
4.2	Calculating	Probability

Definition.	Probability is	a	numerical	
measure	of	how	likely	it	is	that	a	specific	
event	will	occur.

Notation.	The	probability	of	an	event	A
is	denoted	by	P(A). 1
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Properties	of	probability:
(1)

(2)		If																																								,	then
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Example.	Flip	a	coin	once.	The	sample
space	is	S={H,	T}.	How	to	assign
probabilities	to	the	outcomes?		
Probabilities	must	satisfy:

and

For	instance,	we	can	assign	equal
probabilities																																
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Definition.	A	coin	that	is	equally	likely	
to	fall	heads	or	tails	when	flipped	is	
called	a	fair	coin.	Otherwise,	the	coin	is
termed	a	biased coin	(or	loaded, or	
unfair coin).	
A	loaded	coin	may	have,	for	example,
P(H)=0.8	and	P(T)=0.2.
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Definition.	A	fair	die is	equally	likely
to	fall	on	either	of	the	six	sides	when
tossed.	It	means	that		
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Probability	of	Equally	Likely	Outcomes
Consider	n equally	likely outcomes	
E1,	E2,	…,	En .	We	have	P(E1)+…+P(En)=1	
and	also	P(E1)=P(E2)=…=P(En).	
Therefore,	to	each	simple	event,	we	
assign	probability	1/n,	that	is,
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Probability	of	Any	Event

In	general,	to	any	event	A	={E1,	E2,	…,	En},	
we	assign	probability
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Example.	A	fair	coin	is	flipped	twice.	
Find	the	probability	to	see	at	most	one	
head.
Solution. S={HH,	HT,	TH,	TT}.	Each	
outcome	is	equally	likely	since	the	coin	
is	fair,	therefore,	
P(HH)=P(HT)=P(TH)=P(TT)=1/4.
Let	A=at	most	one	head	=	{HT,	TH,	TT}.
P(A)=P(HT)+P(TH)+P(TT)=1/4+1/4+1/4=3/4 8



4.6	Counting	Rule
Rule.	If	an	experiment	consists	of	k
steps,	and	the	steps	result	in	n1,	n2,	…,
nk outcomes,	respectively,	then	the	
total	number	of	outcomes	for	the	
experiment	is		 ଵ ଶ ௞

To	see	this,	draw	a	tree	diagram.							
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The total number of outcomes is the total number of branches of this 
tree. It is ݊ଵ ∙ ݊ଶ ∙ ⋯ ∙ ݊௞.
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Example. A	coin	is	flipped	three	times.	
Each	flip	results	in	two possible	
outcomes,		therefore,	the	total	number	
of	outcomes	in		the	sample	space	is	

The	tree	diagram	looks	like	this:
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Example.	In	a	cafeteria	there	is	a	choice
of	3	appetizers,	5	main	courses,	3
desserts,	and	4	drinks.	How	many	
dinners	are	possible?
Answer.	
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Example.	How	many	license	plates	of	
the	form	1ABC234	are	possible?
Answer.	
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Example.	A	quiz	consists	of	five	
multiple‐choice	questions	with	four	
possible	answers	each.	What	is	the	total	
number	of	different	ways	in	which	this	
quiz	could	be	solved?

Answer.		(4)(4)(4)(4)(4)=1024
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4.3	Marginal	and	Conditional
Probabilities
Example.	One	hundred	employees	of	a
company	were	asked	whether	they	are
in	favor	or	against	paying	high	salaries
to	CEOs	of	US	companies.	For	each	
respondent,	two	characteristics	were	
recorded:	gender	(male or	female)	and
opinion (in	favor	or	against).		 16



A	two‐way	classification	of	the
responses		of	these100	employees	is
summarized	in		the	following	table,	
called	contingency	table.
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male 15 45

female 4 36



Marginal	Probability
Definition.	The	marginal	probability
is	the	probability	of	a	single	event	
without	consideration	of	any	other	
event.	
Example.	In	our	example,	we	can	compute	
the	marginal	probabilities	of	the	events	:	
P(male),	P(female),		P(in	favor),	and	
P(against).
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To	compute	a	marginal	probability,	take	the	
respective	total	and	divide	by	the	grand	total.	
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60

40

100total 19 81

in	favor against

male 15 45

female 4 36

total  grand



Conditional	Probability
Definition.	The	conditional	probability	is
the	probability	that	one	event	will	occur
given	that	another	event	has	already
occurred.	

