
Lecture Notes for MATH 380

1. ALGEBRA OF SETS

De�nition. A random phenomenon is a phenomenon that has an unpredicted
outcome on every try but the overall distribution of all possible outcomes is well-
de�ned. For example, �ipping a coin is a random phenomenon because we don't
know what comes up on the next �ip, heads or tails, but we know that if it is a fair
coin, then heads should come up roughly 50% of the time.

De�nition. The sample space is the set of all possible outcomes of a random phe-
nomenon. It is denoted by S.

Examples. (1) Flipping a coin once. The sample space S = {H,T}.
(2) Flipping a coin twice. The sample space S = {HH,HT, TH, TT}.
(3) Flipping a coin until one head or three tails appear. The sample space is
S = {H,TH, TTH, TTT}.
(4) Rolling a die. The sample space is S = {1, 2, 3, 4, 5, 6}.
(5) Rolling a die twice (or rolling two dice). The sample space is S = {(1, 1), (1, 2), . . . ,
(6, 5), (6, 6)}.

De�nition. An event is a subset of the sample space. Events are denoted by capital
Latin letters from the beginning of the alphabet. For example, A, B, C, D, A1, A2,
etc.

Example. A coin is �ipped twice. De�ne event A as at least one head appears. We
can write A = {HH,HT, TH}.

Example. Two dice are rolled. List all outcomes in the event that the sum of two
rolls is equal to 8. We write B = {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}.

De�nition. An complement of event A, denoted Ac or Ā, is the collection of all
outcomes that are in the sample space S but not in A.

Example. A coin is �ipped twice. The complement of A=at least one head appears

is Ā=no heads appear= {TT}.
De�nition. An intersection of two events A and B, written A∩B, is the set of all
outcomes that are in both A and B.
De�nition. A union of events A and B, denoted by A∪B, is the set of all outcomes
that are either in A or in B or in both.

Note. A good way to remember the notation is to notice that ∪ resembles the letter
U (union).

Example. Consider a standard pocket deck of cards, with 52 cards, 4 suits (hearts
and diamonds are red suits, and club and spades are black suits), 13 cards in each suit
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(2 through 10, Jack, Queen, King, and Ace). Suppose one card is randomly drawn
from this deck of cards. The events A =an ace is drawn= {A♥, A♦, A♣, A♠}, and
B =a black card is drawn= {2♣, . . . , A♣, 2♠, . . . , A♠}. The intersection A ∩ B =
{A♣, A♠}, and the union

A ∪B = {2♣, . . . , K♣, 2♠, . . . , K♠, 2♣, . . . , A♣, 2♠, . . . , A♠}.

Note. To list all outcomes in an intersection of A ∩ B, go through the list of the
outcomes in A and keep only those that are also in B. To list all outcomes in the
union A∪B, list all outcomes in A and then go through the list of outcomes in B and
list only those that were not already listed, to avoid listing the intersection twice.

De�nition. A Venn diagram is a visual tool that helps depict events relative to
each other. The sample space is drawn as a rectangle, inside which events are drawn
as circles. The most general Venn diagram for two sets looks like this:

Historical Note. John Venn (1834 �1923) was a British logician and philosopher,
who introduced the diagram in 1880.

De�nition. A null event (or an empty event) is and event that contains no out-
comes. The notation is ∅.

De�nition. Two events are disjoint (or mutually exclusive) if their intersection
is empty, that is, A ∩ B = ∅. On a Venn diagram, disjoint events are depicted as
non-overlapping circles.
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Exercise 1.1. A ∩ ∅ = ∅, A ∪ Ac = S, A ∪ ∅ = A, A ∩ S = A, A ∩ Ac =
∅, A ∪ S = S.

Exercise 1.2. An engineering �rm is hired to determine if certain waterways in Vir-
ginia are safe for �shing. Samples are taken from three rivers, and the rivers are
classi�ed by letters F for �safe for �shing� or N for �not safe for �shing.�
(a) Describe in words an event A = {FFF, NFF, FFN, NFN}. Answer: A = the
second river is safe for �shing.
(b) Find A ∩ B, if B = at least one river is safe for �shing. Answer: A ∩ B = A =
{FFF, NFF, FFN, NFN}.

Exercise 1.3. Which of the following pairs of events are mutually exclusive?
(a) A golfer scoring the lowest 18-hole round in a 72-hole tournament and losing the
tournament. Answer: Not mutually exclusive, two events can happen at the same
time.
(b) A poker player getting a �ush (all cards in the same suit) and 3 of a kind on the
same 5-card hand. Answer: Mutually exclusive, cannot happen at the same time.
(c) A mother giving birth to a baby girl and a set of twin daughters on the same day.
Answer: Not mutually exclusive, can happen at the same time.
(d) A chess player losing the last game and winning the match. Answer: Not mutu-
ally exclusive, can happen at the same time.

Exercise 1.4. Draw a Venn diagram for two general events A and B and show where
on the diagram are A ∩B, A ∪B, Ā, B̄, A ∩B, and A ∪B.
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Exercise 1.5. Use Venn diagram to prove (Ac)c = A.

Exercise 1.6. Draw a card at random from a deck of cards. De�ne events A = the
card is red, B = {J♦, Q♥, K♦}, C = the card is an ace. Draw a Venn diagram
for these three events.

Exercise 1.7. One hundred horses were made to listen to classical and rock music.
Twenty-nine horses exhibited some head movements when classical music was played,
37 when rock music was played, and 8 when both were played. How many horses
exhibited head movements to
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(a) at least one type of music? |C ∪R| = 21 + 8 + 29 = 58.

(b) to classical music only? |C ∩ R̄| = 21.

(c) to both types of music? |C ∩R| = 8.

(d) only one type of music? |(C ∩ R̄) ∪ (C̄ ∩R)| = 21 + 29 = 50.

(e) neither music? |C ∪R| = 42.

Exercise 1.8. Which of the following statements are correct?

(a) 2 ∈ {1, 2, 3}. Answer: Correct, 2 is an element of the set.
(b) 2 ⊂ {1, 2, 3}. Answer: Wrong, an element is not a subset of a set.
(c) {2} ∈ {1, 2, 3}. Answer: Wrong, a set is not an element of a set.
(d) {2} ⊂ {1, 2, 3}. Answer: Correct, a set is a subset of a bigger set.

Exercise 1.9. Three students are selected at random from a chemistry class and
classi�ed as male or female.
(a) List the elements of the sample space S using the letter M for �male� and F for
�female.� Answer: S = {MMM,MMF,MFM,FMM,FFM,FMF,MFF, FFF}.
(b) De�ne a second sample space S1 where the elements represent the number of
females selected. Answer: S1 = {0, 1, 2, 3}.

Exercise 1.10. A fair coin is �ipped until two tails or three heads appear. Write
down the sample space. Answer: S = {TT, THT, THHT, THHH,HTT,HHTT,HTHT,
HHTH,HHH,HTHH}.

Exercise 1.11. In each of the following cases, describe a sample space S for the
indicated random phenomenon.

(a) A patient with a usually fatal form of cancer is given a new treatment. The
response variable is the length of time that the patient lives after treatment. Answer:
S = {T ≥ 0}.
(b) A student enrolls in a probability course and at the end of the semester receives
a letter grade. Answer: S = {A,B,C,D, F}.
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(c) A basketball player shoots two free throws. Answer: S = {HH,HM,MH,MM}
where H=hit, M=miss.

(d) A year after knee surgery, a patient is asked to rate the amount of pain in the
knee. A seven-point scale is used, with 1 corresponding to no pain and 7 correspond-
ing to extreme discomfort. Answer: S = {1, 2, 3, 4, 5, 6, 7}.

(e) Choose a student in your class at random. Ask how many hours that student
spent studying during the past 24 hours. Answer: S = {0, 1, 2, . . . , 24}.

(f) In a test of a new package design, a carton of a dozen eggs is dropped from a
height of 1 foot. The number of broken eggs is counted. Answer: S = {0, 1, . . . , 12}.

(g) A nutrition researcher feeds a new diet to a young male white rat. The re-
sponse variable is the weight (in grams) that the rat gains in 8 weeks. Answer:
S = {0, 1, 2, . . . }.

Exercise 1.12. Draw a general Venn diagram for three events. Can you draw one
for four events?

2. Probability: Axiomatic Definition

Overly simplifying, we can say that a probability is a numerical measure of how
likely it is that a speci�c event will occur. It is a number between 0 and 1, inclusively.
We can think of a probability as:

• Long-term proportion. For example, P(H) = 0.5 means that when we �ip a coin
many times, roughly half will be heads.
• Fraction. For example, there are 5 red and 3 green balls, we choose one at random,
and the probability of choosing a red ball is 5/(5 + 3) = 5/8.
• Personal belief. For example, you might be estimating that the probability that
you will pass a �nal exam in this course is 0.8.

Now we give a formal axiomatic de�nition of probability.
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De�nition. Let A1, A2, . . . , be an in�nite set of disjoint events, that is, Ai ∩Aj = ∅
for any i 6= j. A probability P of an event A is de�ned by the following two axioms:
(1) 0 ≤ P(A) ≤ 1, P(∅) = 0, and P(S) = 1, and (2) P

(⋃∞
i=1 Ai

)
=
∑∞

i=1 P(Ai).

Example. Suppose we have a �nite set of events A1, A2, . . . , An. We need to show
that P

(⋃n
i=1 Ai

)
=
∑n

i=1 P(Ai). To this end, we can supplement our �nite set with
in�nitely many empty events and use the second axiom in the de�nition of prob-
ability. We write P

(⋃n
i=1 Ai

)
= P(A1 ∪ A2 ∪ · · · ∪ An ∪ ∅ ∪ ∅ ∪ . . . ) = {by the

axiom} = P(A1)+P(A2)+· · ·+P(An)+P(∅)+P(∅)+· · · = P(A1)+P(A2)+· · ·+P(An),
since the probability of an empty set is equal to zero.

Complement Rule. We will show that P(Ā) = 1 − P(A). Indeed, we can notice
that A and Ā constitute a �nite partition of S, so using the result of the previous
exercise, we can write P(A) + P(Ā) = P(A ∪ Ā) = P(S), so P(Ā) = 1− P(A).

Additive Rule. P(A ∪B) = P(A) + P(B)− P(A ∩B).
Proof: Let's assume that probabilities are equivalent to areas on a Venn diagram.
Then the area of A∪B is the same as the area of A plus the area of B, but the area
of the intersection A ∩B is counted twice, so we have to subtract it o� ones.

Note. Given any three of the four quantities in the additive rule, we can �nd the
fourth.

De Morgan's Laws. For any events A and B, the following two rules (called De
Morgan's Laws) always hold: P(A ∪B) = P(Ā ∩ B̄), and P(A ∩B) = P(Ā ∪ B̄).
Proof: The quickest way to prove the laws is through Venn diagrams.

Here we depict the left-hand sides of De Morgan's Laws.

And here we draw the Venn diagrams for the right-hand sides.
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We can see that the areas are the same for both sides of the respective identities.

Note. The laws become very intuitive if described in simple words. In the �rst law,
the left-hand side says that neither event happens, and the right-hand side states the
same by saying that A doesn't happen and B doesn't happen. Likewise, in the second
law, the left-hand side says that A and B don't happen at the same time, whereas the
right-hand side restates it by saying that either A doesn't happen or B doesn't happen.

Historical Note. Augustus De Morgan (1806-1871) was a British mathematician
and logician.

Note. The way to remember De Morgan's Laws is as follows: the bar on top over
the union of A and B distributes over each event, and the union symbol ∪ is turned
upside down to become an intersection ∩. Likewise, in the second law, the bar above
the intersection of A and B goes over each event individually and the intersection
symbol ∩ turns over to become the union ∪.

Exercise 2.1. Match one of the probabilities that follow with each statement given.
The list of probabilities is: 0, 0.01, 0.3, 0.54, 0.99, and 1.
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(a) This event is impossible. It can never occur. Answer: 0.
(b) This event is certain; it will occur on every trial of the random phenomenon.
Answer: 1.
(c) This event is very unlikely, but it will occur once in a while in a long sequence of
trials. Answer: 0.01.
(d) This event is very probable but still fails to occur once in a while. Answer: 0.99.
(e) This event will occur more often than not. Answer: 0.54.

Exercise 2.2. A major credit card company is interested in the main use of credit
cards by people in various income brackets. The data in the table below are obtained
from 2,000 randomly selected cardholders.

Annual Use of the card
Income Clothes Food Travel Other

over $100,000 50 10 100 40
$50,000 to $100,000 70 30 300 100
$25,000 to $49,000 400 400 100 100
below $25,000 50 200 30 20

(a) What is the probability that a randomly chosen cardholder has an annual income
between $25,000 and $49,000? Answer: (400 + 400 + 100 + 100)/2000 = 1/2.
(b) What is the probability that he uses his credit card for buying food and he earns
below $25,000 each year? Answer: 200/2000 = 0.1.
(c) What is the probability that his annual income earns over $100,000 or that he uses
his card for travel? Answer: (50+10+100+40+300+100+30)/2000 = 630/2000 =
0.315.

Exercise 2.3. P(A) = 1/4, P(B) = 1/2, P(A ∪ B) = 5/8. Write using proper
mathematical notion and compute:
(a) P(A or B). Answer: P(A ∪B) = 5/8.
(b) P(A and B). Answer: By the additive rule, P(A∩B) = P(A)+P(B)−P(A∪B) =
1/4 + 1/2− 5/8 = 2/8 + 4/8− 5/8 = 1/8.
(c) P(only A happens). Answer: P(A ∩ B̄) = P(A)− P(A ∩B) = 1/4− 1/8 = 1/8.
(d) P(exactly one event happens). Answer: P

(
(A∩ B̄)∪ (Ā∩B)

)
= P(A∪B)−P(A∩

B) = {by the additive rule} = P(A∪B)− (P(A) + P(B)− P(A∪B)) = 5/8− 1/8 =
4/8 = 1/2.
(e) P(A or B but not both). Answer: Same event as in part (d).
(f) P(A and B do not happen simultaneously). Answer: P(A ∩B) = 1−P(A∩B) =
1− 1/8 = 7/8.
(g) P(neither event happens). Answer: P(A ∪B) = 1− P(A ∪B) = 1− 5/8 = 3/8.

Exercise 2.4. Write down the additive rule for three events. Answer: Think of the
probability of an event as an area on a Venn diagram. Consider the area of the union
of three events A ∪ B ∪ C. If we add the areas of A, B, and C, we double-count the
intersections A ∩B, A ∩ C, and B ∩ C, so we need to subtract them once. Focusing
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now on the area of the intersection of all three events A∩B∩C, we see that we added
it three times and then subtracted it three times, so we need to add it back on once.
Therefore, the additive rule for three events looks like this:

P(A∪B∪C) = P(A)+P(B)+P(C)−P(A∩B)−P(A∩C)−P(B∩C)+P(A∩B∩C).

Note. The additive rule can be extended to any number of events. We need to add
probabilities of odd-folds (1, 3, 5, etc.), and subtract probabilities of all even-folds (2,
4, 6, etc.).

Exercise 2.5. It is given that P(A) = 0.55 and P(B) = 0.72.
(a) Can A and B be disjoint? Answer: no, A and B cannot be disjoint. We prove this
by contradiction. Suppose they are disjoint, then P(A∩B) = P(∅) = 0 and by the ad-
ditive rule, we must have P(A∪B) = P(A)+P(B)−P(A∩B) = 0.55+0.72−0 = 1.27
which is larger than 1. It is impossible, so A and B cannot be disjoint.
(b) What is the smallest possible value of the probability of their intersection? An-
swer: The probability of the intersection would be the smallest if the events �ll up
the entire sample space, that is, P(A∪B) = P(S) = 1, and thus, by the additive rule,
minP(A ∩B) = P(A) + P(B)− P(A ∪B) = 0.55 + 0.72− 1 = 0.27.
(c) What is the largest possible value of the probability of their intersection? Answer:
The probability of the intersection would be the largest if one of the events is entirely
contained within the other. Since the probability of A is smaller than the probability
of B, A should be the one contained within B. So, maxP(A ∩B) = P(A) = 0.55.

Exercise 2.6. Show that the distributive law holds for unions and intersections.
(a) Show that A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

(b) Show that A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).
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Exercise 2.7. Express the following probabilities in terms of the probabilities of A,
B, and the intersection A ∩B.
(a) P(Ac ∪ Bc). Answer: By De Morgan's Law, P(Ac ∪ Bc) = P

(
(A ∩ B)c

)
= 1 −

P(A ∩B).
(b) P(Ac ∩ Bc). Answer: By De Morgan's Law, P(Ac ∩ Bc) = P

(
(A ∪ B)c

)
= 1 −

P(A ∪ B) = {by the additive rule} = 1 −
(
P(A) + P(B) − P(A ∩ B)

)
= 1 − P(A) −

P(B) + P(A ∩B).
(c) P(Ac∩(A∪B)). Answer: Put in simple words, we want to compute the probability
that A didn't happen but at the same time the union of A and B happened. It means
that only B happened. Formally, we write P(Ac∩(A∪B)) = P

(
(Ac∩A)∪(Ac∩B)

)
=

P(∅ ∪ (Ac ∩B)
)

= P(Ac ∩B) = P(B)− P(A ∩B).

3. Conditional Probability

De�nition. The conditional probability of event A given that an event B has hap-
pened, denoted by P(A|B), is de�ned by the formula

P(A|B) =
P(A ∩B)

P(B)
.

Note. P(A|B) is pronounced as �the conditional probability of A given B. By de�ni-
tion, the conditional probability is the probability of both events over the probability
of the given event.

Note. The above de�nition is very intuitive. Think of a Venn diagram for two events
A and B, and assume that areas are probabilities. Since we know that B has hap-
pened, we con�ne our attention to the circle that corresponds to event B. How can A
also happen? Only if we are in the A∩B, the intersection of A and B. What fraction
of the area of circle B is the area of A ∩ B? This is by de�nition the conditional
probability of A given B.

Example. Sixty percent of students in a high school are females. Of those students
who take a math class, 40% are females. Find the probability that a student is taking
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a math class if we know that the student is female.

Let F be the event that the student is female, and M that the student is taking a
math class.
We need to �nd the conditional probability of M given F . We write

P(M |F ) =
P(M ∩ F )

P(F )
=

0.4

0.6
= 2/3 = 0.67.

Remark. Depending on the setting, sometimes it is easier to compute conditional
probabilities by the method of reduction of the sample space.

Example. A sack contains small and large marbles of two colors, red and blue. The
frequency distribution is given in the table below.

Red Blue
Small 8 6
Large 10 14

Suppose we want to compute the conditional probability of drawing a large marble
given that it is blue. We can reduce the sample space to the blue marbles only. There
are a total of 6+14=20, of which 10 are large. Therefore, the conditional probability
that the chosen marble is large given that it is blue is 14/20=0.7.

For comparison, we can compute the conditional distribution using the formula in the
de�nition. We obtain

P(large|blue) =
P(large and blue)

P(blue)
=

14/(8 + 6 + 10 + 14)

(6 + 14)/(8 + 6 + 10 + 14)

=
14/38

20/38
= 14/20 = 0.7.

Notice that when using the formula in the de�nition, we divide the top and bottom
by the grand total, which can be canceled. The reduction of the sample space method
allows us to avoid computing the grand total.

Further, we can rewrite the formula in the de�nition as

P(A ∩B) = P(A |B)P(B).

This expression is often referred to as unconditional probability. It allows to com-
pute probabilities by conditioning.

Example. In a city, 30% of the population are senior citizens. Eighty percent of
senior citizens are subscribed to HBO. Forty-�ve percent of non-senior citizens are
subscribed to HBO. We want to compute the probability that a randomly chosen
person in this city is subscribed to HBO. We condition on whether the person is a
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senior citizen or not. We write

P(subscribed) = P(subscribed and senior) + P(subscribed and not senior)

= P(subscribed | senior)P(senior) + P(subscribed | not senior)P(not senior)

= (0.8)(0.3) + (0.45)(1− 0.3) = 0.555.

Exercise 3.1. Draw a marble from a box containing 3 green, 1 white, and 5 black
marbles. If the drawn marble is not white, �nd the probability that it is green. Do
the calculations in two ways:
(a) by de�nition of conditional probability. Answer:

P(green | not white) =
P(green and not white)

P(not white)
=

P(green)

P(not white)

=
P(green

1− P(white)
=

3/(3 + 1 + 5)

1− 1/(3 + 1 + 5)
=

3/9

8/9
= 3/8.

(b) by reduction of the sample space. Answer: We reduce the sample space to 8
non-white marbles, of which 3 are green. Therefore, P(green | not white) = 3/8.

Exercise 3.2. A random sample of 200 adults are classi�ed by gender and their level
of education attained.

Education Male Female
Elementary 38 45
Secondary 28 50
College 22 17

If a person is picked at random from this group, �nd the probability that

(a) the person is a male, given that the person has a secondary education. Answer:
We reduce the sample space to 28 + 50 = 78 adults with secondary education, of
which 28 are males. So, P(male | secondary education) = 28/78 = 14/39 = 0.359.

(b) the person does not have a college degree, given that the person is a female. An-
swer: We reduce the sample space to 45+50+17 = 112 females, of which 45+50 = 95
don't have a college degree. Thus, P(does not have a college degree | female) =
95/117 = 0.812.

