63 15 200
Total 381 180 39 600

We test H0 : proportions in each column are the same against H1 : in each column, not all pro-
portions are the same. (Note that two proportions can be equal but not equal to the third). We
compute the expected counts and add them to the table.

Opinion
City Yes No No Opinion Total
LA 109 (127) 82 (60) 9 (13) 200
NY 150 (127) 35 (60) 15 (13) 200

Denver 122 (127) 63 (60) 15 (13) 200
Total 381 180 39 600

The expected values are computed as: (200)(381)/600 = 127, (200)(180)/600 = 60, and (200)(39)/600 =
13. The test statistic is

χ2 =
(109− 127)2

127
+

(82− 60)2

60
+ · · ·+ (15− 13)2

13
= 27.4.

The number of degrees of freedom is df = (3 − 1)(3 − 1) = 4. The critical value for the rejection
region is χ2

0.05,4 = 9.48. Therefore, the observed test statistic belongs to the rejection region, and
we reject H0 and conclude that the column proportions are not all equal. 2

CHI-SQUARED GOODNESS-OF-FIT TEST

Suppose we observe some realizations of a random variable and would like to test if that variable
follows a speci�ed distribution. This test is called the goodness-of-�t test because it tests if the
distribution �ts the data well. We test H0 the underlying distribution is the speci�ed one against
H1 : the underlying distribution is not the speci�ed one. The testing is done based on a chi-squared
test statistic

∑
(obs− exp)2/exp, which under H0 has a chi-squared distribution with the number

of degrees of freedom df =# of categories - 1-# distribution parameters that have to be estimated
from the data. The rejection region is of the form RR = {χ2 | χ2 > χ2

α,df}.

Example. We roll a die 120 times record our observations. We want to test H0 : the die is fair
against H1 : the die is not fair. The data are
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1 2 3 4 5 6
Observed counts 12 22 8 43 15 20

Under H0, each number appears an equal number of times, that is the expected counts all equal to
120/6=20. We have

1 2 3 4 5 6
Observed counts 12 22 8 43 15 20
Expected counts 20 20 20 20 20 20

The test statistic is

χ2 =
(12− 20)2

20
+

(22− 20)2

20
+

(8− 20)2

20
+

(43− 20)2

20
+

(15− 20)2

20
+

(20− 20)2

20
= 38.3.

The number of degrees of freedom df = 6− 1− 0 = 5. The critical value of the rejection region is
χ2

0.05,5 = 11.07. The test statistic is in the rejection region and therefore, we reject H0 and conclude
that the die is not fair. 2

Example. Suppose we observe 0,1,1,2,0,3,2,0,1,0,1,2,4,0,5,2,1,1,3,4, and would like to test if these
data come from a Poisson distribution. We test H0 : distribution is Poisson against H1 : distribution
is not Poisson. We compute the observed frequencies:

0 1 2 3 4 ≥ 5
Observed counts 5 6 4 2 2 1

First we need to estimate λ from the data. We have λ̂ = X̄ = 33/20 = 1.65. Then we compute the
expected counts based on Poi(1.65) distribution. We obtain

(20)p(0) = (20)e−1.65 = 3.84, (20)p(1) = (20)(1.65e−1.65) = 6.34, (20)p(2) = (20)
(1.652

2
e−1.65

)
= 5.23,

(20)p(3) = (20)
(1.653

6
e−1.65

)
= 2.88, (20)p(4) = (20)

(1.654

24
e−1.65

)
= 1.19,

and, �nally, the last expected count (for 5 or above) can be found by subtraction from 20: 20 −
3.84− · · · − 1.19 = 0.52. Putting the observed and expected counts together in a table, we get

0 1 2 3 4 ≥ 5
Observed counts 5 6 4 2 2 1
Expected counts 3.84 6.34 5.23 2.88 1.19 0.52

The test statistic is

χ2 =
(5− 3.84)2

3.84
+

(6− 6.34)2

6.34
+ · · ·+ (1− 0.52)2

0.52
= 1.92.
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The number of degrees of freedom is df = 6− 1− 1 = 4. The critical value for the rejection region
is χ2

0.05,4 = 9.49, thus the observed test statistic doesn't belong to the rejection region, and we fail
to reject the null and conclude that the underlying distribution is Poisson. 2

Example. Suppose we observed the following data

0.17 0.33 0.54 0.59 0.63
0.70 0.71 0.74 0.86 0.99
1.15 1.23 1.25 1.43 1.79
1.82 1.83 1.86 1.89 1.90

We want to test H0 : X ∼ Unif(0, 2) against H1 : X 6∼ Unif(0, 2). We divide the interval into
subintervals (bins) of equal lengths and compute observed frequencies for each subinterval. We
obtain

[0,0.4) [0.4,0.8) [0.8, 1.2) [1.2,1.6) [1.6, 2)
observed counts 2 6 3 3 6
expected counts 4 4 4 4 4

The chi-squared statistics is

χ2 =
(2− 4)2

4
+ · · ·+ (6− 4)2

4
= 3.5

which under H0 has a chi-squared distribution with df = 5 − 1 − 0 = 4. The critical value for
the rejection region is χ2

0.05,4 = 9.49. The observed test statistic doesn't fall in the rejection region,
and thus we fail to reject the null and conclude that the data come from a uniform distribution on
(0,2). 2

Example. Consider the same data as in the previous example. We would like to test H0 : data are
exponentially distributed against H1 : data are not exponentially distributed. To �t an exponential
distribution, we need to estimate the mean. We write β̂ = X̄ = 1.1205. Next, we compute the
expected counts for each bin based on the exponential distribution with a mean of 1.1205.

(20)P(0 < X < 0.4) = (20)
(
1− e−0.4/1.1205

)
= 6.004,

(20)P(0.4 < X < 0.8) = (20)
(
e−0.4/1.1205 − e−0.8/1.1205

)
= 4.202,

(20)P(0.8 < X1.2) = (20)
(
e−0.8/1.1205 − e−1.2/1.1205

)
= 2.940,

(20)P(1.2 < X < 1.6) = (20)
(
e−1.2/1.1205 − e−1.6/1.1205

)
= 2.058,

and

(20)P(X > 1.6) = (20)e−1.6/1.1205 = 4.796.
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Summing it all in a table, we get

[0,0.4) [0.4,0.8) [0.8, 1.2) [1.2,1.6) [1.6, ∞)
observed counts 2 6 3 3 6
expected counts 6.004 4.202 2.940 2.058 4.796

The test statistic is

χ2 =
(2− 6.004)2

6.004
+ · · ·+ (6− 4.796)2

4.796
= 4.18.

The number of degrees of freedom is df = 5− 1− 1 = 3. The critical value for the rejection region
is χ2

0.05,3 = 7.81. The observed test statistic doesn't belong to the rejection region, thus we fail to
reject the null and conclude that the data are exponentially distributed. 2

THE END
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