Notation.	If	A and	B are	two	events,	then	the	
conditional	probability	of	A given	B is
denoted	by	P(A|B) and	is	read	“the	
conditional	probability	of	A	given	B”.
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For	contingency	tables,	the	conditional	
probabilities	are	computed	by	the	
reduction	of	the	sample	space	
technique.

Example.	In	our	example,	compute	
P(in	favor	|male),	the	conditional	
probability	that	the	respondent	is	in	
favor	given	that	the	respondent	is	male.
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We	know	that	the	event	male	has	
occurred.	Hence,	we	reduce	the	sample
space	to	the	male row.	

Now,	we	look	at	how	many	respondents
in	this	row	are	in	favor.
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Exercise.		In	our	example,	compute
P(female	| against).

Solution.		We	reduce	the	sample	space
to	against column.
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Exercise.	A	survey	of	170	recent	high	
school	graduates	was	conducted,	and	the	
data	were	recorded	in	a	two‐way	table.

1.	What	is	the	probability	that	a	person	
randomly	chosen	from	this	sample	has	a	
driver’s	license?
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Job
Driver’s	
License

No Part‐time Full‐time

yes 34 56 22
no 28 23 7



Answer.	P(license)=(34+56+22)/170=0.6588

2.	What	is	the	conditional	probability	that	
a	randomly	chosen	person	has	a	part‐time	
job,	given	that	he	or	she	has	no	driver’s	
license?

Answer.		P(part‐time job|no license)
=23/(28+23+7)=0.3966
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4.3	Mutually	Exclusive	Events
Definition.	Events	that	cannot	occur	
together	are	called	mutually	exclusive
(or	disjoint).



Example.	A	die	is	rolled.	Let A	=	an	even	
number	is	observed =	{	2,4,6},	B	=	an	odd	number	is	
observed =	{1,3,5},	C	=	a	number	below	5	is	observed
=	{1,2,3,4}.	
 Are	A	and	B	disjoint?
Answer. Yes,	they	have	no	outcomes	in	
common.
 Are	A	and	C	disjoint?
Answer. No,	they	have	outcomes	2	and	4	in
common.
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4.3	Independent	Versus	
Dependent	Events
Definition.	Two	events	are	said	to	be	
independent if	the	occurrence	of	one	
event
doesn’t	change	the	probability	of	the	
other.	
In	other	words,	two	events	A and		B are	
independent,	if	P(A|B)=P(A).	



Definition.	If	two	events	are	not
independent,	then	they	are	called	
dependent (or	not	independent).
That	is,	for	dependent	events	A	and	B,
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Example.	One	card	is	drawn	at	random
from	a	standard	deck	of	cards.	
Are	the	events	A=the	drawn	
card	is	an	ace	and	B=the	drawn	
card	is	black	independent?

Solution.		Among	52	cards	there	are	four
aces,	so	P(A)=4/52=1/13.	
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Suppose	now	B has	happened	and	a
black	card	was	drawn.	There	
are	26	black	cards,	of	which	
2	are	aces.	

Therefore,		P(A|B)=2/26=1/13=P(A).	
So,	A and	B are	independent.
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Example.	In	our	example	with	a
contingency	table,	are	the	events	male
and	against independent?
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female 4 36
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Solution.																																							

therefore,	the	two	events	are	not
independent (are	dependent).
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Exercise.	Can	mutually	exclusive	events
A and	B be	independent?

Answer.	No!	Because	if	B has	happened,	
now	A cannot	happen,	so
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4.3	Complementary	Events
Definition.	The	complement of	an
event	A is	the	event	that	consists	of	all
outcomes	that	are	in	the	sample	space	S
but	not	in	A.

Notation.			 is	read	“A	bar”	or		“A	
complement”.	Other	typical	notation
is		 ௖.
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Rule.			Since																																				we
have

Example.	In	our	example,	male	and
female	are	two	complementary	events.	
P(male)=0.6,	hence,	 P(female)=1	–
P(male)=1 – 0.6	=	0.4.
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