Exercise 3.3. The probability that a doctor correctly diagnoses a particular illness
is 0.7. Given that the doctor makes an incorrect diagnosis, the probability that the
patient �les a lawsuit is 0.9. What is the probability that the doctor makes an incor-
rect diagnosis and the patient �les a lawsuit? Answer: We are given that P(correct
diagnosis) = 0.7, and P(lawsuite | wrong diagnosis) = 0.9. we need to �nd the prob-
ability of intersection P(wrong diagnosis and lawsuit). By conditioning on a wrong

13



diagnosis, we write

P(wrong diagnosis and lawsuit) = P(lawsuit | wrong diagnosis)P(wrong diagnosis)

= (0.9)(1− 0.7) = 0.27.

Exercise 3.4. The probability that a vehicle entering the Luray Caverns has a Cana-
dian license plate is 0.12, the probability that it is a camper is 0.28, and the probability
that it is a camper with a Canadian license plate is 0.09. What is the probability that

(a) a camper entering the Luray Caverns has a Canadian license plate? Answer:

P(Canadian plate | camper) =
P(camper with Canadian plate)

P(camper)
=

0.09

0.28
= 0.321.

(b) a vehicle with a Canadian license plate entering the Luray Caverns is a camper?
Answer:

P(camper | Canadian plate) =
P(camper with Canadian plate)

P(Canadian plate)
=

0.09

0.12
= 0.75.

(c) a vehicle entering the Luray Caverns does not have a Canadian plate or is not
a camper? Answer: P

(
Canadian plate or camper

)
= {by De Morgan′s Law} =

P
(
Canadian plate and camper

)
= 1 − P(Canadian plate and camper) = 1 − 0.09 =

0.91.

Exercise 3.5. There are r red marbles, and b blue marbles in a box. We choose one
at a time without replacement (that is, we don't return the marble into the box
after drawing it). Show that the probability of choosing a red marble on the second
draw is r/(r + b), the same as on the �rst draw. Answer: Conditioning on the color
of the �rst marble, we write

P(second red) = P(second red and first red) + P(second red and first blue)

= P(second red | first red)P(firstred) + P(second red | first blue)P(first blue)

=
r − 1

r − 1 + b
· r

r + b
+

r

r + b− 1
· b

r + b
=

r

(r + b− 1)(r + b)
(r − 1 + b) =

r

r + b
.
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4. Independence

De�nition. Events A and B are said to be independent the knowledge of whether
B occurred doesn't change the probability of A. Put mathematically, P(A | B) =
P(A).

Remark. This is a very intuitive de�nition of independence. It basically means that
A and B have nothing to do with each other.

Another de�nition of independence is often used in practice because it doesn't require
computing the conditional probability. The second de�nition is not intuitive at all,
but the two de�nitions are equivalent.

Second De�nition. Events A and B are said to be independent if the probabil-
ity of their intersection is equal to the product of individual probabilities, that is if
P(A ∩B) = P(A)P(B).

Next, we should that the two given de�nitions are equivalent. Suppose the �rst de�-
nition holds. Then, conditioning on B, we can write

P(A ∩B) = P(A | B)P(B)
1st def

= P(A)P(B),

which means that the second de�nition holds. Now assume that the second de�nition
holds. Then we have

P(A | B)
def
=

P(A ∩B)

P(B)

2nd def
=

P(A)P(B)

P(B)
= P(A),

implying that the �rst de�nition holds.

Remark. The statements in the above de�nitions work in both directions. That is,
A and B are independent if and only if P(A | B) = P(A) (or P(A∩B) = P(A)P(B)).
It means that if we need to show that two events are independent, we need to prove
that either probability identity holds. If the identities don't hold, then the events are
not independent (or dependent). On the other hand, if we are told that the two
events are independent, then we can use the identities for computations.

Example. A single card is drawn at random from a standard deck of 52 cards. Are
the events A = {an ace is drawn} and B = {a black card is drawn} independent?
Solution: (1) Let's use the �rst de�nition of independence �rst. We need to check
whether P(A | B) = P(A). Assume that B has happened. We can reduce the sample
space to the 26 black cards, or which 2 are aces, thus we compute P(A | B) = 2/26 =
1/13. On the other hand, there are 4 aces among the 52 cards, so P(A) = 4/52 = 1/13.
Since the two probabilities are equal, the identity holds and so the two events are in-
dependent.
(2) Now we use the second de�nition to show independence. We have P(A ∩ B) =
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2/52 = 1/26 since there are two black aces among the 52 cards. Individual prob-
abilities are calculated as P(A) = 4/52 = 1/13 and P(B) = 26/52 = 1/2. Since
1/26 = (1/13)(1/2), the identity holds and so the events are independent.

Example. A single card is drawn at random from a standard deck of 52 cards. Are
the events J = { a Jack is drawn} and F = { a face card is drawn} independent?
Note that a face card is any Jack, Queen, or King.
Solution: (1) Suppose F is the given event. We can reduce the sample space to the
12 face cards, of which 4 are Jacks. Hence, P(J | F ) = 4/12 = 1/3. The original
probability of drawing a Jack is 4/52=1/13. Since the two probabilities are not equal,
the events are not independent.
(2) Alternatively, we can use the second de�nition of independence and show that
the second identity doesn't hold. To this end, we note that the event J is completely
included in F , and so their intersection is J . Thus, P(J ∩ F ) = P(J) 6= P(J)P(F ).
And so, the events are not independent.

Remark. The advantage of the second de�nition is that it can be easily gener-
alized to more than two events. However, the statement becomes one-directional
in this case. For example, if events A, B, and C are independent, then P(A ∩
B ∩ C) = P(A)P(B)P(C). More generally, if events A1, . . . , An are independent,
then P

(
∩ni=1 Ai

)
=
∏n

i=1 P(Ai). The converse is not always true. To show that
three or more events are independent, we would need to show that all pairs, three-
folds, etc. are independent. For instance, to show that A, B, and C are indepen-
dent, we need to demonstrate that P(A ∩ B) = P(A)P(B), P(A ∩ C) = P(A)P(C),
P(B ∩ C) = P(B)P(C), and P(A ∩B ∩ C) = P(A)P(B)P(C).

Example. A building has three smoke detectors which act independently of each
other. Each smoke detector fails to detect smoke with a probability of 0.01. What is
the probability that smoke will be detected in this building?

Solution: Smoke will be detected in the building if at least one smoke detector detects
smoke. The complement of this event is that all three smoke detectors fail to detect
smoke. Since smoke detectors are independent, the probability that all three fail can
be found as the product of probabilities that each of the detectors fails: P( 1st fails,
2nd fails, 3rd fails) = P(1st fails)P(2nd fails)P(3rd fails) = (0.01)3 = 0.000001. The
probability that a �re is detected is then 1− 0.000001 = 0.999999.

Example. A coin is �ipped two times. The sample space is S = {HH,HT, TH, TT}.
Suppose P(H) = P(T ) = 0.5, meaning the coin is fair. To assign probabilities
to the outcome, we assume that the �ips are independent, so we have P(HH) =
P(H)P(H) = (0.5)(0.5) = 0.25, P(HT ) = P(H)P(T ) = (0.5)(0.5) = 0.25, P(TH) =
P(T )P(H) = (0.5)(0.5) = 0.25, and P(TT ) = P(T )P(T ) = (0.5)(0.5) = 0.25. Note
that these four probabilities must sum up to one. More generally, let's assume it is
a biased coin with P(H) = 0.8 and P(T ) = 0.2. Using independence of �ips, we as-
sign probabilities as follows: P(HH) = P(H)P(H) = (0.8)(0.8) = 0.64, P(HT ) =
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P(H)P(T ) = (0.8)(0.2) = 0.16, P(TH) = P(T )P(H) = (0.2)(0.8) = 0.16, and
P(TT ) = P(T )P(T ) = (0.2)(0.2) = 0.04. Again, these probabilities do sum up to
one.

Proposition. Suppose A and B are independent events. Then (1) A and B̄ are
independent, and (2) Ā and B̄ are independent.

Proof: (1) P(A ∩ B̄) = P(A) − P(A ∩ B) = { by independence of A and B} =
P(A)− P(A)P(B) = P(A)(1− P(B)) = P(A)P(B̄), thus A and B̄ are independent.

(2) P(Ā∩B̄) = { by De Morgan's Law} = P(A ∪B) = 1−P(A∪B) = {by the additive
rule} = 1− (P(A)+P(B)−P(A∩B)) = {by independence of A and B} = 1−P(A)−
P(B) +P(A)P(B) = 1−P(A)−P(B)(1−P(A)) = (1−P(A))(1−P(B)) = P(Ā)P(B̄),
and thus Ā and B̄ are independent.

Exercise 4.1. A string of Christmas lights contains 20 lights. The lights are wired
in series so that if any light fails, the whole string will go dark. Each light has a
probability of 0.02 of failing during a 3-year period. The lights fail independently of
each other.

(a) What is the probability that a string of lights will remain bright for 3 years?

Answer: P(all 20 lights work) = {by independence} =
(
P(light works)

)20
=
(
1 −

0.02
)20

= (0.98)20 = 0.6676.
(b) What is the minimum number of lights needed for the string to be equally likely to
go dark or remain bright? Answer: We want to �nd n such that P(remain bright) =
(0.98)n = 0.5. Hence, n = dln(0.5)/ ln(0.98)e = d34.3096e = 35.

Exercise 4.2. Here is a two-way table of the composition of the 99th Congress
(elected in 1986) by party and seniority. The entries in the body of the table should
be the probabilities that a randomly chosen member of Congress has both the stated
seniority and party a�liation. Only the two marginal distributions of party alone
and seniority alone are given. If party and seniority were independent, what would
be the probabilities in the body of the table?

Seniority Democrat Republican Total
<2years 0.1
2-9 years 0.6
≥ 10 years 0.3
Total 0.6 0.4

Answer: To populate the table, we need to multiply the respective marginal proba-
bilities for each cell. We get
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Seniority Democrat Republican Total
<2years (0.1)(0.6)=0.06 (0.1)(0.4)=0.04 0.1
2-9 years (0.6)(0.6)=0.36 (0.6)(0.4)=0.24 0.6
≥ 10 years (0.3)(0.6)=0.18 (0.3)(0.4)=0.12 0.3
Total 0.6 0.4

Note that all the probabilities in the table add up to 1, as it should be. Indeed,
0.06 + 0.04 + 0.36 + 0.24 + 0.18 + 0.12 = 1.

Exercise 4.3. A general can plan a campaign to �ght one major battle or three
small battles. He believes that he has a probability of 0.6 of winning the large battle
and a probability of 0.8 of winning each of the small battles. Victories or defeats in
the small battles are independent. The general must win either the large battle or all
three small battles to win the campaign. Which strategy should he choose?

Answer: Using the independence of small battles, the probability to win all three of
them equal to the product of individual probabilities, that is, (0.8)3 = 0.512, which
is smaller than 0.6, so we recommend the general �ght the major battle.

Exercise 4.4. A manufacturer of �u vaccine is concerned about the quality of its
�u serum. Batches of serum are processed by three di�erent departments having
rejection rates of 0.1, 0.08, and 0.12, respectively. The inspections by the three de-
partments are sequential and independent. What is the probability that a batch of
serum survives the �rst two departments but is rejected by the third department?
Answer: (0.9)(0.92)(0.12) = 0.09936.

Exercise 4.5. Can mutually exclusive events be independent? Explain your answer.
Answer: No, mutually exclusive events cannot be independent since if one event hap-
pens, the other event cannot happen. Thus, whatever the original probability of the
event P(A) was, if the other event B happens, the conditional probability P(A|B)
turns to zero.

Exercise 4.6. John will get a D in French class with a probability of 0.4. His cousin,
independently, will get a D in biology class with a probability of 0.7. Compute the
probability that
(a) both will get a D. Answer: (0.4)(0.7) = 0.28.
(b) neither will get a D. (1− 0.4)(1− 0.7) = (0.6)(0.3) = 0.18.
(c) either will get a D. Answer: 1− P(neither will get a D) = 1− 0.18 = 0.82.

Exercise 4.7. Refer to Exercise 1.10. A fair coin is �ipped until two tails or three
heads appear. The sample space is S = {TT, THT, THHT, THHH,HTT,HHTT,
HTHT,HHTH,HHH,HTHH}. Assuming that the �ips are independent and the
coin is fair, assign probabilities to the outcomes and check that the probabilities sum
up to one.
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Answer: The one outcome of length two is assigned probability (1/2)2 = 1/4, the three
outcomes of length three are assigned probability (1/2)3 = 1/8, and the six outcomes
of length four are assigned probability (1/2)4 = 1/16. The sum of the probabilities is
(1)(1/4) + (3)(1/8) + (6)(1/16) = 1/4 + 3/8 + 6/16 = 4/16 + 6/16 + 6/16 = 1.

5. Bayes' Rule

Theorem (Bayes' Rule). Suppose A1, A2, . . . , An is a partition of the sample space
S. That is, these sets don't overlap and �ll up the entire sample space. Let B denote
an event. Then for any �xed i, i = 1, . . . , n, the following identity is true:

P(Ai | B) =
P(B | Ai)P(Ai)∑n
j=1 P(B | Aj)P(Aj)

.

Proof. As shown in the Venn diagram below, B can be written as the union of non-
overlapping intersections B ∩ A1, . . . , B ∩ An. Some of these intersections could be
empty. Thus, we have P(B) =

∑n
j=1 P(B ∩ Aj).

Conditioning on Aj, we obtain P(B ∩ Aj) = P(B | Aj)P(Aj). Putting it all together,
and applying the de�nition of conditional probability, we obtain

P(Ai | B) =
P(Ai ∩B)

P(B)
=

P(B | Ai)P(Ai)∑n
j=1 P(B | Aj)P(Aj)

. 2

Historical Note. The Reverand Thomas Bayes (circa 1701-1761) was an English
statistician, philosopher, and Presbyterian minister.

Remark. Bayes' Rule has a very signi�cant practical application. The probabili-
ties P(Aj), j = 1, . . . , n constitute the initial knowledge about the partition Aj, j =
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1, . . . , n. It can be referred to as prior probabilities. Once the event B occurs,
investigators use Bayes' formula to update their knowledge about the probabilities
of the partitioning events (called posterior probabilities). In fact, this formula
is so important that it gave rise to an entirely new branch of Statistics � Bayesian
Statistics, in which probabilities are recalculated as more data become available.

Example. A surgery is e�ective in 90% of patients with early stages of myeloma,
and in 50% of patient with advanced stages. Among myeloma patients in a large
hospital, 85% have an early stage of the disease. A myeloma patient had an e�ective
surgery. What is the probability that the patient has an early (advanced) stage of
the disease? Answer: By the Bayes' Rule,

P(early|effective) =
P(effective|early)P(early)

P(effective|early)P(early) + P(effective|advanced)P(advanced)

=
(0.9)(0.85)

(0.9)(0.85) + (0.5)(0.15)
= 0.910714.

The probability that the patient has an advanced stage of the disease can be found
by the complement rule,

P(advanced|effective) = 1− 0.910714 = 0.089286.

Note that the prior probability that a patient has an early stage of myeloma is 0.85,
and since the surgery is likely to be e�ective, the posterior probability of the early
stage is even higher (0.91). On the other hand, it is much less likely that the surgery
is e�ective in advanced myeloma patients, the prior probability of the advanced stage
of 0.15 becomes even less (0.08) after we learn that the surgery was e�ective.

Exercise 5.1. A large industrial �rm uses three local motels to provide overnight
accommodations for its clients. From experience, it is known that 20% of the clients
are assigned rooms at the Ramada Inn, 50% at the Sheraton, and 30% at the Lake-
view Motor Lodge. If the plumbing is faulty in 5% of the rooms at the Ramada
Inn, 4% of the rooms at the Sheraton, and 8% of the rooms at the Lakeview Motor
Lodge, what is the probability that a person with a room having faulty plumbing was
assigned accommodations at the Ramada Inn? Sheraton? Lakeview Motor Lodge?
Answer: Let's R stand for Ramada Inn, S for Sheraton, L for Lakeview Motor
Lodge, and F for faulty plumbing. We are given that the prior probabilities are
P(R) = 0.2, P(S) = 0.5, and P(L) = 0.3. Also, the conditional probabilities are spec-
i�ed as P(F |R) = 0.05, P(F |S) = 0.04, and P(F |L) = 0.08. Once faulty plumbing is
observed, the posterior probabilities are computed as follows.

P(R|F ) =
P(F |R)P(R)

P(F |R)P(R) + P(F |S)P(S) + P(F |L)P(L)

=
(0.05)(0.2)

(0.05)(0.2) + (0.04)(0.5) + (0.08)(0.3)
=

0.01

0.01 + 0.02 + 0.024
=

0.01

0.054
= 0.1852,
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P(S|F ) =
P(F |S)P(S)

P(F |R)P(R) + P(F |S)P(S) + P(F |L)P(L)

=
(0.04)(0.5)

(0.05)(0.2) + (0.04)(0.5) + (0.08)(0.3)
=

0.02

0.054
= 0.3704,

and

P(L|F ) =
P(F |L)P(L)

P(F |R)P(R) + P(F |S)P(S) + P(F |L)P(L)

=
(0.08)(0.3)

(0.05)(0.2) + (0.04)(0.5) + (0.08)(0.3)
=

0.024

0.054
= 0.4444.

Comparing prior and posterior probabilities, for Ramada Inn there is a slight decrease
(0.2 vs. 0.1852), for Sheraton, there is a larger decrease (0.5 vs 0.3704, and for Lake-
view Motor Lodge, there is a large increase (0.3 vs. 0.4444). This is not surprising
as Lakeview Motor Lodge has a higher chance of faulty plumbing. Note also that the
prior probabilities as well as posterior probabilities add up to one, as it must be.

Exercise 5.2. An insurance company believes that people can be divided into two
classes: accident-prone and non-accident-prone. An accident-prone person will have
an accident within a year with a probability of 0.4, whereas a non-accident-prone
person, with a probability of 0.2.

(a) If 30% of the population is accident-prone, what is the probability that a new
policyholder will have an accident within a year? Answer: Let A denote an accident
proneness, N stand for non-accident proneness, and E stand for event (accident).
From the setting of the problem, we obtain that P(A) = 0.3, P(N) = 1 − 0.3 = 0.7,
P(E|A) = 0.4, and P(E|N) = 0.2. We compute

P(E) = P(E|A)P(A) + P(E|N)P(N) = (0.3)(0.4) + (0.7)(0.2) = 0.12 + 0.14 = 0.26.

(b) Suppose that the new policyholder has an accident. What is the probability that
he is accident-prone? non-accident-prone? Answer: We compute the posterior prob-
abilities using the Bayes' Rule. We write

P(A|E) =
P(E|A)P(A)

P(E)
=

0.12

0.26
= 0.4615,

and

P(N |E) =
P(E|N)P(N)

P(E)
=

0.14

0.26
= 0.5385.

The probability that a policyholder is accident-prone increased (0.3 vs. 0.4615),
whereas the probability of a non-accident-prone policyholder decreased (0.7 vs. 0.5385)
since accident-prone people are more likely to be involved in an accident.
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Exercise 5.3. Pacemakers were implanted into one hundred cardiac patients. Two
types of pacemakers were used. Fifty patients received single-chamber pacemakers,
while the others received dual-chamber type. Previous clinical trials revealed that
25% of single-chamber pacemakers have instances of false alarm, whereas only 15%
of dual-chamber pacemakers cause false alarms.
(a) Suppose a patient's pacemaker caused a false alarm. What is the probability that
the patient has a single-chamber pacemaker? A dual-chamber one?
Answer: Let S denote a single-chamber pacemaker, D stand for dual-chamber one,
and F stand for false alarm. We are given that P(S) = 0.5 = P(D),P(F |S) = 0.25,
and P(F |D) = 0.15. We compute

P(S|F ) =
P(F |S)P(S)

P(F |S)P(S) + P(F |D)P(D)

=
(0.25)(0.5)

(.25)(0.5) + (0.15)(0.5)
=

0.125

0.125 + 0.075
=

0.125

0.2
= 0.625,

and P(D|F ) = 1− 0.625 = 0.375.

Note that the probability of a single-chamber pacemaker increased from 0.5 to 0.625,
and the probability of dual-chamber pacemaker respectively decreased. This change
is expected since single-chamber pacemakers are more likely to cause false alarms.
(b) Suppose another false alarm has occurred in the same patient. Update the pos-
terior probabilities.
Answer: Assuming that 0.625 and 0.375 are now our respective prior probabilities,
and using the Bayes' formula again, we compute

P(S|2nd F ) =
(0.25)(0.625)

(0.25)(0.625) + (0.15)(0.375)
=

0.15625

0.2125
= 0.7353,

and P(D|2nd F ) = 1−0.7353 = 0.2647. Note that the probability of a single-chamber
pacemaker increased even more, whereas the other probability dropped.

6. Combinatorics

Counting Principle

Counting Principle (or Counting Rule). If a job requires completing k tasks,
and the ith task can be completed in ni ways, where i = 1, . . . , k, then the job can
be done in (n1)(n2) · · · (nk) ways.

Example. Bob is buying a new car. There are two body styles: sedan or hatchback;
�ve colors: black, red, green, blue, or navy; and three models: standard, sports, or
luxury. How many total choices does Bob have? There are three tasks: to choose
body style (2 choices), to choose color (5 choices), and to choose model (3 choices).
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By the counting rule, the total number of choices is (2)(5)(3)=30.

A good illustration of the counting principle is given by a dendrogram (also called
tree diagram). It depicts a branch for every choice. First, there are n1 branches
that re�ect the choices for task 1. Then, for every �xed choice in task 1, there are n2

branches (choices) for task 2, etc. Finally, the total number of choices is the number
of terminal branches (or leaves) on that dendrogram, which can be found by multi-
plying the number of choices for every task. Schematically, a dendrogram looks like
this:

Exercise 6.1. A nursery rhyme starts as follows:

As I was going to St. Ives

I met a man with seven wives.

Each wife had seven sacks.

Each sack had seven cats.

Each cat had seven kittens.

How many kittens did the traveler meet? Answer: 7 wives, 7 sacks, 7 cats, 7 kittens,
for a total of 74 = 2401 kittens.

Exercise 6.2. Eloise is buying an ice-cream. There are six �avors of ice cream and
three kinds of cones. How many di�erent two-scoop ice-creams can she order? An-
swer: There are six choices for the �rst scoop, six choices for the second scoop, and
three choices for the cone, for a total of (6)(6)(3) = 108.
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Exercise 6.3. The Indiana license plate looks like this 1ABC234. How many di�er-
ent license plates of this design are possible? Answer: There are 10 choices for each of
the four digits and 26 choices for each of the three letters, so assuming there are no re-
strictions on what the digits and letters could be, a total of (10)4(26)3 = 175, 760, 000
license plates of this design are possible.

Exercise 6.4. How many three-digit numbers can be formed from the digits 1,4,5,7,
and 9, if digits can be used more than once? How many of them will be even num-
bers? Answer: There are �ve choices for each of the three positions, so (5)(5)(5) = 125
three-digit numbers can be formed. For it to be an even number, it must end in 4, so
there are (5)(5)=25 even numbers possible.

Exercise 6.5. One must choose a four-digit PIN number. Each digit can be chosen
from 0 to 9, and digits cannot be repeated. How many di�erent possible PIN num-
bers can be chosen? Answer: There are 10 choices for the �rst digit, 9 choices for the
second digit, 8 choices for the third digit, and 7 choices for the last digit, for a total
of (10)(9)(8)(7) = 5, 040 PIN numbers.

Factorial

De�nition. The factorial of a number n, denoted by n!, is the product of all in-
tegers from n down to 1, that is, n! = (n)(n−1)(n−2) · · · (2)(1). By de�nition, 0! = 1.

Example. The following factorials are mostly often used in calculations and should
be memorized.

0! = 1, 1! = 1, 2! = (2)(1) = 2, 3! = (3)(2)(1) = 6,

4! = (4)(3)(2)(1) = 24, 5! = (5)(4)(3)(2)(1) = 120, 6! = (6)(5)(4)(3)(2)(1) = 720.

Remark. The following extremely useful identity holds: n! = (n)(n − 1)!. This
follows directly from the de�nition. It can be extended further, if necessary. For
example, n! = (n)(n− 1)(n− 2)!.

Exercise 6.6. Compute
5!

3!
. Answer:

5!

3!
=

(5)(4)(3!)

3!
= (5)(4) = 20.

Exercise 6.7. Compute
6!

2!(6− 2)!
. Answer:

6!

2!(6− 2)!
=

6!

2!4!
=

(6)(5)(4!)

(2)(4!)
=

(6)(5)

2
= 15.

Exercise 6.8. Compute
20!

17!(20− 17)!
. Answer:

20!

17!(20− 17)!
=

20!

17!3!
=

(20)(19)(18)(17!)

(17!)(6)
= (20)(19)(3) = 1, 140.
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Permutation and Combination

De�nition. A permutation is an ordered arrangement of objects.

De�nition. A combination is an unordered arrangement of objects.

Example. If we have three objects named A, B, and C, then there are six permu-
tations ABC,ACB,BAC,BCA,CAB, and CBA (because order matters), and only
one combination ABC (because order doesn't matter).

Example. If we have three objects A, B, and C, then there are six two-object per-
mutations AB,BA,AC,CA,BC, and CB (order matters), and only three two-object
combinations AB,AC, and BC (order doesn't matter).

Proposition. The number of permutations of k objects chosen from among n ob-
jects is

n(n− 1)(n− 2) · · · (n− k + 1) =
n!

(n− k)!
.

Proof. There are n choices for the �rst position, n − 1 choices for the second posi-
tion, etc. There are (n − k + 1) choices for the kth position. By the counting rule,
we multiply the number of choices.

Example. In how many ways can k people sit in row? We are looking for the num-
ber of ordered arrangements of k people chosen from among k people. The number

of permutations for n = k is
k!

(k − k)!
=
k!

0!
= k!. It can also be derived by notic-

ing that there are k choices for the �rst position, k − 1 choices for the next position,
and so on, until the last person who will sit in the last position, for a total of k! choices.

Proposition. The number of combinations of k objects chosen from among n ob-
jects is (

n

k

)
=

n!

k!(n− k)!
.

The symbol

(
n

k

)
is called a binomial coe�cient and is read �n choose k�.

Proof. There are

(
n

k

)
combinations (unordered arrangements) of k objects chosen

from among n objects, which can be ordered in k! ways. Thus,

(
n

k

)
(k!) is equal to

the number of permutations
n!

(n− k)!
. From here, the result follows.
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Remark.

(
n

k

)
is called a binomial coe�cient because it appears in Newton's bi-

nomial (�binomial� means a polynomial with two members), an identity that states:

(x+ y)n =
n∑
k=0

(
n

k

)
xn−k yk

=

(
n

0

)
xn +

(
n

1

)
xn−1y +

(
n

2

)
xn−2y2 + · · ·+

(
n

n− 1

)
xyn−1 +

(
n

n

)
yn.

Historical Note. Sir Isaac Newton (1642-1726) was an English mathematician,
physicist, astronomer, and philosopher.

Exercise 6.9. Compute

(
3

0

)
,

(
3

1

)
,

(
3

2

)(
3

3

)
,

(
5

2

)
, and

(
5

3

)
. Answer:(

3

0

)
=

3!

0!(3− 0)!
=

3!

0!3!
= 1,

(
3

1

)
=

3!

1!(3− 1)!
=

3!

1!2!
= 3,(

3

2

)
=

3!

2!(3− 2)!
=

3!

2!1!
= 3,

(
3

3

)
=

3!

3!(3− 3)!
=

3!

3!0!
= 3,(

5

2

)
=

5!

2!(5− 2)!
=

5!

2!3!
=

(5)(4)(3!)

2!3!
=

(5)(4)

2
= 10,

and (
5

3

)
=

5!

3!(5− 3)!
=

5!

3!2!
=

(5)(4)(3!)

3!2!
=

(5)(4)

2
= 10.

Exercise 6.10. Show that

(a)

(
n

0

)
= 1 for any n ≥ 0. That is, there is only one way to choose none from n

objects. It is by doing nothing. Answer:(
n

0

)
=

n!

0!(n− 0)!
=

n!

0!n!
= 1.

(b)

(
n

1

)
= n for any n ≥ 1. That is, either one of the n objects can be chosen,

resulting in the n choices. Answer:
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(
n

1

)
=

n!

1!(n− 1)!
=

(n)(n− 1)!

1!(n− 1)!
= n.

(c)

(
n

k

)
=

(
n

n− k

)
for any n ≥ k. That is, to choose k objects from n objects is

equivalent to choosing n− k objects that will remain untouched. Answer:(
n

k

)
=

n!

k!(n− k)!
=

n!

(n− k)!k!
=

n!

(n− k)!(n− (n− k))!
=

(
n

n− k

)
.

Exercise 6.11. Ten cars are in a race. In how many ways can they win the �rst,
second, and third places? Answer: We are interested in the number of ordered ar-
rangements (permutations). There are 10 choices for the �rst place, 9 choices for the
second place, and 8 choices for the third place, for a total of (10)(9)(8) = 720 choices.

Exercise 6.12. Ten cars are in a race. Three cars will qualify for the next race. In
how many di�erent ways can this happen? Answer: We are interested in the number
of unordered arrangements (combinations) of three objects chosen from among 10 ob-

jects. The number of ways is

(
10

3

)
=

10!

3!(10− 3)!
=

10!

3!7!
=

(10)(9)(8)

6
= (10)(3)(4) =

120.

Exercise 6.13. There are 10 people in a room. Everyone shakes hands with everyone
else. How many handshakes take place? Answer: We need to choose two people for a

handshake and the order doesn't matter, therefore, there are

(
10

2

)
=

10!

2!(10− 2)!
=

(10)(9)(8!)

(2)(8!)
=

(10)(9)

2
= 45.

Exercise 6.14. In how many ways can a committee of 4 be chosen from 5 girls and
5 boys if
(a) all are equally eligible? Answer: The number of combinations of 10 choose 4 is(

10

4

)
=

10!

4!(10− 4)!
=

(10)(9)(8)(7)(6!)

(4)(3)(2)(6!)
= (10)(3)(7) = 210.

(b) the committee must include 2 girls and 2 boys? Answer: The number of combi-

nations of 5 choose 2 is

(
5

2

)
=

5!

2!3!
=

(5)(4)

2
= 10, so there are 10 ways to choose 2

girls and 10 ways to choose 2 boys. By the counting rule, the total number of ways
is (10)(10) = 100.

Exercise 6.15. In how many ways can 7 books by William Shakespeare be arranged
on a shelf, if

(a) there are no restrictions. Answer: Seven books can be arranged in order in
7!=5,040 ways.
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(b) if �Much Ado About Nothing� must be in the middle? Answer: Let "Much Ado
About Nothing" be in the middle. We still have 6 books that have to be arranged in
order. This can be done in 6!=720 ways.

Exercise 6.16. In order to play basketball, ten children at a playground divide
themselves into team A and team B of �ve each. How many di�erent divisions are
possible? Answer: The children need to choose 5 to be on team A, and the others
will be on team B. Also, the order doesn't matter, so the total number of divisions is(

10

5

)
=

10!

5! 5!
=

(10)(9)(8)(7)(6)

(5)(4)(3)(2)
= (3)(2)(7)(6) = 252.

Exercise 6.17. From a group of �ve women and seven men, randomly choose �ve
people. What is the probability that

(a) two women and three men are chosen? Answer: The total number of ways to
choose 5 out of 12 people is

(
12
5

)
. The number of ways to choose 2 women from

among 5 women is
(
5
2

)
and the number of ways to choose 3 men from among 7 men

is
(
7
3

)
. Thus the probability is(

5
2

)(
7
3

)(
12
5

) =
5!

2! 3!
· 7!
3! 4!

12!
5! 7!

=
(5)(4)

2
· (7)(6)(5)

6
(12)(11)(10)(9)(8)

(5)(4)(3)(2)

=
(10)(35)

(11)(9)(8)
= 0.4419.

(b) women are not chosen? Answer: The number of ways to choose 5 men from
among 7 men is

(
7
5

)
, thus the probability is(

5
0

)(
7
5

)(
12
5

) =
7!

5! 2!
12!
5! 7!

=
21

(11)(9)(8)
= 0.0265.

(c) Mr. N. is chosen? Answer: Let Mr. N be chosen. Still, 4 more people should be
chosen from among the remaining 11 people. Therefore, the probability is(

11
4

)(
12
5

) =
11!
4! 7!
12!
5! 7!

=

(11)(10)(9)(8)
(4)(3)(2)

(11)(9)(8)
=

(11)(10)(3)

(11)(9)(8)
= 0.4167.

(d) Mr. N. is the only man chosen? Answer: The other 4 people chosen must be
women. Thus, the probability is(

5
4

)(
12
5

) =
5

(11)(9)(8)
= 0.0063.

Exercise 6.18. A police department in a small city consists of ten o�cers. The
department policy is that �ve o�cers patrol the streets, two work full-time at the
station, and three are on reserve.

(a) How many di�erent divisions are possible? Answer: The number of ways to choose
5 o�cers from 10 to patrol the streets is

(
10
5

)
. Of the remaining 5 o�cers, the num-

ber of ways to choose 2 to work full-time at the station is
(
5
2

)
and the remaining 3
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o�cers will be on reserve. The total number of ways is
(
10
5

)(
5
2

)
= (10)(9)(8)(7)(6)

(5)(4)(3)(2)
· 10 =

(3)(2)(7)(6)(10) = 2, 520.

(b) What is the probability that O�cer Larson patrols the streets? Answer: Let
O�cer Larson patrol the streets. To choose 4 more o�cers to patrol the street
from the remaining 9 o�cers can be done is

(
9
4

)
way. Of the remaining 5 o�cers,

2 should be chosen to work full-time at the station. Hence, the total number of ways
is
(
9
4

)(
5
2

)
= (9)(8)(7)(6)

(4)(3)(2)
· 10 = (3)(7)(6)(10) = 1, 260.

(c) What is the probability that O�cer Larson works at the station? Answer: Let
O�cer Larson work at the station. The number of ways to choose 5 o�cers from
among the remaining 9 to patrol the streets is

(
9
5

)
, and from the other 4 o�cers, one

will be chosen to work at the station with O�cer Larson. The total number of ways
is
(
9
5

)(
4
1

)
= (9)(8)(7)(6)

(4)(3)(2)
· 4 = (3)(7)(6)(4) = 504.

(d) What is the probability that O�cer Larson is on reserve? Answer: Let O�cer
Larson be on reserve. Of the remaining 9 o�cers, 5 should be chosen to patrol the
streets and of the other 4 o�cers, 2 should be chosen to work at the station. Thus
the total number of way is

(
9
5

)(
4
2

)
= (3)(7)(6)(6) = 756.

Note that 1, 260 + 504 + 756 = 2, 520, as it should be.

7. DISCRETE RANDOM VARIABLE

De�nition. A random variable is a variable that assumes certain values on each
outcome of a random phenomenon.

Notation. Random variables are typically denoted by a large letter from the second
half of the Latin alphabet. For example, X, Y , Z, T , W , X1, X2, etc.

De�nition. A discrete random variable assumes a �nite or countably in�nite num-
ber of values.

De�nition. A probability mass function (pmf) of a discrete random variableX is
pX(x) = P(X = x). It has two properties: (1) 0 ≤ pX(x) ≤ 1, and (2)

∑
x pX(x) = 1.

To de�ne a pmf, one needs to identify all possible values with the respective proba-
bilities.

Example. A fair coin is �ipped two times. Let X be the number of heads that
appear. The sample space is S = {HH,HT, TH, TT}. The values that X assumes
are X(HH) = 2, X(HT ) = X(TH) = 1, and X(TT ) = 0. The pmf is p(0) =
P(X = 0) = P(TT ) = (1/2)(1/2) = 1/4, p(1) = P(X = 1) = P(HT ) + P(TH) =
(1/2)(1/2) + (1/2)(1/2) = 1/2, and P(X = 2) = P(HH(= (1/2)(1/2) = 1/4. Note
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that each of these probabilities falls between 0 and 1, and the probabilities add up to
one.

Example. A fair coin is �ipped until a head or three tails appear. We want to
�nd the distribution of the number of �ips required. We specify the sample space
S = {H,TH, TTH, TTT}. Let X be the number of �ips. The pmf of X is p(1) =
P(X = 1) = P(H) = 1/2, p(2) = P(X = 2) = P(TH) = (1/2)(1/2) = 1/4,
p(3) = P(X = 3) = P(TTH) + P(TTT ) = (1/2)(1/2)(1/2)(2) = 1/4. Note that
the probabilities sum up to one.

De�nition. The expected value (or expectation, ormean, or average) of a dis-

crete random variable X is computed as EX =
∑
x

x pX(x).

Example. Let X be the number of heads that appear when a fair coin is �ipped
two times. Above we found the probability function of X: p(0) = p(2) = 1/4, and
p(1) = 1/2. The expected number of heads is EX = (0)(1/4) + (1)(1/2) + (2)(1/4) =
1/2 + 1/2 = 1.

Example. Let X be the number of �ips required when a fair coin is �ipped until
a head or three tails appear. Earlier we found the pmf of X, which is p(1) = 1/2,
and p(2) = p(3) = 1/4. The expected number of �ips is EX = (1)(1/2) + (2)(1/4) +
(3)(1/4) = 2/4 + 2/4 + 3/4 = 7/4 = 1.75.

Remark. In the physical world, the expectation represents the center of mass. If we
consider all the values that X assumes and place at those values ball with weights
proportional to the respective probabilities, then the expected value of X represents
the values at which a fulcrum should be located to make the system balanced. In-
deed, let EX denote the center of mass. A system is balanced when the sum of
the weights multiplied by the distances to the center of mass is equal to zero, that
is,
∑

x p(x)(x − EX) = 0. Opening the parentheses, we rewrite this identity as∑
x xp(x) = EX

(∑
x p(x)

)
. Since the probabilities add up to one, we have that

necessarily EX =
∑

x x p(x), which is the de�nition of the expected value.

Proposition (Functional Invariance of the Mean). Let X be a discrete ran-
dom variable, and let Y = f(X) be another random variable obtained from X by
applying function f . The distribution function of Y may be very hard to obtain, but
the expected value of Y can be computed as the expected value of f(X), that is,
EY = E(f(X)).

De�nition. The kth moment of a discrete random variable X with the pmf pX(x)
is computed as E(Xk) =

∑
x x

k pX(x).

De�nition. The kth central moment of a discrete random variable X with the
pmf pX(x) is E(X − EX)k =

∑
x (x− EX)k pX(x).
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Proposition (Invariance of Mean Under Linear Transformation). Suppose
X is a random variable, and a and b are some constants. Then E(aX+ b) = aEX+ b.

Proof. The proof is a direct consequence of the linearity of summation. We write

E(aX + b)
def
=
∑

x(ax+ b)pX(x) = a
∑

x xpX(x) + b
∑

x pX(x) = aEX + b.

Harder to show but also true is
Proposition. For any discrete random variables X and Y , and any constants a and
b, E(aX + bY ) = aEX + bEY .

De�nition. The variance of a discrete random variable Var(X) = E(X − EX)2 =∑
x (x − EX)2pX(x). It represents the sum of squared distances to the mean multi-

plied by respective probabilities. It is a measure of the spread of the values of X.

Proposition. The computational formula for the variance is

Var(X) = EX2 − (EX)2.

Proof. Var(X)
def
= E(X−EX)2 = E

(
X2−2(EX)X+(EX)2

)
= EX2−2(EX)(EX)+

(EX)2 = EX2 − (EX)2.

Remark. By de�nition, the expected value of X is the �rst moment of X. The
variance of X is the second central moment, which according to the computational
formula, is the second moment minus the square of the �rst moment.

Remark. The expected value of X is measured in the same units as X, whereas the
variance is measured in these units squared. If, for instance, X is measured in inches,
its mean is also measured in inches, but its variance is measured in inches squared.
It follows from the fact that the variance is a quadratic form. It makes the variance
hard to picture. So, instead, another measure of spread is introduced.

De�nition. A standard deviation of a discrete random variable X is the square
root of the variance, that is

√
Var(X). There is no conventional notation for the

standard deviation. Sometimes it is denoted by sX or σX , or stdev. It is measured
in the same units as X.

Useful Formula. For any real-valued a and b, and any random variable X,

V(aX + b) = a2Var(X).

Proof. Var(aX + b) = E
(
aX + b − E(aX + b)

)2
= E

(
aX + b − aEX − b

)2
=

E
(
a(X − EX)

)2
= a2E(X − EX)2 = a2Var(X).
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Exercise 7.1. Which of the following variables have discrete probability distribu-
tions?

(a) the number of automobile accidents per year in Virginia. Answer: discrete (0, 1,
2, etc.).

(b) the length of time to play 18 holes of golf. Answer: time �ows continuously, so
not discrete, unless the scale is speci�ed. For example �How many hours does it take
to play 18 holes of golf? Round to the nearest integer.�

(c) the amount of milk produced yearly by a particular cow. Answer: Amounts of
�uids change continuously, so naturally, it is not a discrete random variable, unless
the scale is speci�ed (in tons, for example).

(d) the number of eggs laid each month by a hen. Answer: discrete (0, 1, 2, etc.).

(e) the number of building permits issued each month in a city. Answer: discrete (0,
1, 2, etc.).

(f) the weight of grain produced per acre. Answer: Weights change continuously, so
not discrete, unless measured in bushels or on some other scale.

Exercise 7.2. Determine the value of the normalizing constant c that make the func-
tion p(x) = c(x2 + 4) for x = 0, 1, 2, or 3, a true probability mass function. Answer:
p(0) = 4c, p(1) = 5c, p(2) = 8c, and p(3) = 13c. The sum of probabilities, which
should be one, is equal to 30c, thus, c = 1/30.

Exercise 7.3. An entomologist has �ve bugs. Two of them are nice looking and
three are ugly looking. He randomly picks two.

(a) Find the probability distribution of the number of ugly bugs in the sample. An-
swer: Let X denote the number of ugly-looking bugs in the sample of two. The
probability distribution of X is

P(X = 0) =

(
2
2

)(
3
0

)(
5
2

) =
1

10
= 0.1, P(X = 1) =

(
2
1

)(
3
1

)(
5
2

) =
6

10
= 0.6,

and

P(X = 2) =

(
2
0

)(
3
2

)(
5
2

) =
3

10
= 0.3.

(b) How many ugly-looking bugs should the entomologist expect to see in his sample?
Answer:

EX = (0)(0.1) + (1)(0.6) + (2)(0.3) = 1.2.

32



Exercise 7.4. An entomologist has �ve bugs. Two of them are nice looking and
three are ugly looking. He randomly picks three.

(a) Find the probability distribution of the number of ugly bugs in the sample. An-
swer: Let X denote the number of ugly-looking bugs in the sample of two. The
probability distribution of X is

P(X = 1) =

(
2
2

)(
3
1

)(
5
3

) =
3

10
= 0.3, P(X = 2) =

(
2
1

)(
3
2

)(
5
3

) =
6

10
= 0.6,

and

P(X = 3) =

(
2
0

)(
3
3

)(
5
3

) =
1

10
= 0.1.

(b) How many ugly-looking bugs should the entomologist expect to see in his sample?
Answer:

EX = (1)(0.3) + (2)(0.6) + (3)(0.1) = 1.8.

Exercise 7.5. Let Y be the random variable with p(y) given in the accompanying
table. Find E(Y ), E(1/Y ), E(2Y 2 − 4), and Var(5− Y ).

y 1 2 3 4
p(y) 0.4 0.3 0.2 0.1

Answer: EY = (1)(0.4) + (2)(0.3) + (3)(0.2) + (4)(0.1) = 2, E(1/Y ) = (1/1)(0.4) +
(1/2)(0.3) + (1/3)(0.2) + (1/4)(0.1) = 77/120 = 0.6417, E(2Y 2 − 4) = 2EY 2 − 4 =
2
(
(1)1(0.4) + (2)2(0.3) + (3)2(0.2) + (4)2(0.1)

)
− 4 = 2(5)− 4 = 6, and Var(5− Y ) =

(−1)2Var(Y ) = Var(Y ) = EY 2 − (EY )2 = 5− (2)2 = 1.

Exercise 7.6. You are o�ered a once-in-a-lifetime opportunity to play the following
game. A fair coin is �ipped three times. If exactly two heads appear, you will be paid
$10. Otherwise, you have to pay $7.

(a) Would you be willing to play this game? Answer: Let W be your winnings in
this game. The distribution of W is P(W = 10) = P(HHT,HTH, THH) = 3/8,
and P(W = −7) = 1 − 3/8 = 5/8. The expected winnings are EW = (10)(3/8) +
(−7)(5/8) = (30 − 35)/8 = −5/8 = −0.625, so on average, you expect to lose 62.5
cents and you should not agree to play this game.

(b) A game is called fair if the expected gain is zero for both players. Assume that
in the described game, you will be paid $10 if exactly two heads appear. How much
should you pay otherwise to make it a fair game? Answer: Let w denote the amount
that you would pay. Then P(W = 10) = 3/8, and P(W = w) = 5/8. We want to
expected value of W to be equal to zero, so EW = (30 + 5w)/8 = 0, from where
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w = −$6, so you would pay $6 in a fair game.

Exercise 7.7. A psychic runs the following ad in a magazine: Expecting a baby?
Renown psychic will tell you the sex of the unborn child from any photograph of
the mother. Cost $10. Money-back guarantee. This may be a pro�table con game.
Suppose that the psychic simply replies �girl� to each inquiry. In the worst case, ev-
eryone who has a boy will ask for her money back. Find the expected value and
standard deviation of the psychic's pro�t. Answer: Let G denote the psychic's
gain. We are given that P(G = $10) = 1/2, and P(G = $0) = 1/2. Thus, the
expected gain is EG = ($10)(1/2) + ($0)(1/2) = $5. The variance of the gain is
Var(G) = ($10)2(1/2) + ($0)2(1/2) − ($5)2 = $225, and the standard deviation is√

Var(G) =
√

$225 = $5.

Exercise 7.8. The Connecticut State Lottery awards at random, for every 100,000
one-dollar tickets sold,

1 $5, 000 prize,

18 $200 prizes,

120 $25 prizes,

270 $20 prizes.

What is the expected value of the winnings of one ticket in this lottery? Do you
want to play? Answer: Denote by W the winning amount of one ticket. The
distribution of W is P(W = $5, 000) = 1/100, 000, P(W = $200) = 18/100, 000,
P(W = $25) = 120/100, 000, P(W = $20) = 270/100, 000, and P(W = $0) = 1−the
other probabilities. The expected winning amount is EW =

1

100, 000

(
($5, 000)(1) +

($200)(18) + ($25)(120) + ($20)(270)
)

= $17, 000/100, 000 = $0.17 or 17 cents. So,
each one-dollar ticket wins on average 17 cents. You should not be playing this lottery.

8. BERNOULLI DISTRIBUTION

De�nition. A discrete random variable X assumes a Bernoulli distribution if
P(X = 1) = p and P(X = 0) = 1− p. The notation is X ∼ Ber(p), which is read as
`X has a Bernoulli distribution with parameter p�. Conventionally, the value of 1 is
termed asuccess, and 0 is termed afailure. The parameter p is termed the proba-
bility of success.

For Bernoulli distribution, the pmf can be written as pX(x) = px(1− p)1−x, x = 0 or
1. Indeed, when X = 1, pX(1) = p, and when X = 0, pX(0) = 1 − p. The expected
value of X is EX = (1)(p) + (0)(1− p) = p, the probability of success. The variance
of X is Var(X) = (1)2p + (0)2(1 − p) − p2 = p − p2 = p(1 − p), and the standard
deviation is

√
p(1− p).
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Historical Note. Jacob Bernoulli (1655-1705) was one of the many prominent math-
ematicians in the Swiss Bernoulli family.

Example. A fair coin is �ipped once. Let X be the number of heads that appeared,
so X ∼ Ber(1/2) with the pmf pX(x) = (0.5)x(0.5)1−x = 0.5, x = 0 or 1. The
mean is EX = 0.5, the variance is Var(X) = (0.5)(1− 0.5) = 0.25, and the standard
deviation is

√
0.25 = 0.5.

Example. A biased coin is �ipped once. The probability of success is 0.65. The num-
ber of headsX has a Bernoulli(0.65) distribution with the pmf pX(x) = (0.65)x(0.35)1−x,
x = 0 or 1. The mean is E(X) = 0.65, variance is Var(X) = (0.65)(0.35) = 0.2275,
and standard deviation

√
0.2275 = 0.4770.

Exercise 8.1. An infected person will infect a susceptible person with a probabil-
ity of 0.3, for whom symptoms will appear with a probability of 0.6. What is the
distribution of the number of infected individuals who show symptoms after contact
with the infected person? What is the expected number of such individuals? What's
the standard deviation? Answer: The probability that an individual is infected and
shows symptoms is (0.3)(0.6) = 0.18, so the number of people who show symptoms
is a Bernoulli(0.18) random variable. The expected number of such individuals is
p = 0.18, and the standard deviation is

√
p(1− p) =

√
(0.18)(1− 0.18) = 0.4792.

Exercise 8.2. On a multiple-choice test with �ve choices for each question, what is
the probability that a student answers a question correctly just by guessing? What are
the underlying distribution function, mean, and variance? Answer: We assume that
exactly one answer choice is correct, so the probability to pick the correct answer is
p = 1/5 = 0.2 and the distribution of the number of correct answers is Bernoulli(0.2),
with mean p = 0.2 and variance p(1− p) = (0.2)(1− 0.2) = 0.16.

9. BINOMIAL DISTRIBUTION

De�nition. A Bernoulli trial is a random phenomenon with a binary outcome (suc-
cess or failure) and a �xed probability of success.

De�nition. Consider n independent Bernoulli trials, each with a probability of suc-
cess p. Let X be the number of successes among these n trials. Then X has a bino-
mial distribution with parameters n and p. We write X ∼ B(n, p). The probability
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distribution function can we expressed as pX(x) =
(
n
x

)
px(1− p)n−x, x = 0, 1, . . . , n.

Explanation. There are

(
n

x

)
sequences with x successes and n − x failures, each

success happening with probability p and each failure occurring with probability 1−p.

Remark. A Bernoulli distribution is a special case of a binomial distribution for
n = 1.
Remark. Notice that the pmf of a binomial distribution involves binomial coe�-
cients, which give rise to the name of the distribution. Moreover, Newton's binomial
helps to show that the probabilities add up to one. Indeed, we write

n∑
x=0

(
n

x

)
px(1− p)n−x = (p+ 1− p)n = 1.

Proposition. The expected value of a random variable X ∼ Bi(n, p) is EX = np
and its variance is Var(X) = np(1− p).

Proof. EX =
n∑
x=0

x

(
n

x

)
px (1− p)n−x =

n∑
x=1

(x)(n!)

x!(n− x)!
px (1− p)n−x

= n p
n∑
x=1

(n− 1)!

(x− 1)!(n− 1− (x− 1))!
px−1(1− p)n−1−(x−1)

= {k = x− 1} = np
n−1∑
k=0

(
n− 1

k

)
pk(1− p)n−1−k = n p,

EX2 =
n∑
x=0

x2
(
n

x

)
px (1− p)n−x =

n∑
x=2

(x)(x− 1)

(
n

x

)
px (1− p)n−x

+
n∑
x=0

x

(
n

x

)
px (1− p)n−x =

n∑
x=1

x(x− 1)n!

x!(n− x)!
px(1− p)n−x + np

= n(n− 1) p2
n∑
x=2

(n− 2)!

(x− 2)!(n− 2− (x− 2))!
px−2(1− p)n−2−(x−2) + np

= {k = x− 2} = n(n− 1) p2
n−2∑
k=0

(
n− 2

k

)
pk(1− p)n−2−k = n(n− 1) p2 + np,

and so,

Var(X) = EX2 − (EX)2 = n(n− 1)p2 + np − (np)2 = np− np2 = np(1− p).

Example. A fair coin is tossed 10 times. Let X be the number of heads. Then
X ∼ Bi(10, 0.5). The mean number of heads is EX = np = (10)(0.5) = 5, the vari-
ance is Var(X) = np(1 − p) = (10)(0.5)(1 − 0.5) = 2.5, and the standard deviation
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is
√

2.5 = 1.58. The probability that there will be, say, between 4 heads is computed

as P(X = 4)

(
10

4

)
(0.5)10 =

(10)(9)(8)(7)

(4)(3)(2)
(0.5)10 = (10)(3)(7)(0.5)10 = 210/1024 =

0.2051.

Example. A biased coin is tossed 10 times. The probability of a head is 0.65. Let X
be the number of heads. Then X ∼ Bi(10, 0.65), with mean EX = (10)(0.65) = 6.5,
variance Var(X) = (10)(0.65)(1−0.65) = 2.275, and the standard deviation

√
2.275 =

1.5083. The probability P(X = 4) =

(
10

4

)
(0.65)4(0.35)6 = (210)(0.65)4(0.35)6 =

0.0689.

Exercise 9.1. Which of the following settings is a binomial one? To reemphasize, a
binomial setting necessarily has a �xed number of independent Bernoulli trials and
the probability of success stays constant from trial to trial.

(a) The gender of the next 50 children born at a local hospital is observed. A random
variable of interest is the number of girls. Answer: This is a binomial setting, n = 50,
p is constant, and trials are assumed independent (no identical twins born).

(b) A couple decides to continue to have children until their �rst boy is born. A
random variable is the number of children they have. Answer: This is not a binomial
setting as the number of trials is not �xed.

(c) An auto manufacturer chooses one car from each hour's production for a quality
inspection. A random variable is the number of defects in the car's paint. Answer:
This is not a binomial setting as the number of trials is not �xed, and the trials are
not Bernoulli trials (not 0/1 outcomes).

(d) Joe buys a state lottery ticket every week. A random variable is the number of
times in a year that he wins a prize. Answer: This is a binomial setting, assuming
that there are a �xed number of weeks in a year, and the probability of winning a
prize stays constant from week to week.

Exercise 9.2. Screws produced by a company are defective with probability 0.01
independently of each other. A package of 10 screws is bought.

(a) Find the probability that at most one screw is defective. Answer: Let X be the
number of defective screws in the package of 10 screws. Then X ∼ Bi(10, 0.01). We
compute P(X ≤ 1) = P(X = 0) + P(X = 1) = (0.99)10 + (10)(0.01)(0.99)9 = 0.9957.

(b) If the company o�ers a money-back guarantee that at most one of ten screws
is defective, �nd the proportion of screws the company must replace. Answer: The
company will have to replace a package is more than two screws are defective, which
happens with probability 1−0.9957 = 0.0043, so 0.43% of packages (screws) will have
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to be replaced (43 of 10,000 packages, or 430 of 100,000 screws).

Exercise 9.3. If a family has four children, is it more likely they will have two boys
and two girls or three of one sex and one of the other? Assume that the probability
of a child being a boy is 1/2 and that the births are independent events. Answer:
Denote by X the number of boys. We are given that X ∼ Bi(4, 1/2). We compute
P(X = 2) =

(
4
2

)
(1/2)4 = 6/16, whereas P(X = 1 or X = 3) =

(
4
1

)
(1/2)4 +

(
4
3

)
(1/2)4 =

8/16, so having one boy and three girls or the other way around is more likely than
having two boys and two girls.

Exercise 9.4. A travel company uses a tour bus with a capacity of ten passengers
but sells twelve tickets. Fortunately for them, one person out of six is a no-show.

(a) What is the probability that everyone who shows up for the tour will be accom-
modated? Answer: Let X be the number of people who show up for the tour. We
know that X ∼ Bi(12, 5/6), thus, P(X ≤ 10) = 1 − P(X = 11) − P(X = 12) =

1−
(

12

11

)
(5/6)11(1/6)−

(
12

12

)
(5/6)12 = 0.6187.

(b) How many people do they expect will come to the bus tour? Answer: EX =
(12)(5/6) = 10.

(c) What is the standard deviation of the number of people who will show up? An-
swer:

√
(12)(5/6)(1/6) = 1.2910.

Exercise 9.5. Consider a multiple-choice quiz with three possible answers for each
of the �ve questions.

(a) What is the probability that a student would answer more than 3 questions cor-
rectly just by guessing? Answer: Let X be the number of correctly answered ques-
tions. We know that X ∼ Bi(5, 1/3). We compute P(X > 3) = P(X = 4) + P(X =
5) =

(
5
4

)
(1/3)4(2/3) +

(
5
5

)
(1/3)5 = 11/35 = 0.04523.

(b) How many questions can he expect to answer correctly? Answer: EX = (5)(1/3) =
1.67.

(c) What is the standard deviation of the number of correct answers? Answer:√
(5)(1/3)(2/3) = 1.054.

Exercise 9.6. The gunner on a small assault boat �res six missiles at an attacking
plane. Each has a 10% chance of being on target. If two or more of the shells
�nd their mark, the plane will crash. At the same time, the pilot of the plane �res
2 air-to-surface rockets, each of which has a 25% chance of critically disabling the
boat. Would you rather be on the plane or the boat? Answer: Denote by X the
number of shells that hit the plane. We have that X ∼ Bi(6, 0.1). We compute
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P(X ≥ 2) = 1 − P(X = 0) − P(X = 1) = 1 − (0.9)6 − (6)(0.1)(0.9)5 = 0.1143. Now
let Y be the number of rockets that hit the boat. We know that Y ∼ Bi(2, 0.25). We
compute P(Y ≤ 1) = 1−P(Y = 0) = 1− (0.75)10 = 0.4375. The probability that the
boat sinks is higher than the probability that the plane crashes, so it is better to be
on the plane.

10. GEOMETRIC DISTRIBUTION

De�nition. Consider a sequence of independent Bernoulli trials, each having the
probability of success p. Let X be the total number of trials until the �rst success is
observed. Then X has a geometric distribution with parameter p. The pmf of X
is pX(x) = p(1− p)x−1, x = 1, 2, etc. The notation is X ∼ Geom(p).

Remark. To show that these probabilities add up to one, we need to sum up a geo-
metric series, hence the name of the distribution. Recall that the sum of a geometric

series is
∞∑
x=k

ax =
ak

1− a
, |a| < 1. We write

∞∑
x=1

p(1− p)x−1 =
p

1− p

∞∑
x=1

(1− p)x =
p

1− p
· 1− p

1− (1− p)
= 1.

Proposition. The mean of a geometric random variable is E(X) =
1

p
and the vari-

ance is Var(X) =
1− p
p2

.

Proof. Before we proceed, we need to derive the following two results. For |a| <

1,
∞∑
x=1

x ax−1 =
( ∞∑
x=0

ax
)′
a

=
( 1

1− a

)′
a

=
1

(1− a)2
. In addition,

∞∑
x=1

x2 ax =

a2
∞∑
x=2

x(x − 1)ax−2 +
∑
x=1

x ax = a2
(∑
x=2

ax
)′′
a

+ a
∑
x=1

x ax−1 = a2
( a2

1− a

)′′
a

+

a

(1− a)2
=

2a2

(1− a)3
+

a

(1− a)2
. Here we skipped the calculation of the second

derivative. It can be done as follows.
( a2

1− a

)′′
a

=
((1− a)(2a)− a2(−1)

(1− a)2

)′
a

=( 2a− a2

(1− a)2

)′
a

=
(1− a)2(2− 2a)− (2a− a2)2(1− a)(−1)

(1− a)4
=

2(1− a)3 + 2a(2− a)(1− a)

(1− a)4

= 2
(1− a)2 + a(2− a)

(1− a)3
= 2

1− 2a+ a2 + 2a− a2

(1− a)3
=

2

(1− a)3
.

Now applying the �rst result with a = 1− p, we obtain E(X) =
∞∑
x=1

x p(1− p)x−1 =

p · 1

(1− (1− p))2
=

1

p
. Making use of the second result with a = 1 − p, we derive
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the expression for the variance. We get

Var(X) = EX2 − (EX)2 =
∞∑
x=1

x2 p(1− p)x−1 −
(1

p

)2
=

p

1− p

∞∑
x=1

x2 (1−p)x − 1

p2
=
( p

1− p

)( 2(1− p)2

(1− (1− p))3
+

1− p
(1− (1− p))2

)
−
( 1

p2

)
=

2(1− p)
p2

+
1

p
− 1

p2
=

2(1− p) + p− 1

p2
=

1− p
p2

.

Example. A fair coin is �ipped until a head appears. The total number of required
�ips is a random variable, say, X that has a geometric distribution with parameter
p = 0.5. The pmf of X is pX(x) = (0.5)(1 − 0.5)x−1 = (0.5)x, x = 1, 2, .... The
mean is EX = 1/(0.5) = 2 (meaning that on average, two �ips are required to see a
head), the variance is Var(X) = (1 − 0.5)/(0.5)2 = 2, and the standard deviation is√

2 = 1.4142. The probability that the �rst head appears, for example, on the sixth
�ip is P(X = 6) = (0.5)6 = 0.0156.

Example. A biased coin is �ipped until a head appears. The probability of a
head is 0.65. Then X, the total number of �ips, has a Geom(0.65) distribution
with the pmf pX(x) = (0.65)(0.35)x−1, x = 1, 2, etc., mean E(X) = 1/0.65 =
1.5385, variance Var(X) = (1 − 0.65)/(0.65)2 = 0.8284, and standard deviation√

0.8284 = 0.9102. The probability that the �rst head appears on the sixth �ip is
P(X = 6) = (0.65)(0.35)5 = 0.0034.

Example. Suppose X ∼ Geom(p). To compute the probability that it will take
at least k trials to see the �rst success, we can use the complement rule and write
P(X ≥ k) = 1 − P(X = 1) − P(X = 2) − · · · − P(X = k − 1) = 1 − p − p(1 −
p) − · · · − p(1 − p)k−2 = (1 − p) − p(1 − p)(1 + (1 − p) + · · · + (1 − p)k−3) =

(1− p)− p(1− p)
(1−(1−p)k−2

1−(1−p)

)
= (1− p)− (1− p)(1− (1− p)k−2) = (1− p)k−1. The

same result could be obtained much quicker by noticing that in order for the �rst
head to appear in at least k �ips, the �rst k − 1 �ips must all be failures, that is,
P(X ≥ k) = P(�rst k − 1 �ips are all failures) = (1− p)k−1.

Remark. Sometimes a geometric distribution is de�ned as the number of failures be-
fore the �rst success. In this case, the pmf has the form pX(x) = p(1−p)x, x = 0, 1, ....

The mean is EX =
1

p
− 1 =

1− p
p

and the variance is Var(X) =
1− p
p2

.

Exercise 10.1. Which of the settings below is a geometric setting? As a reminder,
a setting is geometric if a sequence of independent Bernoulli trials with a constant
probability of success is observed until the �rst success happens, at which point the
trials stop and the total number of trials is counted.

(a) Four cards are drawn one at a time with replacement from a standard poker deck
of cards. A random variable is the number of kings drawn. Answer: No, this is a
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binomial setting, not geometric. Geometric would be to draw cards with replacement
and stop when the �rst king is drawn and count the total number of cards.

(b) A couple decides to continue to have children until their �rst boy is born. A
random variable is the number of children they have. Answer: This is a geometric
setting, assuming a constant probability of having a boy and independent trials (no
identical twins).

(c) Cards are drawn without replacement from a standard poker deck of cards. A
random variable is the number of draws until the queen of spades shows up. Answer:
This is not a geometric setting because drawing is done without replacement and so
the probability of success changes from trial to trial. It would be a geometric setting
if the drawing were done with replacement.

Exercise 10.2. Joe takes driving tests until he passes. The probability that he
passes a test is 0.6, and the tests are independent from each other.

(a) Find the probability that he passes on the second attempt. Answer: He fails �rst
and then passes with probability (0.4)(0.6) = 0.24.

(b) Find the probability that he needs at most two attempts. Answer: He passes
either on the �rst or second attempt with a probability of 0.6 + 0.24 = 0.84.

(c) What is the probability that he needs more than four attempts? Answer: The
�rst four attempts are failures with probability (0.4)4 = 0.0256.

(d) What is the expected number of attempts he needs? Answer: The expected value
is 1/(0.6) = 1.67.

Exercise 10.3. An oil prospector will drill a succession of holes in a given area to
�nd a productive well. The probability that he is successful on a given try is 0.2,
independently of other tries.

(a) What is the probability that the third hole drilled is the �rst to yield a productive
well? Answer: Let X be the number of holes drilled until the �rst productive one.
Then X ∼ Geom(0.2). We compute P(X = 3) = (0.2)(0.8)2 = 0.128.

(b) If the prospector can a�ord to drill at most ten wells, what is the probability that
he will fail to �nd a productive well? Answer: All 10 drills must be failures. This
happens with probability (0.8)10 = 0.1074.

Exercise 10.4. Suppose the probability of a connection during a busy time for in-
ternational phone calls is 0.3, and attempts are assumed independent.

(a) What is the probability that between 3 and 5 attempts are necessary for a suc-
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cessful call? Answer: Let X be the total number of attempts until the �rst successful
phone call. Then X ∼ Geom(0.3). We compute P(3 ≤ X ≤ 5) = P(X = 3) + P(X =
4) + P(X = 5) = (0.3)(0.7)2 + (0.3)(0.7)3 + (0.3)(0.7)4 = 0.32193. A shorter way to
compute this probability is to notice that the �rst success comes after 2 attempts but
before 6 attempts, so we need to compute the probability that the �rst two attempts
are failures minus the probability that the �rst �ve attempts are failures, that is,
(0.7)2 − (0.7)5 = 0.32193.

(b) How many phone calls are necessary, on average? Answer: EX = 1/0.3 = 3.33.

(c) Compute the standard deviation of the number of attempts necessary. Answer:√
1− 0.3

(0.3)2
= 2.79.

(d) What is the probability that between 5 and 10 attempts are necessary for a
successful call? Answer: (0.3)4 − (0.3)10 = 0.0081.

11. NEGATIVE BINOMIAL DISTRIBUTION

De�nition. Consider a sequence of independent Bernoulli trials with a constant
probability of success p, and let X be the total number of trails required to see the
rth success where r is a �xed number, r ≥ 1. Then X has a negative binomial
distribution with parameters r and p. The notation is X ∼ NB(r, p). The probability

function of X is pX(x) =

(
x− 1

r − 1

)
pr (1 − p)x−r, x = r, r + 1, r + 2, .... This can be

easily seen by noticing that in a sequence of x trials, the last one must be a success,
and there are r− 1 successes somewhere among the �rst x− 1 trials. The number of

such sequences is

(
x− 1

r − 1

)
. Further, each of r successes happens with probability p

and each of x− r failures happens with probability 1− p.

Remark. A geometric distribution is a special case of negative binomial distribution
with r = 1.

Proposition. Let X ∼ NB(r, p). The mean of X is EX =
r

p
, and the variance is

Var(X) =
r(1− p)
p2

.

Proof. EX =
∞∑
x=r

x

(
x− 1

r − 1

)
pr(1 − p)x−r =

∞∑
x=r

x(x− 1)!

(r − 1)!(x− r)!
pr(1 − p)x−r =

r

∞∑
x=r

x!

r!(x− r)!
pr(1−p)x−r =

r

p

∞∑
x=r

(
x

r

)
pr+1(1−p)x−r = {y = x+1, r̃ = r+1} =
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r

p

∞∑
y=r̃

(
y − 1

r̃ − 1

)
pr̃(1− p)y−r̃ =

r

p
.

As for the variance, we write Var(X) =
∞∑
x=r

x2
(
x− 1

r − 1

)
pr(1− p)x−r −

(r
p

)2
=

∞∑
x=r

(x+ 1)x

(
x− 1

r − 1

)
pr(1− p)x−r −

∑
x=r

x

(
x− 1

r − 1

)
pr(1− p)x−r − r2

p2

=
r(r + 1)

p2

∞∑
x=r

(
x+ 1

r + 1

)
pr+2(1− p)x−r − r

p
− r2

p2

= {y = x+ 2, r̃ = r + 2} =
r(r + 1)

p2

∞∑
y=r̃

(
y − 1

r̃ − 1

)
pr̃(1− p)y−r̃ − r

p
− r2

p2

=
r(r + 1)

p2
− r

p
− r2

p2
=

r2 + r − rp− r2

p2
=

r(1− p)
p2

.

Remark. The name �negative binomial� comes from the fact that the pmf of a
negative binomial distribution can be rewritten to resemble a binomial distribution
for the negative number of trials. To see this, we make a substitution x = r + y
(here y denotes the number of failures until the rth success). The pmf becomes(
x− 1

r − 1

)
pr(1− p)x−r =

(
r + y − 1

r − 1

)
pr(1− p)y. Now we notice that(

r + y − 1

r − 1

)
=

(r + y − 1)!

(r − 1)!y!
=

(r)(r + 1) · · · · · (r + y − 1)

y!

= (−1)y
(−r)(−r − 1) · · · · · (−r − y + 1)

y!
= (−1)y

(
−r
y

)
.

Thus, the pmf takes the form (−1)y
(
−r
y

)
pr(1−p)y, which resembles a binomial pmf.

Remark. It is not di�cult now for us to show that the probabilities add up to

one. Indeed, we write
∞∑
x=r

(
x− 1

r − 1

)
pr(1 − p)x−r =

∞∑
y=0

(
r + y − 1

r − 1

)
pr(1 − p)y =

−r∑
y=0

(−1)y
(
−r
y

)
pr(1−p)y = pr

−r∑
y=0

(
−r
y

)
(−(1−p))y = {by Newton's binomial} =

pr (1 + (−(1− p)))−r = pr p−r = 1.

Example. Suppose a fair coin is �ipped until the fourth head appears, and let X
be the total number of �ips. Then X ∼ NB(4, 0.5) with the probability distribution

function pX(x) = P(X = x) =

(
x− 1

4− 1

)
(0.5)4(0.5)x−4 =

(
x− 1

3

)
(0.5)x, x = 4, 5, . . . .

It takes on average, EX = 4/0.5 = 8 �ips to see four heads, with the variance
Var(X) = (4)(1− 0.5)/(0.5)2 = 8, standard deviation

√
8 = 2.8284. The probability
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that it takes, say, 6 �ips to see the fourth head is P(X = 6) =

(
5

3

)
(0.5)4(0.5)2 =

(10)(0.5)6 = 0.15625.

Example. Suppose a biased coin is �ipped until the fourth head appears. The prob-
ability of a head is 0.65. Let X be the total number of �ips. The distribution of X

is NB(4, 0.65) and the pmf can be written as pX(x) =

(
x− 1

3

)
(0.65)4(0.35)x−4, x =

4, 5, etc. The expected number of required �ips is EX = 4/0.65 = 6.1538, variance is
Var(X) = (4)(0.35)/(0.65)2 = 3.3136, and standard deviation

√
3.3136 = 1.8203.

Exercise 11.1. An oil prospector will drill a succession of holes in a given area to
�nd a productive well. The probability that he is successful on a given try is 0.2,
independently of other tries.

(a) What is the probability that the �fth hole drilled is the second to yield a pro-
ductive well? Answer: Let X be the number of drills until the second successful

one. Then X ∼ NB(2, 0.2). We compute P(X = 5) =

(
5− 1

2− 1

)
(0.2)2(1 − 0.2)3 =(

4

1

)
(0.2)2(0.8)3 = 0.08192.

(b) What is the expected number of drills needed to �nd 10 productive wells? An-
swer: Let X be the number of drills needed to �nd 10 productive wells. We know
that X ∼ NB(10, 0.2), with the mean EX = 10/0.2 = 50.

(c) What is the standard deviation of the number of drills needed to �nd 10 produc-
tive wells? Answer:

√
(10)(1− 0.2)/(0.2)2 = 14.14.

Exercise 11.2. Suppose the probability of a connection during a busy time for in-
ternational phone calls is 0.3, and attempts are assumed independent.

(a) What is the probability that from 3 to 5 attempts are necessary in order to place
two successful calls? Answer: Let X be the number of attempts until two success-
ful calls are placed. The distribution of X is NB(2, 0.3). We compute P(3 ≤ X ≤

5) = P(X = 3) + P(X = 4) + P(X = 5) =

(
2

1

)
(0.3)2(0.7) +

(
3

1

)
(0.3)2(0.7)2 +(

4

1

)
(0.3)2(0.7)3 = (0.3)2(0.7)(2 + (3)(0.7) + (4)(0.7)2) = 0.3818.

(b) How many phone calls are required on average to place three successful calls?
Answer: X ∼ NB(3, 0.3), EX = 3/0.3 = 10.

(c) Compute the standard deviation of the number of attempts necessary to make
four successful phone calls. Answer: X ∼ NB(4, 0.3),

√
(4)(1− 0.3)/0.32 = 5.58.
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Exercise 11.3. A roulette wheel consists of 38 numbers � 1 through 36, 0, and 00.
Suppose Rob always bets that the outcome will be one of the numbers 1 through 12.

(a) What is the probability that his second win will occur on the fourth bet? Answer:

X ∼ NB(2, 12/38 = 6/19), P(X = 4) =

(
3

1

)
(6/19)2(13/19)2 = 0.14.

(b) What is the expected number of bets until his second win? Answer: EX =
2/(6/19) = 6.33.

(c) What is the standard deviation of the number of bets until his second win? An-

swer:
√

(2)(13/19)/(6/19)2 = 3.70.

Exercise 11.4. Find the probability that a person tossing three coins will get either
all heads or all tails for the second time on the �fth toss. Answer: P(HHH or TTT ) =

1/8 + 1/8 = 1/4, X ∼ NB(2, 1/4), P(X = 5) =

(
4

1

)
(1/4)2(3/4)3 = 0.1055.

Exercise 11.5. In a certain manufacturing process it is known that 1 in every 100
items is defective. What is the probability that the seventeenth item inspected
is the third defective item found? Answer: X ∼ NB(3, 0.01), P(X = 17) =(

16

2

)
(0.01)3(0.99)14 =

(16)(15)

2
(0.01)3(0.99)14 = 0.000104.

12. HYPERGEOMETRIC DISTRIBUTION

De�nition. Let N denote the population size, of which K objects are of interest.
A random sample of size n is drawn from this population. Note that for a random
sample, every object in the population is equally likely to be chosen. Let X denote
the number of objects of interest in the sample. Then X has a hypergeometric
distribution with parameters N , K, and n, which is written as X ∼ HG(N,K, n).
The probability function has the form

pX(x) = P(X = x) =

(
K
x

)(
N−K
n−x

)(
N
n

) , max(0, n+K −N) ≤ x ≤ min(K,n).

Example. There are 10 students in a group, 4 females and 6 males. We choose
3 students at random. Let X be the number of females in the sample. Then
X ∼ HG(10, 4, 3). The probability distribution of X is

P(X = 0) =

(
4
0

)(
6
3

)(
10
3

) =
(5)(4)(6)

(10)(9)(8)
= 1/6,

P(X = 1) =

(
4
1

)(
6
2

)(
10
3

) =
(4)(3)(5)(6)

(10)(9)(8)
= 0.5,
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P(X = 2) =

(
4
2

)(
6
1

)(
10
3

) =
(6)(6)(6)

(10)(9)(8)
= 0.3,

P(X = 3) =

(
4
3

)(
6
0

)(
10
3

) =
(4)(6)

(10)(9)(8)
= 1/30.

Note that the probabilities add up to one, that is, 1/6 + 0.5 + 0.3 + 1/30 = 1.

Example. There are 10 students in a group, 4 females and 6 males. We choose
5 students at random. Let X be the number of females in the sample. Then
X ∼ HG(10, 4, 5). The probability distribution of X is

P(X = 0) =

(
4
0

)(
6
5

)(
10
5

) =
(6)(5)(4)(3)(2)

(10)(9)(8)(7)(6)
= 1/42,

P(X = 1) =

(
4
1

)(
6
4

)(
10
5

) =
(4)(3)(5)(5)(4)(3)(2)

(10)(9)(8)(7)(6)
= 5/21,

P(X = 2) =

(
4
2

)(
6
3

)(
10
5

) =
(2)(3)(5)(4)(5)(4)(3)(2)

(10)(9)(8)(7)(6)
= 10/21,

P(X = 3) =

(
4
3

)(
6
2

)(
10
5

) =
(4)(3)(5)(5)(4)(3)(2)

(10)(9)(8)(7)(6)
= 5/21,

P(X = 4) =

(
4
4

)(
6
1

)(
10
5

) =
(6)(5)(4)(3)(2)

(10)(9)(8)(7)(6)
= 1/42.

The sum of these probabilities is 1/42 + 5/21 + 10/21 + 5/21 + 1/42 = 1, as it should
be. Note that it would be impossible for X to be equal to 5 since there are only 4
female students in the group. The values for X range between max(0, n+K −N) =
max(0, 5 + 4− 10) = max(0,−1) = 0 and min(K,n) = min(4, 5) = 4.

Example. There are 10 students in a group, 4 females and 6 males. We choose
7 students at random. Let X be the number of females in the sample. Then
X ∼ HG(10, 4, 7). The probability distribution of X is

P(X = 1) =

(
4
1

)(
6
6

)(
10
7

) =
(4)(3)(2)

(10)(9)(8)
= 1/30,

P(X = 2) =

(
4
2

)(
6
5

)(
10
7

) =
(6)(6)(3)(2)

(10)(9)(8)
= 0.3,

P(X = 3) =

(
4
3

)(
6
4

)(
10
7

) =
(4)(3)(5)(3)(2)

(10)(9)(8)
= 0.5,

P(X = 4) =

(
4
4

)(
6
3

)(
10
7

) =
(5)(4)(3)(2)

(10)(9)(8)
= 1/6.
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The sum of these probabilities is 1/30 + 0.3 + 0.5 + 1/6 = 1, as it should be. Note
that it would be impossible for X to be equal to 0 since there are only 6 male
students in the group and we are choosing 7 for the sample. The values for X
range between max(0, n + K − N) = max(0, 7 + 4 − 10) = max(0, 1) = 1 and
min(K,n) = min(4, 7) = 4.

Proposition. For X ∼ HG(N,K, n), the expected value is EX =
K

N
n, and the

variance is Var(X) =
K

N
n
(

1− K

N

)(N − n
N − 1

)
.

Proof. To derive the expression for the mean, we �rst notice that this expression is
very intuitive. The true proportion of objects of interest in the sample is K/N , and
since the drawn sample is random, the proportion should be preserved in the sample,
thus, the expected number of objects of interest in the sample should be K/N times
n, the size of the sample. Now we go through the formal proof. For de�nitiveness,
we assume that n is less than K and write sums up to n. We get

EX =
n∑
x=0

x

(
K
x

)(
N−K
n−x

)(
N
n

) =
n∑
x=1

x · K!
x!(K−x)! ·

(N−K)!
(n−x)!(N−K−n+x)!
N !

n!(N−n)!

=
n∑
x=1

K · (K−1)!
(x−1)!(K−x)! ·

(N−K)!
(n−x)!(N−K−n+x)!

N ·(N−1)!
n·(n−1)!(N−n)!

=
K

N
n

n∑
x=1

(
K−1
x−1

)(
N−K
n−x

)(
N−1
x−1

) =
K

N
n.

The last sum is equal to one since it is the sum of all probabilities in the distribution
of a HG(N − 1, K − 1, n− 1) random variable.

Turning now to the derivation of the formula for the variance, we proceed as follows.

Var(X) =
n∑
x=0

x2
(
K
x

)(
N−K
n−x

)(
N
n

) −
(K
N
n
)2

=
n∑
x=2

x(x−1)

(
K
x

)(
N−K
n−x

)(
N
n

) +
K

N
n−

(K
N
n
)2

=
K(K − 1)n(n− 1)

N(N − 1)

n∑
x=2

(
K−2
x−2

)(
N−K
n−x

)(
N−2
n−2

) +
K

N
n −

(K
N
n
)2

(the sum is equal to 1)

=
K(K − 1)n(n− 1)

N(N − 1)
+
K

N
n −

(K
N
n
)2

=
K

N
n
((K − 1)(n− 1)

N − 1
+ 1 − K

N
n
)

=
K

N
n · (NK −N)(n− 1) + (N − 1)(N −Kn)

(N)(N − 1)

=
K

N
n · −NK −Nn+N2 +Kn

(N)(N − 1)
=

K

N
n · (N −K)(N − n)

N(N − 1)

=
K

N
n
(

1− K

N

)(N − n
N − 1

)
.
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Remark. There is a more intuitive formula for the variance of a random variable X
that has a hypergeometric distribution with parameters N,K, and n. Consider the
following two-way table

Of interest Not of interest Total
Sampled x n− x n

Not sampled K − x N −K − (n− x) N − n
Total K N −K N

The variance of X can be expressed as the product of all marginal totals di-
vided by the grand total squared multiplied by the grand total minus 1, that is,

Var(X) =
(n)(N − n)(N −K)(K)

N2(N − 1)
. It is straightforward to see that this expression

is equivalent to the one introduced above. Note also that the expression for the mean
of X is the product of the respective marginal totals divided by the grand total, that

is, EX =
n

K
N .

Remark. The name �hypergeometric distribution� comes from the fact that the
probabilities P(X ≤ x) can be written in terms of generalized hypergeometric
functions, which de�nitely lie beyond the scope of this course.

Exercise 12.1. A gardener plants six bulbs selected at random from a box with �ve
tulip bulbs and four da�odil bulbs.

(a) What is the probability that he plants four tulip bulbs and two da�odil bulbs?
Answer: Let X be the number of tulip bulbs that the gardener plants. We know that

X ∼ HG(9, 5, 6). We compute P(X = 4) =

(
5
4

)(
4
2

)(
9
6

) =
(5)(6)(3)(2)

(9)(8)(7)
=

5

14
.

(b) What is the expected number of tulip bulbs he plants? Answer: EX = (5)(6)/9 =
10/3 = 3.33.

(c) What is the expected number of da�odil bulbs he plants? Answer: 6−3.33 = 2.67.

Exercise 12.2. What is the probability that a waitress will refuse to serve alcoholic
beverages to only two minors if she randomly checks the IDs of �ve students from
among nine students of whom four are not of legal age? Answer: Denote by X the
number of minors whose IDs are checked. The distribution of X is HG(9, 4, 5). We

compute P(X = 2) =

(
4
2

)(
5
3

)(
9
5

) =
(10)(4)(3)(2)

(9)(8)(7)(6)
=

10

21
.

Exercise 12.3. A committee of size three is selected at random from four doctors
and two nurses.
(a) Find the probability that two or three doctors are chosen. Answer: Let X be the
number of doctors selected for the committee. Then X ∼ HG(6, 4, 3). We obtain
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P(X = 2) + P(X = 3) =

(
4
2

)(
2
1

)(
6
3

) = 0.6.

(b) What is the expected number of doctors selected for the committee? Answer:
EX = (4)(3)/6 = 2.

(c) What are the variance and standard deviation of the number of doctors selected
for the committee? Answer: The variance is

Var(X) =
(4

6

)
(3)
(

1− 4

6

)(6− 3

6− 1

)
= 0.4.

The standard deviation is
√

0.4 = 0.63.

Exercise 12.4. Shipments of �fty items are inspected. The procedure is to take a
sample of �ve and pass the shipment if no more than one is found to be defective.
What proportion of 20% defective shipments will be accepted? Answer: Let X be the
number of selected items that are defective. The distribution of X is HG(50, 10, 5).

The probability that a shipment is accepted is P(X = 0) + P(X = 1) =

(
10
0

)(
40
5

)(
50
5

) +(
10
1

)(
40
4

)(
50
5

) =
(40)(39)(38)(37)(36)

(50)(49)(48)(47)(46)
+

(10)(40)(39)(38)(37)(5)

(50)(49)(48)(47)(46)
= 0.3106 + 0.4313 =

0.7419. So, roughly, 74.2% of shipments will be accepted.

13. POISSON DISTRIBUTION

De�nition. A count variable is a random variable that counts the number of oc-
currences of some random phenomenon. It assumes non-negative integer values (0, 1,
2, etc.).

De�nition. A count variable X is said to follow a Poisson distribution with pa-
rameter λ (Greek letter �lambda� - pronounced �lam-da�) if the pmf of X is pX(x) =
λx

x!
e−λ, x = 0, 1, 2, etc. It is abbreviated X ∼ Poi(λ).

Historical Note. Poisson distribution was derived empirically by Simeon Poisson
(1781-1840), a French mathematician and physicist.
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Remark. Poisson distribution models rare occurrences, for which 0 or 1 are typ-
ical observations, 2 or 3 are seen less often, 4, 5, or 6 even less frequent, and 7 or
8 are unfrequent, and anything above is extremely unfrequent. Some examples of
random variables governed by a Poisson distribution are the number of accidents per
week or month at a certain intersection; the number of abandoned cars on a certain
stretch of highway; the number of customers entering a bank per minute; the number
of typographical errors per page in a newspaper or a magazine; number of defects per
unit length of fabric; or the number of mice per acre of land.

De�nition. Let X ∼ Poi(λ). The parameter λ is termed the rate. It speci�es the
average number of occurrences per unit interval of time (minute, hour, day, week,
year, etc.), or unit piece of material (page of a newsletter, meter of fabric of �xed
width, etc.), or unit of area (acre, square mile, etc.).

Remark. It is important to write out explicitly and memorize the probability func-
tion for some small values of x. We have

p(0) =
λ0

0!
e−λ = e−λ, p(1) =

λ1

1!
e−λ = λ e−λ,

p(2) =
λ2

2!
e−λ =

λ2

2
e−λ, p(3) =

λ3

3!
e−λ =

λ3

6
e−λ,

and

p(4) =
λ4

4!
e−λ =

λ4

24
e−λ.

Note that the factorials in the denominator increase very rapidly, making the proba-
bilities very small very quickly.

Remark. To show that all the probabilities add up to one, we need to use Taylor's
expansion of the exponential function:

eλ =
∞∑
x=0

λx

x!
.

From here we derive
∞∑
x=0

λx

x!
e−λ = eλ · e−λ = 1. We can see that e−λ is just a

normalizing constant in the probability function.

Proposition. Let X ∼ Poi(λ). Then EX = Var(X) = λ.

Proof. EX =
∞∑
x=0

x
λx

x!
e−λ = λ

∞∑
x=1

λx−1

(x− 1)!
e−λ = λ, since after the substitution

y = x − 1, we can see that the sum is equal to one. Focusing now on the variance,
we compute
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Var(X) =
∞∑
x=0

x2
λx

x!
e−λ − λ2 =

∞∑
x=2

x(x− 1)
λx

x!
e−λ +

∞∑
x=0

x
λx

x!
e−λ − λ2

= λ2
∞∑
x=2

λx−2

(x− 2)!
e−λ + λ − λ2 = λ2 + λ − λ2 = λ.

Proposition. Let λ be the rate of event occurrence per unit of time. If we look at
time length of t units, there will be, on average, λ t occurrences. So, the number of
occurrences per t time units is Poi(λt).

Example. Suppose the number of phone calls X to a customer service department in
a credit card company is a Poisson random variable with a rate of 3 per minute. Thus,
X ∼ Poi(λ) where λ = 3/min. The probability that there will be at most 2 phone

calls in the next minute is P(X = 0) +P(X = 1) +P(X = 2) = e−3 + 3e−3 +
32

2
e−3 =

13e−3 = 0.6472. The average number of phone calls per minute is EX = λ = 3 and
the standard deviation is

√
λ =
√

3 = 1.7321. Further, the average number of phone
calls per 5 minutes, say, is 5λ = (5)(3) = 15. The probability that there will be, say,

10 phone calls in the next 5 minutes is
(15)10

10!
e−15 = 0.0486.

Exercise 13.1. Suppose that the number of typos on a single page of a textbook X
has a Poisson distribution with parameter λ = 0.5. In a textbook with 300 pages,
around how many pages have at least two errors? Answer: P(X ≥ 2) = 1 − P(X =
0) − P(X = 1) = 1 − e−0.5 − 0.5 e−0.5 = 1 − 1.5 e−0.5 = 0.0902. Thus, in a 300-page
textbook, there are roughly (300)(0.09) = 27 pages with at least two typos.

Exercise 13.2. On average, a certain intersection results in three tra�c accidents
every month.

(a) What is the probability that for any given month, exactly �ve accidents occur at

this intersection? Answer: X ∼ Poi(3), P(X = 5) =
35

5!
e−3 = 0.1008.

(b) What is the probability that next month there will be fewer than three accidents
at this intersection? Answer: P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2) =

e−3 + 3 e−3 +
32

2
e−3 = 8.5 e−3 = 0.4232.

Exercise 13.3. A certain area of the eastern US is, on average, hit by six hurricanes
a year. Find the probability that for a given year this area will be hit by anywhere
from six to eight hurricanes. Answer: X ∼ Poi(6), P(6 ≤ X ≤ 8) = P(X =

6) + P(X = 7) + P(X = 8) = e−6
(66

6!
+

67

7!
+

68

8!

)
= 0.4016.

Exercise 13.4. Assume that the average number of cars abandoned weekly on a
certain highway is 2.2.
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(a) What is the probability that there will be no abandoned cars in the next week?
Answer: X ∼ Poi(2.2), P(X = 0) = e−2.2 = 0.1108.

(b) What is the standard deviation of the number of abandoned cars in the next
week? Answer:

√
2.2 = 1.4832.

(c) What is the probability that there be no abandoned cars in the next two weeks?
X ∼ Poi((2.2)(2) = 4.4), P(X = 0) = e−4.4 = 0.0123.

Exercise 13.5. People enter a casino at a rate of one per every two minutes. Find
the probability that exactly four people will enter the casino

(a) between 12 PM and 12:04 PM? Answer: A unit time interval is 2 minutes. We
want the information for a 4-minute period, meaning that we are looking at two-unit
time intervals. We have that the number of people who enter the casino within a

4-minute period is X ∼ Poi((1)(2) = 2), P(X = 4) =
24

4!
e−2 = 0.0902.

(b) between 1:00 AM and 1:10 AM? Answer: Let X the number of people who
enter the casino within the 10-minute period, then X ∼ Poi((1)(5) = 5), and

P(X = 4) =
54

4!
e−5 = 0.1755.

Exercise 13.6. The earthquakes in California occur at a rate of two per week. Find
the probability that at least three earthquakes will occur during

(a) the next two weeks? Answer: X ∼ Poi((2)(2) = 4), P(X ≥ 3) = 1 − P(X =

0) − P(X = 1) − P(X = 2) = 1 − e−4 − 4 e−4 − 42

2
e−4 = 1 − 13 e−4 = 0.7619.

(b) the next four weeks? Answer: X ∼ ((2)(4) = 8), P(X ≥ 3) = 1 − e−8 − 8 e−8 −
82

2
e−8 = 1 − 41 e−8 = 0.9862.

14. Chebyshev's Inequality

Theorem. Let X be a random variable with a known mean EX = µ (Greek letter
�mu� � pronounced �myoo�) and a known standard deviation σ (Greek letter �sigma�
� pronounced �sig-ma�). For any real-valued k > 1, the following inequality is always
true:

P(|X − µ| ≥ k σ) ≤ 1

k2
.
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Corollary. The inequality involving the complementary probability is also always
true. It states:

P(|X − µ| < k σ) ≥ 1 − 1

k2
.

Proof of the theorem. We write the second central moment (variance) as a sum
of two terms under two complementary conditions:

σ2 = E(X−µ)2 = E
[
(X−µ)2 , (X−µ)2 ≥ k2σ2

]
+ E

[
(X−µ)2 , (X−µ)2 < k2σ2

]
≥ E

[
(X − µ)2 , (X − µ)2 ≥ k2σ2

]
≥ k2σ2P

(
(X − µ)2 ≥ k2σ2

)
.

From here, P
(
|X − µ| ≥ kσ

)
= P

(
(X − µ)2 ≥ k2σ2

)
≤ σ2

k2σ2
=

1

k2
.

Historical Note. This theorem is called Chebyshev's Inequality because it was
formulated and proved by Pafnuty Lvovich Chebyshev (1821�1894) who was a Rus-
sian mathematician and is considered to be the founding father of Russian school of
Mathematics.

Example. For k = 2, we compute P(|X − µ| < 2σ) ≥ 1− 1

22
=

3

4
= 0.75. For k = 3,

P(|X − µ| < 3σ) ≥ 1 − 1

32
=

8

9
= 0.89. It means that for any distribution, at least

75% of observations lie within 2 standard deviations from the mean (in the interval
(µ − 2σ, µ + 2σ)), and at least 89% of observations lie within 3 standard deviations
from the mean (in the interval (µ− 3σ, µ+ 3σ)). Respectively, at most 25% of obser-
vations lie more than 2 standard deviations away from the mean in both tails, and
at most 11% of observations lie more than 3 standard deviations above or below the
mean.

Example. Suppose a random variable X has mean µ = 3.4 and standard deviation
σ = 1.8. We want to know in what interval around the mean falls at least 60% of

observations. By Chebyshev's inequality, we have that 1 − 1

k2
= 0.6. From here,

k =
√

1/0.4 =
√

2.5 = 1.581139, and thus the interval within which at least 60% of
observations fall is (µ− kσ, µ+ kσ) = (3.4− (1.581139)(1.8), 3.4 + 1.581139)(1.8)) =
(0.554, 6.246).
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Exercise 14.1. Let Y be a random variable with mean 10 and variance 9. Using
Chebyshev's inequality, �nd

(a) a lower bound for P(1 < Y < 19). Answer: σ = 3, P
(
|Y − 10| < (3)(3)

)
≥

1 − 1
32

= 0.89.

(b) the value of α such that P(|Y − 10| ≥ α) ≤ 0.01. Answer: P
(
|Y − 10| ≥ α

σ
σ
)

=

P
(
|Y − 10| ≥ α

3
(3)
)
≤ 1

(α/3)2
= 0.01. From here, α = 30. Thus, at most 1% of

observations lie beyond k = α/3 = 10 standard deviations from the mean.

Exercise 14.2. The daily production of electric motors at a certain factory averages
120 with a standard deviation of 10.

(a) What can be said about the fraction of days on which the production level falls
between 100 and 140? Answer: P(100 < X < 140) = P(|X − 120| < 20) =

P
(
|X − 120| < (2)(10)

)
≥ 1 − 1

22
= 0.75, so in at least 75% of days production

level falls between 100 an 140.

(b) Find the shortest interval certain to contain at least 90% of the daily production

levels. Answer: 1 − 1

k2
= 0.90, so k =

√
10 = 3.162278. Thus, the shortest interval

containing at least 90% of the daily production levels is
(
120− (3.162278)(10), 120 +

(3.162278)(10)
)

= (88.37, 151.62).

Exercise 14.3. Suppose that the distribution of scores on an IQ test has a mean of
100 and a standard deviation of 16. Show that the probability of a student having
an IQ of 148 or above, or at 52 and below is at most 1/9. Answer: P(X ≤ 52 or X ≥
148) = P(|X − 100| ≥ 48) = P

(
|X − 100| ≥ (3)(16)

)
≤ 1

32
=

1

9
.

Exercise 14.4. Use Chebyshev's inequality to get a lower bound for the number of
times a fair coin must be tossed in order for the probability to be at least 0.9 that
the ratio of the observed number of heads to the total number of tosses be between
0.4 and 0.6. Answer: Let X be the number of heads, and n be the number of tosses.
Then X ∼ Bi(n, 0.5). We have µ = EX = (0.5)(n), σ2 = Var(X) = (0.5)2(n), and
σ = (0.5)

√
n. By the Chebyshev's inequality, P(0.4 < X/n < 0.6) = P

(
|X/n− 0.5| <

0.1
)

= P
(
|X−(0.5)(n)| < (0.1)(n)

)
= P

(
|X−µ| < (0.2

√
n) ·(0.5)

√
n
)

= P
(
|X−µ| <

(0.2
√
n)σ
)
≥ 1 − 1

(0.2
√
n)2

= 1− 25

n
= 0.9. Hence, 25/n = 1/10 and so, n = 250.

Exercise 14.5. For a certain section of a pine forest, the number of diseased trees
per acre Y has a Poisson distribution with mean λ = 10. The diseased trees are
sprayed with an insecticide at a cost of $3 per tree, plus a �xed overhead cost for
equipment rental of $50. Let C denote the total spraying cost for a randomly selected
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acre.

(a) Find the expected value and standard deviation for C. Answer: µ = EC =
E(3Y + 50) = (3)EY + 50 = (3)(10) + 50 = 80, V(C) = Var(3Y + 50) = (9)Var(Y ) =
(9)(10) = 90, and σ =

√
90 = 9.4868.

(b) Within what interval would you expect C to lie with probability at least 0.75?
Answer: 1− 1/k2 = 0.75, so k = 2. Therefore, the interval within which at least 75%
of all C's lie is (µ−2σ, µ+2σ) =

(
80− (2)(9.4868), 80+(2)(9.4868)

)
= (61.03, 98.97).

15. MOMENT GENERATING FUNCTION

De�nition. Let X be a random variable. The moment generating function
(mgf) of X is MX(t) = EetX .

Proposition. Let M
(k)
X (t) denote the kth derivative of MX(t). Under this notation,

M
(k)
X (0) = EXk, the kth moment of X.

Proof. M ′
X(t) =

(
EetX

)′
= E

(
etX
)′

= E(XetX). Here we exchanged expectation
and di�erentiation, which needs justi�cation. We will omit a rigorous proof. Just
mention that it is true for all distributions that we consider in this course. Fur-
ther, we can see that M ′

X(0) = E(Xe(0)(X)) = EX, the �rst moment of X. Taking

the second derivative, we get M ′′
X(t) = (M ′

X(t))′ =
(
E(XetX)

)′
= E(X2etX), and so

M ′′
X(0) = E(X2e(0)(X)) = EX2, the second moment of X. Repeating in the same

fashion, it is easy to see that we can derive the k moment as the kth derivative of the
mgf computed at zero.

Note. A moment generating function literary generates moments, hence the name.

Example. LetX ∼ Ber(p). The mgf ofX isMX(t) = EetX = et(1)(p)+et(0)(1−p) =
pet + 1 − p. We use the mgf to compute the mean and variance of X. We write
M ′

X(t) = (pet + 1 − p)′ = pet, so the mean is EX = M ′
X(0) = pe0 = p. The sec-

ond derivative of the mgf is M ′′
X(t) = (pet)′ = pet. Hence, the second moment is

EX2 = M ′′
X(0) = pe0 = p. From here, the variance is Var(X) = EX2 − (EX)2 =

p− p2 = p(1− p).

Example. The moment generation function of a hypergeometric distribution doesn't
have a closed-form solution. Computation of mgf's for other discrete distributions is
left as exercises.

Exercise 15.1. Let X ∼ Bi(n, p).
(a) Show that the mgf of X is MX(t) = (pet + 1 − p)n. Answer: MX(t) = EetX =
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n∑
x=0

etx
(
n

x

)
px(1− p)n−x =

n∑
x=0

(
n

x

)
(pet)x(1− p)n−x =

(
pet + 1− p)n, by Newton's

binomial.

(b) From the mgf, obtain the expected value and variance of X. Answer: M ′
X(t) =[

(pet + 1 − p)n
]′

= n(pet + 1 − p)n−1(pet). So, EX = M ′
X(0) = n(pe0 + 1 −

p)n−1(pe0) = np. Also, M ′′
X(t) =

[
n(pet + 1 − p)n−1(pet)

]′
= n(n − 1)(pet + 1 −

p)n−2(pet)2 + n(pet + 1 − p)n−1)pet. Hence, the second moment is EX2 = M ′′
X(0) =

n(n− 1)(pe0 + 1− p)n−2(pe0)2 + n(pe0 + 1− p)n−1pe0 = n(n− 1)p2 + np, from where
Var(X) = EX2 − (EX)2 = n2p2 − np2 + np− (np)2 = np(1− p).

Exercise 15.2. Let X ∼ Geo(p).

(a) Show that the mgf of X isMX(t) =
pet

1− (1− p)et
. Answer: MX(t) =

∞∑
x=1

etxp(1−

p)x−1 =
p

1− p

∞∑
x=1

((1− p)et)x =
p

1− p
· (1− p)et

1− (1− p)et
=

pet

1− (1− p)et
.

(b) Use the mgf to derive the expressions for the mean and variance of X. Answer:

M ′
X(t) =

(1− (1− p)et)(pet) − (pet)(−(1− p)et)
(1− (1− p)et)2

=
pet

(1− (1− p)et)2
,

M ′′
X(t) =

( pet

(1− (1− p)et)2
)′

=
(1− (1− p)et)2(pet) − (pet)(2)(1− (1− p)et)(−(1− p)et)

(1− (1− p)et)4

=
pet − 2p(1− p)e2t + p(1− p)2 e3t + 2p(1− p)e2t − 2p(1− p)2e3t

(1− (1− p)et)4
=

pet − p(1− p)2 e3t

(1− (1− p)et)4
.

Consequently,

EX = M ′
X(0) =

pe0

(1− (1− p)e0)2
=

p

p2
=

1

p
,

EX2 = M ′′
X(0) =

pe0 − p(1− p)2 e(3)(0)

(1− (1− p)e0)4
=

p − p(1− p)2

p4
=

p − p + 2p2,− p3

p4
=

2− p
p2

,

and

Var(X) = EX2 −
(
EX
)2

=
2− p
p2

− 1

p2
=

1− p
p2

.

Exercise 15.3. Let ∼ NB(r, p).

(a) Prove that the moment generating function of X is MX(t) =
( pet

1− (1− p)et
)r
.

Answer:
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MX(t) =
∞∑
x=r

(
x− 1

r − 1

)
etx pr(1− p)x−r =

Let x = y + r, so y is the number of failures until the rth success. We write

MX(t) =
∞∑
y=0

(
y + r − 1

r − 1

)
et(y+r)pr(1− p)y = pr etr

∞∑
y=0

(
y + r − 1

r − 1

)
((1− p)et)y

= pr etr
−r∑
y=0

(−1)y
(
−r
y

)
((1− p)et)y = pr etr (1− (1− p)et)−r =

( p et

1− (1− p)et
)r
.

(b) Obtain the mean and variance of X using the moment generating function. An-
swer:

M ′
X(t) = r

( p et

1− (1− p)et
)r−1 ((1− (1− p)et)(p et) − (p et) (−(1− p)et)

(1− (1− p)et)2
)

= r
( p et

1− (1− p)et
)r−1 ( p et

(1− (1− p)et)2
)

= r
( p et

1− (1− p)et
)r( 1

1− (1− p)et
)
,

EX = M ′
X(0) = r

( p e0

1− (1− p)e0
)r( 1

1− (1− p)e0
)

=
r

p
.

Further,

M ′′
X(t) =

[
r
( p et

1− (1− p)et
)r( 1

1− (1− p)et
)]′

= r2
( p et

1− (1− p)et
)r ( 1

(1− (1− p)et)2
)

+ r
( p et

1− (1− p)et
)r( −(1− p)et

(1− (1− p)et)2
)

= r
( p et

1− (1− p)et
)r [ r − (1− p)et

(1− (1− p)et)2
]
.

EX2 = M ′′
X(0) = r

( p e0

1− (1− p)e0
)r [ r − (1− p)e0

(1− (1− p)e0)2
]

= r
r − 1 + p

p2
.

The variance is computed as

Var(X) = r
r − 1 + p

p2
− r2

p2
=

r2 + r(1− p)− r2

p2
=

r(1− p)
p2

.

Exercise 15.4. Let ∼ Poi(λ).

(a) Show that the mgf ofX isMX(t) = exp(λ(et−1)).Answer: MX(t) =
∞∑
x=0

etx
λx

x!
e−λ =

e−λ
∞∑
x=0

(
λ et
)x

x!
= e−λ eλ e

t

= exp(λ(et − 1)).
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(b) From MX(t) derive the mean and variance of X. Answer:

M ′
X(t) = λ et exp(λ(et − 1)), M ′

X(0) = EX = λ e0 exp(λ(e0 − 1)) = λ,

M ′′
X(t) =

(
λ et exp(λ(et − 1))

)′
= λ et exp(λ(et − 1)) + (λ et)2 exp(λ(et − 1)),

M ′′
X(0) = EX2 = λ e0 exp(λ(e0 − 1)) + (λ e0)2 exp(λ(e0 − 1)) = λ + λ2,

and

Var(X) = EX2 − (EX)2 = λ + λ2 − λ2 = λ.

16. CONTINUOUS RANDOM VARIABLE

De�nition. A continuous random variable assumes values in an interval (it could
be an open interval, closed interval, a collection of disjoint intervals, a ray, or an entire
real line).

Note. Recall that there are uncountable many points in an interval (called contin-
uum), so we cannot assign a non-zero probability to every point in an interval. A
proper way to assign probabilities is through a density function.

De�nition. A probability density function (pdf) is any function f(x) with two

properties: f(x) ≥ 0 for any x, and

∫ ∞
−∞

f(x) dx = 1. That is, a pdf is always

non-zero and the area under the density curve is equal to 1.

De�nition. Let X be a continuous random variable with the pdf fX(x). The prob-
ability that a ≤ X ≤ b for some real-valued a and b is computed as the area under

the density curve above the interval [a, b]. That is, P(a ≤ X ≤ b) =

∫ b

a

fX(x) dx.

Note that since the entire area under the curve is equal to one, the probability is
well-de�ned. It will always be a number between 0 and 1. See the illustration below.
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To avoid computing an integral every time we need to �nd a probability, we can de�ne
a function that gives us accumulated probability up to a certain point.

De�nition. A cumulative distribution function (cdf) of a continuous random

variable X with the pdf fX(x) is FX(x) = P(X ≤ x) =

∫ x

−∞
fX(u) du.

Note. We can compute the probability that a ≤ X ≤ b as the di�erence of cdfs in
the upper point and that in the lower point, That is,

P(a ≤ X ≤ b) =

∫ b

a

fX(x)dx =

∫ b

−∞
fX(x)dx −

∫ a

−∞
fX(x)dx = FX(b) − FX(a).

De�nition. The expected value of a continuous random variableX with pdf fX(x)
is computed as EX =

∫∞
−∞ x fX(x) dx.

Example. Let X have a pdf fX(x) = 2x, 0 < x < 1. Note that this density inte-

grates to 1. Indeed,
∫ 1

0
2x dx = x2|10 = 1. The cdf is

FX(x) =

∫ x

−∞
2u du =


0, if x ≤ 0,

x2, if 0 ≤ x ≤ 1,

1, if x ≥ 1.

Next, we plot both functions, one underneath the other.
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Note that the pdf can have discontinuities whereas the cdf is necessarily a continuous
function since it is an integral.

Now we compute the mean, second moment, variance, and standard deviation of X.
We write

EX =

∫ 1

0

x(2x) dx =
2

3
, EX2 =

∫ 1

0

x2(2x) dx =
1

2
,

Var(X) =
1

2
− 22

32
=

1

18
, and σ =

√
1

18
= 0.2357.

Remark. For a continuous random variable X ∼ fX(x), the probability that X
is exactly equal to some number is always equal to zero, that is, P(X = a) =∫ a

a

fX(x) dx = 0 for any real-valued a. It means, in particular, that when we

calculate the probability of X falling within an interval between a and b, it makes
no di�erence whether the end-points of the interval are included or excluded. The
probability will still be the same and is computed as follows.

P(a < X < b) = P(a ≤ X < b) = P(a < X ≤ b) = P(a ≤ X ≤ b) =

∫ b

a

fX(x) dx.
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Remark. If the cdf F (x) is given, we can �nd the pdf f(x) by di�erentiation, that
is, f(x) = F ′(x).

Example. Let X be a continuous random variable with the cumulative distribution
function

F (x) =


0, x ≤ 0,
√
x, 0 ≤ x ≤ 1,

1, x ≥ 1.

To �nd the density function, we compute f(x) = F ′(x) =
1

2
√
x
, 0 ≤ x ≤ 1.

Exercise 16.1 g(x) = ce−2x, x > 0. Find c that makes g(x) a pdf. Answer:∫ ∞
0

g(x) dx = c

∫ ∞
0

e−2x dx = c
(
− 1

2
e−2x

)∣∣∣∞
0

=
c

2
= 1, so, c = 2.

Exercise 16.2. The error in the reaction temperature in an experiment is a contin-
uous random variable X having density fX(x) = x2/3, −1 < x < 2.

(a) Show that fX(x) is a true probability density function. Answer: fX(x) is every-
where non-negative, and integrates to one:∫ 2

−1

x2

3
dx =

(x3
9

)∣∣∣2
−1

=
23 − (−1)3

9
=

8 + 1

9
= 1.

(b) Find the probability that the error is between 0 and 1. Answer:

P(0 < X < 1) =

∫ 1

0

x2

3
dx =

1

9
.

(c) Find the average value of the error. Answer:

EX =

∫ 2

−1
x · x

2

3
dx =

∫ 2

−1

x3

3
dx =

(x4
12

)∣∣∣2
−1

=
24 − (−1)4

12
=

16− 1

12
=

15

12
= 1.25.

(d) Find the variance and standard deviation of the error. Answer:

EX2 =

∫ 2

−1
x2 · x

2

3
dx =

∫ 2

−1

x4

3
dx =

(x5
15

)∣∣∣2
−1

=
25 − (−1)5

15
=

32 + 1

15
=

33

15
= 2.2,

Var(X) = EX2 −
(
EX
)2

= 2.2− (1.25)2 = 0.6375, and σ =
√

0.6375 = 0.7984.

(e) Find the probability that the error is equal to zero. Answer:

P(X = 0) =

∫ 0

0

x2

3
dx = 0.

61



Exercise 16.3. The probability density function of a random variable T is

fT (t) =

{
1/2, if −1 < t < 1,

0, otherwise.

Compute the cumulative distribution function of T and make graphs of both func-
tions. Answer: The cdf of T is

FT (t) =

∫ t

−∞
fT (x) dx =


∫ t

−∞
0 dx = 0, if t ≤ −1,∫ −1

−∞ 0 dx +
∫ t
−1

1
2
dx = t+1

2
, if −1 < t < 1,∫ t

−∞ 0 dx +
∫ 1

−1
1
2
dx +

∫ t
1

0 dx = 1, if t ≥ 1.

Exercise 16.4. The diameter of a ball bearing produced by a machine is a contin-
uous random variable Y with the cdf

F (y) =


0, y ≤ 0,

y3/2, 0 ≤ y ≤ 1,

1, y ≥ 1.

(a) Find P(0.2 < Y < 0.6). Answer: P(0.2 < Y < 0.6) = F (0.6) − F (0.2) =
(0.6)3/2 − (0.2)3/2 = 0.3753.
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(b) Find P(Y > 0.2). Answer: P(Y > 0.2) = 1 − P(X ≤ 0.2) = 1 − F (0.2) =
1 − (0.2)3/2 = 0.9106.

(c) Find P(Y = 0.7). Answer: P(Y = 0.7) = 0 because Y is a continuous random
variable.

(d) Find P(Y = 2). Answer: P(Y = 2) = 0 because Y is a continuous random
variable.

(e) Compute the pdf of Y and graph it. Answer:

f(y) = F ′(y) =
3

2

√
y, 0 ≤ y ≤ 1.

Exercise 16.5. Dealer's pro�t on a new car, in units of $5,000, is a random variable
W having density f(w) = 2(1− w), 0 < w < 1. Find the average pro�t per car and
the variance of the pro�t. Answer:

EW =

∫ 1

0

w · 2(1− w) dw =

∫ 1

0

2w dw −
∫ 1

0

2w2 dw = 1 − 2

3
=

1

3
.

Thus, the average pro�t per car is 5, 000EW = $5, 000/3 = $1, 6666.67.

Var(W ) =

∫ 1

0

w2 · 2(1− w) dw −
(1

3

)2
=

2

3
− 1

2
− 1

9
=

12− 9− 2

18
=

1

18
.

The variance of the pro�t per car is ($5, 000)2/18 = $21, 3888, 889.89.

Exercise 16.6. The total number of hours Y , measured in units of 100 hours, that
a family runs a vacuum cleaner over a period of one year has a probability density
function
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f(y) =


0, if y ≤ 0,

y, if 0 < y < 1,

2− y, if 1 ≤ y < 2,

0, if y ≥ 2.

(a) Find the cdf of Y and plot both pdf and cdf. Answer: The cdf is

F (y) =



0, if y ≤ 0,∫ y

0

u du =
y2

2
, if 0 < y < 1,

1

2
+

∫ y

1

(2− u) du =
1

2
+ 2(y − 1) − 1

2
(y2 − 1)

= − 1

2
(y − 2)2 + 1, if 1 ≤ y < 2,

1, if y ≥ 2.
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(b) Find the expected value of Y . Answer:

EY =

∫ 1

0

y2 dy +

∫ 2

1

y(2− y) dy =
1

3
− 3 − 7

3
= 1.

(c) Find the probability that a family runs a vacuum clean between 50 and 150 hours
per year.

P
(1

2
≤ Y ≤ 3

2

)
=

∫ 3/2

1/2

f(y) dy =

∫ 1

1/2

y dy +

∫ 3/2

1

(2− y) dy

=
y2

2

∣∣∣1
1/2

+
(
2y − y2

2

)∣∣∣3/2
1

=
3

8
+

3

8
=

3

4
.

We can also compute the probability as the area under the density curve. In the
�gure below, it is the shaded area, which can be computed as one minus the sum of
the areas of the two triangles, thus, it is

P
(1

2
≤ Y ≤ 3

2

)
= 1− (2)

1

8
= 1− 1

4
=

3

4
.

Also, since we already obtained the expression for the cdf, we can use it to compute

the probability, P
(1

2
≤ Y ≤ 3

2

)
= F

(3

2

)
− F

(1

2

)
= − 1

2

(3

2
−2
)2

+ 1 − 1

2
·
(1

2

)2
=

−1

8
+ 1 − 1

8
=

3

4
.
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17. UNIFORM DISTRIBUTION

De�nition. A continuous random variable X has a uniform distribution on interval

[a, b] if its pdf is fX(x) =
1

b− a
, a ≤ x ≤ b. It is written as X ∼ Unif(a, b). The cdf

is found as

FX(x) =

∫ x

−∞

1

b− a
du =


0, if x ≤ a,∫ x
a

1
b−a du =

u

b− a

∣∣∣x
a

=
x− a
b− a

, if a ≤ x ≤ b,

1, if x ≥ a.

Proposition. Let X ∼ Unif(a, b). The mean of X is the middle of the interval,

that is, EX =
a+ b

2
. The variance of X is the squared length of the interval divided

by 12, that is, Var(X) =
(b− a)2

12
.
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Proof. EX =

∫ b

a

x

b− a
dx =

x2

2(b− a)

∣∣∣b
a

=
b2 − a2

2(b− a)
=

a+ b

2
, and

Var(X) =

∫ b

a

x2

b− a
dx −

(a+ b

2

)2
=

x3

3(b− a)

∣∣∣b
a
−
(a+ b

2

)2
=

b3 − a3

3(b− a)
− (a+ b)2

4
=

a2 + ab+ b2

3
− (a+ b)2

4

=
4(a2 + ab+ b2)− 3(a2 + 2ab+ b2)

12
=

a2 − 2ab+ b2

12
=

(b− a)2

12
.

Example. A standard uniform random variable U has a uniform distribution on
the unit interval [0, 1]. For this distribution, a = 0 and b = 1. The pdf is f(u) = 1,
if 0 ≤ u ≤ 1, and 0, otherwise. The cdf is

F (u) =


0, if u ≤ 0,

u, if 0 ≤ u ≤ 1,

1, if u ≥ 1.

The expected value of U is 1/2 and the variance is 1/12. The pdf and cdf are plotted
below.

Note that the notation U is pretty much reserved for a standard uniform random vari-
able. If a random variable is called U , the chances are good that it has a Unif(0, 1)
distribution.
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Remark. The mgf of X ∼ Unif(a, b) is MX(t) =

∫ b

a

etx
1

b− a
dx =

ebt − eat

t(b− a)
.

The easiest way to derive the mean and variance of X based on the mgf is to apply
Taylor's expansion and obtain

MX(t) =
ebt − eat

t(b− a)
=

(1 + b t + b2 t2

2
+ b3 t3

6
) − (1 + a t + a2 t2

2
+ a3 t3

6
)

t(b− a)
+ higher order terms

= 1 +
a+ b

2
t +

a2 + a b + b2

6
t2 + higher order terms.

From here, the �rst moment of X is EX = M ′
X(0) =

a+ b

2
, the second moment is

EX2 = M ′′
X(0) =

a2 + a b + b2

3
, and the variance is Var(X) =

a2 + ab + b2

3
−

(a+ b)2

4
=

(b− a)2

12
.

Exercise 17.1. A random variable X ∼ Unif(−2, 5).

(a) Write down and plot the pdf and cdf of X. Answer: We are given that a = −2

and b = 5. The pdf is fX(x) =
1

7
, if −2 ≤ x ≤ 5. The cdf is

FX(x) =


0, if x ≤ −2,
x+ 2

7
, if −2 ≤ x ≤ 5,

1, if x ≥ 5.
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(b) Find the mean, variance, and standard deviation of X. Answer: The mean is
EX = −2+5

2
= 3

2
= 1.5, the variance is Var(X) = 72

12
= 4.0833, and the standard

deviation is
√

4.0833 = 2.0207.

(c) Above what value do the top 10% of all observations lie? Answer: We need to

�nd x0 so that P(X > x0) = 0.1 or FX(x0) = 0.9. We solve
x0 + 2

7
= 0.9 to get

x0 = 4.3.

Exercise 17.2. A 3-foot long stick is cut randomly into two pieces. Let L be the
length of the left piece.

(a) Find the pdf and cdf of L. Answer: We have that L ∼ Unif(0, 3). For this

distribution, a = 0 and b = 3. The pdf is fL(x) =
1

3
, 0 ≤ x ≤ 3. The cdf is

FL(x) =


0, if x ≤ 0,
x

3
, if 0 ≤ x ≤ 3,

1, if x ≥ 3.

(b) Find the probability that L is less than two feet long. Do it in three ways: inte-
grating the density, �nding the area under the curve geometrically, and using the cdf.
Answer: We compute P(0 ≤ L ≤ 2) =

∫ 2

0
1
3
du = 2

3
. Alternatively, the probability

is equal to the area under the density curve above the interval [0, 2] (see the �gure
below). The area of the shaded rectangle is P(0 ≤ L ≤ 2) = (2)(1/3) = 2/3.

The third method of �nding the probability is to employ the cdf. We can write
P(0 ≤ L ≤ 2) = FL(2) − FL(0) = 2

3
− 0 = 2

3
.

Exercise 17.3. Delta Air Lines quotes a �ight time of 2 hours and 5 minutes for
its �ights from Cincinnati to Tampa. Suppose we believe that actual �ight times are
uniformly distributed between 2 hours and 2 hours and 20 minutes.

(a) What is the probability that the �ight will be more than 10 minutes late? Answer:
Let X be the duration of a �ight in minutes. Then X ∼ Unif(120, 140). If the �ight
is more than 10 minutes late, its duration is longer than 2 hours and 15 minutes or
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135 minutes. We compute P(X > 135) =
140− 135

140− 120
=

5

20
=

1

4
= 0.25.

(b) Given that the �ight is late, �nd the probability that it is late by more than 10
minutes. Answer:

P(X > 135 |X > 125) =
P(X > 135)

P(X > 125)
=

(140− 135)/(140− 120)

(140− 125)/(140− 120)
=

5

15
=

1

3
.

(c) What is the average �ight duration? By how many minutes, on average, does a

�ight arrive late? Answer: EX =
120 + 140

2
= 130, which is above 125 by 5 minutes.

(d) What is the standard deviation of �ight duration? Answer: σ =

√
(140− 120)2

12
=

10√
3

= 5.8 minutes.

Exercise 17.4. Amanufacturer of calculators estimates that the lifetime of a calcula-
tor is uniformly distributed between 0 and 50 months. If the manufacturer guarantees
replacement of calculators that break in the �rst two months of their lives, about what
percent of all calculators are replaced? Answer: Let X be the lifetime of a calculator.
We are given that X ∼ Unif(0, 50), and we need to �nd the probability that X is less

than 2 months. We compute P(X < 2) =
2

50
= 0.04 or 4% of calculators are replaced.

Exercise 17.5. A person comes to a bus stop at 7 am. The bus arrives sometime
between 7:05 am and 7:20 am.

(a) What is the average waiting time? Answer: Let W be the waiting time. We have

W ∼ Unif(5, 20). The average of W is EW =
5 + 20

2
= 12.5 minutes.

(b) What is the probability that the waiting time is at most 7 minutes? Answer:

P(W ≤ 7) =
7− 5

20− 5
=

2

15
= 0.1333.

(c) Given that the bus did not arrive for 10 minutes, �nd the probability that the
person has to wait for not more than 5 additional minutes. Answer:

P(W < 15 |W > 10) =
P(10 < W < 15)

P(W > 10)
=

(15− 10)/(20− 5)

(20− 10)/(20− 5)
=

5

10
= 0.5.

(d) Find the probability that the person waits exactly 5 minutes. Answer: P(W =
5) = 0, since the probability of an exact equality to a value is zero for continuous
random variables.

(e) Eighty percent of the time, the waiting time falls below what value? Answer: Let

x0 denote the desired value. We have P(X < x0) = 0.8. Thus,
x0 − 5

20− 5
= 0.8, from
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where x0 = (0.8)(15) + 5 = 17.

Exercise 17.6. A balloon has radius R ∼ Uniform(12”, 15”). Find the mean volume

of the balloon. Answer: The volume is V =
4

3
π R3. The expected value of the volume

is EV =
4

3
π ER3 =

4

3
π

∫ 15

12

r3
1

15− 12
dr =

4

9
π
r4

4

∣∣∣r=15

r=12
=

π

9
((15)4 − (12)4) =

10, 433.22 (inches cubed).

18. EXPONENTIAL DISTRIBUTION

De�nition. A continuous random variable X has an exponential distribution with
parameter β (Greek letter �beta� � pronounced �bey-ta�), written X ∼ Exp(β) if

the pdf of X is fX(x) =
1

β
e−x/β, x > 0, β > 0. The cdf of X is FX(x) =∫ x

0

1

β
e−u/β du =

(
− e−u/β

)∣∣∣u=x
u=0

= 1 − e−x/β, x > 0.

Proposition. Let X ∼ Exp(β). Then EX = β and Var(X) = β2.

Proof. The mean ofX is EX =

∫ ∞
0

x

β
e−x/β dx =

(
− x

β
β e−x/β

)∣∣∣x=∞
x=0

+

∫ ∞
0

e−x/β dx =(
− β e−x/β

)∣∣∣∞
x=0

= β. The variance of X is

Var(X) =

∫ ∞
0

x2

β
e−x/β dx − β2 =

(
− x2

β
β e−x/β

)∣∣∣∞
x=0

+

∫ ∞
0

2x e−x/β dx − β2

= 2

∫ ∞
0

x e−x/β dx − β2 =
(
− 2xβ e−x/β

)∣∣∣x=∞
x=0

+ 2β

∫ ∞
0

e−x/β dx − β2

= 2β
(
− β e−x/β

)∣∣∣x=∞
x=0

− β2 = 2β2 − β2 = β2.

Proposition. Let X ∼ Exp(β). The mgf of X is MX(t) = (1− β t)−1.

Proof. The moment generating function is computed as

MX(t) =

∫ ∞
0

et x
1

β
e−x/β dx =

1

β

∫ ∞
0

e−x
(

1
β
−t
)
dx

=
(
− 1

β
(

1
β
− t
) e−x( 1

β
−t
))∣∣∣x=∞

x=0
=

1

1− β t
.

Remark. From the mgf, we can derive the mean and variance of X. We compute

M ′
X(t) =

( 1

1− β t

)′
=

β

(1− β t)2
, EX = M ′

X(0) =
β

(1− (β)(0))2
= β.

71



Further, M ′′
X(t) =

2β2

(1− β t)3
, and so, EX2 = M ′′

X(0) = 2β2

1−(β)(0))3 = 2β2. The vari-

ance of X is found as Var(X) = 2β2 − β2 = β2.

Example. Suppose the time T until remission of disease has an exponential dis-
tribution with a mean of β = 6 weeks. Then T ∼ Exp(6) with the pdf fT (t) =
1

6
e−t/6, t > 0, and the cdf FT (t) = 1 − e−t/6, t > 0. The average time remission

is β = 6 weeks, variance is β2 = 36 weeks squared, and the standard deviation is√
β2 = β = 6 weeks. The probability that the remission occurs within the �rst,

say, 5 weeks is P(T ≤ 5) = FT (5) = 1 − e−5/6 = 0.5654. The probability of not
experiencing remission for 9 weeks is P(T > 9) = 1 − FT (9) = e−9/6 = 0.2231.

Proposition. For X ∼ Exp(β), the memoryless property holds. It states that
given that the random variable X is larger than some value, say x, the probability
that X is larger than x+ y, for some real-valued y, depends only on y and not x.

Proof. P(X > x+ y |X > x) =
P(X > x+ y)

P(X > x)
=

e−(x+y)/β

e−x/β
= e−y/β.

Example. The memoryless property means that, for example, if the waiting time
has been x minutes already, the probability that the person has to wait for y addi-
tional minutes depends only on y. It doesn't matter that the person has been already
waiting for x minutes. The process renews itself every minute, and the remaining
waiting time does not depend on the past. The waiting time is memoryless.

Remark. The exponential distribution is the only continuous distribution with the
memoryless property. The proof of this fact is beyond the scope of this course. As for
discrete distributions, a geometric distribution is the only discrete distribution that
possesses the memoryless property. Again, we will not prove the uniqueness here,
only the property itself. Let X ∼ Geom(p). We write

P(X > n+m |X > n) =
P(X > m+ n)

P(X > n)
=

(1− p)m+n

(1− p)n
= (1− p)m.

Remark. Sometimes the pdf of an exponential distribution is written as fX(x) =
β e−β x, x > 0, β > 0. In this case EX = 1/β and Var(X) = 1/β2. To distinguish
between the two formulations, it is customary to specify the mean. Typically, the
statement would be �X has an exponential distribution with mean so and so�. Then
in the pdf, we divide by the mean.

Exercise 18.1. The phone calls arriving at a switchboard follow a Poisson distri-
bution with an average of 5 calls per minute. What is the probability that up to 30
seconds will elapse until a call has come? Answer: Let X be the waiting time. The
average length of wait is 1/5 of a minute or 12 seconds. Then X ∼ Exp(mean = 12).
We compute P(X < 30) = 1− e−30/12 = 0.9179.
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Exercise 18.2. Treadmills in a gym are occupied for an exponential amount of time
with a mean of 17.4 minutes. If a person sees that his favorite treadmill is occupied,
what is the probability that he has to wait for at most 10 more minutes to use it? An-
swer: Let W be the waiting time for this individual. By the memoryless property of
an exponential distribution, W ∼ Exp(mean = 17.4). We compute P(W ≤ 10) = 1-
e−10/17.4 = 0.4371.

Exercise 18.3. Lifetime T of a component is exponential with mean 5 years. If 6
of these components are installed in di�erent systems, what is the probability that
only one of them is still functioning at the end of 8 years? Answer: The proba-
bility that a component is functioning is P(T > 8) = e−8/5 = 0.2019. Let N be
the number of functioning components. Then N ∼ Bi(6, 0.2019), and P(N = 1) =(
6
1

)
(0.2019)(1− 0.2019)5 = 0.3923.

Exercise 18.4. The service time T at a bank is an exponentially distributed random
variable having a mean of 2 minutes. How many people, on average, should pass until
the �rst person who is served for more than 5 minutes? Answer: p = P(T > 5) =
e−5/2 = 0.0821. Let X be the number of people until the �rst success. Then X has a

geometric distribution with mean EX =
1

p
− 1 =

1

0.0821
− 1 = 11.18.

19. NORMAL DISTRIBUTION

De�nition. A continuous random variable X has a normal distribution with mean

µ and variance σ2 if its pdf is fX(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 ,−∞ < x <∞, −∞ < µ <∞,

and σ > 0. It is written X ∼ N(µ, σ2). The cdf of X doesn't have a closed form.

Proposition. The normal density curve is symmetric around the mean µ and is bell-
shaped with the in�ection points (also called change-of-curvature points) at
µ− σ and µ+ σ (see the picture).
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Proof. To �nd where the maximum of fX(x) occurs, we take the �rst derivative and

set is equal to zero. We obtain f ′X(x) =
1√

2πσ2

(
− x− µ

σ2

)
e−

(x−µ)2

2σ2 = 0, hence at

x = µ, fX(x) reaches its extremum. To show that it is the maximum, we need to
show that the second derivative at this point is negative. We compute

f ′′X(x) =
1√

2πσ2

[(
− 1

σ2

)
+
(x− µ

σ2

)2]
e−

(x−µ)2

2σ2 .

Thus, f ′′X(µ) =
1√

2πσ2

[(
− 1

σ2

)
+
(µ− µ

σ2

)2]
e−

(µ−µ)2

2σ2 < 0, and so, the maxi-

mum is reached at x = µ. To �nd the in�ection points, we set the second derivative

equal to zero. We have
1√

2πσ2

[(
− 1

σ2

)
+
(x− µ

σ2

)2]
e−

(x−µ)2

2σ2 = 0. From here,(
− 1

σ2

)
+
(x− µ

σ2

)2
= 0, or (x−µ)2

σ2 = 1, or x = µ± σ.

Historical Note. A normal distribution was discovered in 1809 by Carl Friedrich
Gauss (1777-1855) who was a German mathematician. The normal distribution is
sometimes called the Gaussian distribution.

De�nition. A normally distributed random variable with mean µ = 0 and variance
σ2 = 1 is said to have a standard normal distribution. It is traditionally denoted by

Z. Its density function is fZ(z) =
1√
2π

e−
z2

2 , −∞ < z < ∞. The cdf of a standard

normal distribution is denoted by Φ(x) (capital Greek letter �phi�- pronounced �fee�)
and its values are tabulated.

Proposition. Suppose X ∼ N(µ, σ2). Then Z =
X − µ
σ

∼ N(0, 1).

Proof. We start with the cumulative distribution functions and �nd that

FZ(z) = P(Z ≤ z) = P
(X − µ

σ
≤ z

)
= P

(
X ≤ µ+ σ z

)
= FX(µ+ σ z).
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Now we turn to the density functions. We obtain fZ(z) = F ′Z(z) = F ′X(µ + σ z) =

σ fX(µ+ σ z) =
σ√

2πσ2
e−

(µ+σ z−µ)2

2σ2 =
1√
2π

e−
z2

2 = Φ(z).

Note. When we subtract the mean and divide by standard deviation, we stan-
dardize the random variable. We can write X = µ + σ Z, so Z tells how many
standard deviations away from the mean an observation lies and sometimes is termed
the z-score.

Example. The life span of a calculator X has a normal distribution with a mean
of 54 months and a standard deviation of 8 months. The company guarantees that
any calculator that starts malfunctioning within 36 months of the purchase will be re-
placed. We want to �nd out what percentage of calculators will be replaced. We write

P(X < 36) = P
(X − µ

σ
<

36− 54

8

)
= P(Z < −2.25) = P(Z > 2.25) = 0.0122,

thus, roughly 1.22% of calculators will be replaced.
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Remark. Even though the direct integration of the normal density is not possible,

it still can be shown that it integrates to one. Let I =

∫ ∞
−∞

1√
2πσ2

e−
(x−µ)2

2σ2 dx. Us-

ing a standardizing substitution z = (x−µ)/σ, we can rewrite I =

∫ ∞
−∞

1√
2π

e−
z2

2 dz.

Next, we will show that I2 = 1. It will follow that I = 1. We have

I2 =
(∫ ∞
−∞

1√
2π

e−
z2

2 dz
)2

=
(∫ ∞
−∞

1√
2π

e−
x2

2 dx
)(∫ ∞

−∞

1√
2π

e−
y2

2 dy
)

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

e−
x2+y2

2 dx dy.

Now, we switch to the polar coordinates x = r cos θ, y = r sin θ, so x2 + y2 = r2, and
dxdy = rdrdθ (θ is a Greek letter �theta� - pronounced �they-ta�). We continue

I2 =
1

2π

∫ 2π

0

∫ ∞
0

e−
r2

2 r dr dθ =

∫ ∞
0

e−
r2

2 d
(r2

2

)
= 1.

Next, we want to show that the parameters µ and σ2 are indeed the respective mean
and variance of a normally distributed random variable.

Proposition. Consider X ∼ N(µ, σ2). The mean of X is EX = µ and the variance
is Var(X) = σ2.

Proof. SinceX = µ+ σ Z, we have that EX = µ+ σ EZ and Var(X) = σ2Var(Z).
Thus, it su�ces to show that EZ = 0 and Var(Z) = 1. We calculate

EZ =
1√
2π

∫ ∞
−∞

z e−
z2

2 dz =
1√
2π

∫ 0

−∞
z e−

z2

2 dz +
1√
2π

∫ ∞
0

z e−
z2

2 dz

= {y = −z} =
1√
2π

∫ ∞
0

z e−
z2

2 dz +
1√
2π

∫ 0

∞
(−y) e−

(−y)2
2 d(−y)

=
1√
2π

∫ ∞
0

z e−
z2

2 dz − 1√
2π

∫ ∞
0

y e−
y2

2 dy = 0,

and

Var(Z) =
1√
2π

∫ ∞
−∞

z2 e−
z2

2 dz =
{
u = z dv = z e−

z2

2 dz = e−
z2

2 d
(z2

2

)
, du = dz,

v = − e−
z2

2

}
=

1√
2π

(
− z e−

z2

2

)∣∣∣z=∞
z=−∞

+
1√
2π

∫ ∞
−∞

e−
z2

2 dz = 1.

Proposition. Consider X ∼ N(µ, σ2). The moment generating function of X is

MX(t) = exp
{
µ t + σ2 t2

2

}
.
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Proof. We derive

MX(t) = E
(
etX
)

=

∫ ∞
−∞

etx
1

2πσ2
e−

(x−µ)2

2σ2 dx

=
1

2πσ2

∫ ∞
−∞

exp
{
−
[
x2 − 2(µ + tσ2)x+ (µ+ σ2 t)2

]
+ µ2 − (µ+ σ2 t)2

2σ2

}
dx

= exp
{
µ t +

σ2 t2

2

} ∫ ∞
−∞

1

2πσ2
exp

{
−
(
x− (µ + σ2 t))2

2σ2

}
dx = exp

{
µ t +

σ2 t2

2

}
.

We can use the mgf to obtain the mean and variance of X. We take the �rst derivative

M ′
X(t) = (µ+ σ2 t) exp

{
µ t +

σ2 t2

2

}
,

and the second derivative

M ′′
X(t) =

(
σ2 + (µ+ σ2 t)2

)
exp

{
µ t +

σ2 t2

2

}
.

From here, EX = M ′
X(0) = µ, EX2 = M ′′

X(0) = σ2 + µ2, and Var(X) = σ2 +
µ2 − µ2 = σ2.

Exercise 19.1. The diameter of a bearing X ∼ N(3, (0.005)2). The buyer sets
speci�cations on the diameter to be 3.0 ± 0.01 cm. On average, what percentage of
bearings will be scrapped? Answer:

P(X < 2.99) + P(X > 3.01) = P
(X − µ

σ
<

2.99− 3

0.005

)
+ P

(X − µ
σ

>
3.01− 3

0.005

)
= P(Z < −2) + P(Z > 2) = (2)P(Z > 2) = (2)(0.0228) = 0.0456.

So, about 4.56% of bearings will be scrapped.

Exercise 19.2. The average score for an exam is 74 and the standard deviation is
7. If 12% of the class are given A's, and the grades are assumed to follow a normal
distribution, what is the lowest possible A and the highest possible B? (Note: lowest
A and highest B are integer numbers). Answer: Let X be a score. It is given that
X ∼ N(74, 72). Denote by a the cut-o� for an A. It must be that P(X > a) = 0.12.

Thus, P
(X − µ

σ
>

a− 74

7

)
= P

(
Z >

a− 74

7

)
= 0.12, therefore,

a− 74

7
= 1.175,

and a = 74 + (7)(1.175) = 82.225. The lowest A is 83 and the highest B is 82.

Exercise 19.3. IQ's of 600 applicants of a college are normally distributed with a
mean of 115 and a standard deviation of 13. If the college required an IQ of at
least 95, how many of these applicants will be rejected on this basis? Answer: Let
X be the IQ of an applicant. We know that X ∼ N(115, (13)2). We calculate

P(X < 95) = P
(
Z <

95− 115

13

)
= P(Z < −1.54) = P(Z > 1.54) = 0.0618.
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Hence, about 6.18% of applicants are rejected.

Exercise 19.4. John took an SAT test, for which the scores are N(490, 75), and got
523. His cousin took an ACT test, which scores are N(18, 6), and got 22. Whose
score is better? Answer: We standardize both observations and compare their z-

scores. John's z-score is
523− 490

75
= 0.44, meaning that he scored 0.44 standard

deviations above the mean. John's cousin's z-score is
22− 18

6
= 0.67, meaning that

John's cousin scored 0.67 standard deviations above the mean. John's cousin scored
higher.

Exercise 19.5. The assembly time T of a toy racing car follows a normal distribu-
tion with a mean of 55 minutes and a standard deviation of 4 minutes. If a worker
starts assembling a toy at 4 pm, what is the probability that she �nishes the job by

5 pm? Answer: P(T < 60) = P
(
Z <

60− 55

4

)
= P(Z < 1.25) = 1 − P(Z >

1.25) = 1 − 0.1056 = 0.8944.

Exercise 19.6. The stock price S for a company is normally distributed with mean
$300, and the standard deviation $82.5.

(a) What is the probability that the company will have a stock price of at least $400?

Answer: P(S > 400) = P
(
Z >

400− 300

82.5

)
= P(Z > 1.21) = 0.1131.

(b) What is the probability that a company will have a stock price no higher than

$150? Answer: P(S ≤ 150) = P
(
Z ≤ 150− 300

82.5

)
= P(Z ≤ −1.82) = P(Z >

1.82) = 0.0344.

(c) What is the probability that a company will have a stock price within one standard
deviation from the mean? Answer: P(−1 < Z < 1) = 1 − (2)P(Z > 1) =
1 − (2)(0.1587) = 0.6826.

20. MULTIVARIATE PROBABILITY DISTRIBUTION

De�nition. Let X and Y be two discrete random variables. A joint (or bivariate)
probability distribution function of X and Y is p(x, y) = P(X = x, Y = y).

Example. Random variables X and Y have the following joint probability distribu-
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tion:
x

p(x, y) 2 4
1 0.10 0.15

y 3 0.20 0.30
5 0.10 0.15

First, we would like to verify that it is indeed a legitimate joint probability distribu-
tion. We check that all the given probabilities add up to 1. Indeed, 0.10+0.15+0.20+
0.30 + 0.10 + 0.15 = 1. Next, we see that, for example, P(X = 2, Y = 3) = 0.2, and
P(X = 4, Y > 1) = 0.30 + 0.15 = 0.45.

De�nition. Let X and Y be two continuous random variables. The joint cumu-
lative probability function (cdf) is F (x, y) = P(X ≤ x, Y ≤ y). The joint

probability density function (pdf) is f(x, y) =
∂2 F (x, y)

∂x∂y
. Given f(x, y), we

can �nd the joint cdf as F (x, y) =

∫ x

−∞

∫ y

−∞
f(u, v) dv du.

Example. Two continuous random variables X and Y have a joint density f(x, y) =
2
3
(x + 2y), 0 ≤ x, y ≤ 1. First o�, we want to check that it is a true joint density

function. We need to verify that it integrates to one. We compute∫ 1

0

∫ 1

0

2

3
(x+ 2y) dy dx =

∫ 1

0

(2xy

3
+

2y2

3

)∣∣∣y=1

y=0
dx =

∫ 1

0

(2x

3
+

2

3

)
dx

=
(x2

3
+

2x

3

)∣∣∣1
0

=
1

3
+

2

3
= 1.

Now we can use this joint density to compute, for example,

P
(
X <

1

2
, Y >

1

3

)
=

∫ 1/2

0

∫ 1

1/3

2

3
(x+ 2y) dy dx =

∫ 1/2

0

(2xy

3
+

2y2

3

)∣∣∣y=1

y=1/3
dy

=

∫ 1/2

0

(2x

3
+

2

3
− 2x

9
− 2

27
) dy =

∫ 1/2

0

(4x

9
+

16

27

)
dx

=
(2x2

9
+

16x

27

)∣∣∣1/2
0

=
1

18
+

8

27
=

19

54
.

Further, we can calculate the joint cdf. It is done as follows.

F (x, y) =

∫ x

0

∫ y

0

2

3
(u+ 2v) dv du =

2

3

∫ x

0

(uv + v2)
∣∣v=y
v=0

du =
2

3

∫ x

0

(uy + y2) du

=
2

3

(u2 y
2

+ u y2
)∣∣∣u=x

u=0
=

2

3

(x2 y
2

+ xy2
)

=
1

3
xy(x+ 2y), 0 ≤ x, y ≤ 1.

Note that F (1, 1) = 1, as it should be.

79



Exercise 20.1. Suppose p(x, y) = cxy, x = 1, 2, 3, y = 1, 2, 3, x ≤ y, is a joint
probability distribution of X and Y .

(a) Determine the normalizing constant c. Answer:
∑

x

∑
y p(x, y) = c

[
(1)(1) +

(1)(2) + (1)(3) + (2)(2) + (2)(3) + (3)(3)
]

= 25c = 1, so c = 1/25 = 0.04.

(b) Compute the probability that X < Y . Answer: P(X < Y ) = (0.04)
[
(1)(2) +

(1)(3) + (2)(3)
]

= (0.04)(11) = 0.44.

Exercise 20.2. The joint probability density of V and W is given by f(v, w) =
2, 0 < v < w < 1.

(a) Check that it is indeed a joint density. Answer: We need to show that f(v, w) inte-
grates to 1. The area of integration is the upper triangle that is shaded in this picture.

We can integrate vertically as follows∫ 1

0

∫ 1

v

2 dw dv =

∫ 1

0

(
2w)

∣∣w=1

w=v
dv =

∫ 1

0

2(1− v) dv =
(
2v − v2

)∣∣1
0

= 1.

Or we can integrate horizontally. We calculate∫ 1

0

∫ w

0

2 dv dw =

∫ 1

0

(
2v)
∣∣v=w
v=0

dv =

∫ 1

0

2w dw = w2
∣∣1
0

= 1.

Alternatively, we can notice that we can �nd the double integral just by multiplying
the constant density by the area of the shaded triangle to get (2)(1/2)=1.
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(b) Compute P(0.25 < V < 0.5, W ≤ 0.75). Answer: We need to integrate the den-
sity over the shaded region (see the picture).

Integration is easier to be done vertically. It requires computing only one integral as
opposed to two integrals if we integrate horizontally. We write

P(0.25 < V < 0.5, W ≤ 0.75) =

∫ 0.5

0.25

∫ 0.75

v

2 dw dv =

∫ 0.5

0.25

2w
∣∣w=0.75

w=v
dv

=

∫ 0.5

0.25

2(0.75− v) dv = (1.5v − v2)
∣∣0.5
0.25

= (1.5)(0.5− 0.25) − ((0.5)2 − (0.25)2) =

= 0.375 − 0.1875 = 0.1875.

(c) Find the joint cdf and use it to compute P(0.25 < V < 0.5, W ≤ 0.75). Answer:

F (v, w) =

∫ v

0

∫ w

x

2 dy dx =

∫ v

0

2(w−x) dx = (2wx−x2)
∣∣x=v
x=0

= v(2w−v), 0 < w < v < 1.

From here,

P(0.25 < V < 0.5, W ≤ 0.75) = F (0.5, 0.75) − F (0.25, 0.75)

= (0.5)((2)(0.75)− 0.5)− (0.25)((2)(0.75)− 0.25) = 0.1875.

Exercise 20.3. The bivariate probability distribution of X and Y is

p(x, y) =
x+ y

30
, x = 0, 1, 2, 3, y = 0, 1, 2.
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(a) Check that the joint probability function sums up to 1. Answer:
3∑

x=0

2∑
y=0

p(x, y) =

1

30

(
(0 + 0) + (0 + 1) + (0 + 2) + (1 + 0) + (1 + 1) + (1 + 2) + (2 + 0) + (2 + 1) + (2 +

2) + (3 + 0) + (3 + 1) + (3 + 2)
)

=
30

30
= 1.

(b) Find P(X ≤ 2, Y = 1). Answer:
1

30
((0 + 1) + (1 + 1) + (2 + 1)) =

6

30
= 0.2.

(c) Find P(X > 2, Y ≤ 1). Answer:
1

30
((3 + 0) + (3 + 1)) =

7

30
= 0.2333.

(d) Find P(X > Y ). Answer:
1

30
((1+0)+(2+0)+(3+0)+(2+1)+(3+1)+(3+2)) =

18

30
= 0.6.

(e) Find P(X = Y ). Answer:
1

30
((0 + 0) + (1 + 1) + (2 + 2))

6

30
= 0.2.

(f) Find P(X + Y = 4). Answer:
1

30
((2 + 2) + (3 + 1)) =

8

30
= 0.2667.

Exercise 20.4. A joint density is f(x, y) = cxy, 0 < y < x < 2.

(a) Find the normalizing constant c that makes the total volume under the density
graph equal to one. Answer: The joint density is de�ned over the shaded region as
shown in the picture below.

We calculate

∫ 2

0

∫ x

0

cxy dy dx = c

∫ 2

0

(xy2
2

)∣∣∣y=x
y=0

dx = c

∫ 2

0

x3

2
dx = c

(x4
8

)∣∣∣2
0

=
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2c = 1, so c =
1

2
.

(b) Find the probability that X + Y < 2. Answer: We need to integrate the density
over the shaded region depicted here:

It is more convenient to integrate horizontally. We write∫ 1

0

∫ 2−y

y

1

2
xy dx dy =

1

2

∫ 1

0

(x2 y
2

)∣∣∣x=2−y

x=y
dy

=
1

4

∫ 1

0

(
y(2− y)2 − y3

)
dy =

∫ 1

0

(y − y2) dy =
1

2
− 1

3
=

1

6
.

21. MARGINAL AND CONDITIONAL DISTRIBUTIONS

De�nition. Let X and Y be two discrete random variables with the joint probability
distribution function p(x, y). The marginal probability distribution functions
are distribution functions of X alone and Y alone, respectively. They are computed
as pX(x) =

∑
y p(x, y) and pY (y) =

∑
x p(x, y).

Note. Marginal distribution functions have this name because, in a two-way table,
they would appear as the marginal totals (written on the margins of the table).

Example. In the two-way table example that we have seen earlier, we compute the
marginal distributions, which are the row and column totals. We get
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x
p(x, y) 2 4 pY (y)

1 0.10 0.15 0.25
y 3 0.20 0.30 0.50

5 0.10 0.15 0.25
pX(x) 0.4 0.6

We can see that pX(2) = 0.4, pX(4) = 0.6, pY (1) = 0.25, pY (3) = 0.5, and pY (5) =
0.25.

De�nition. Let p(x, y) be the joint probability distribution function for two discrete
random variables X and Y . A conditional distribution function of X given Y is

pX|Y (x|y) = P(X = x |Y = y) =
P(X = x, Y = y)

P(Y = y)
=

p(x, y)

pY (y)
.

Example. In the previous example, we can compute

pX|Y (2|1) =
p(2, 1)

pY (1)
=

0.1

0.25
= 0.4, pX|Y (4|1) =

p(4, 1)

pY (1)
=

0.15

0.25
= 0.6,

pX|Y (2|3) =
p(2, 3)

pY (3)
=

0.2

0.5
= 0.4, pX|Y (4|3) =

p(4, 3)

pY (3)
=

0.3

0.5
= 0.6,

and

pX|Y (2|5) =
p(2, 5)

pY (5)
=

0.1

0.25
= 0.4, pX|Y (4|5) =

p(4, 5)

pY (5)
=

0.15

0.25
= 0.6.

Also, pY |X(1|2) =
p(2, 1)

pX(2)
=

0.1

0.4
= 0.25, pY |X(3|2) =

p(2, 3)

pX(2)
=

0.2

0.4
= 0.5,

pY |X(5|2) =
p(2, 5)

pX(2)
=

0.1

0.4
= 0.25, pY |X(1|4) =

p(4, 1)

pX(4)
=

0.15

0.6
= 0.25,

pY |X(3|4) =
p(4, 3)

pX(4)
=

0.3

0.6
= 0.5, and pY |X(5|4) =

p(4, 5)

pX(4)
=

0.15

0.6
= 0.25.

De�nition. Let X and Y be two continuous random variables with the joint density
function f(x, y). The marginal density functions of X and Y are:

fX(x) =

∫ ∞
−∞

f(x, y) dy and fY (y) =

∫ ∞
−∞

f(x, y) dx.

Example. Two continuous random variables X and Y have a joint density f(x, y) =
2
3
(x+ 2y), 0 ≤ x, y ≤ 1. The marginal distribution function of X is

fX(x) =

∫ 1

0

2

3
(x+ 2y) dy =

(2xy

3
+

2 y2

3

)∣∣∣y=1

y=0
=

2

3
(x+ 1), 0 < x < 1.

84



The marginal distribution function of Y is

fY (y) =

∫ 1

0

2

3
(x+ 2y) dx =

(x2
3

+
4xy

3

)∣∣∣x=1

x=0
=

1

3
(4y + 1), 0 < y < 1.

De�nition. Let f(x, y) be the joint probability density function for two continuous
random variables X and Y . A conditional probability density function of X

given Y is fX|Y (x|y) =
f(x, y)

fY (y)
.

Example. In the previous example, we can compute the conditional densities as

fX|Y (x|y) =
f(x, y)

fY (y)
=

2
3
(x+ 2y)

1
3
(4y + 1)

=
2(x+ 2y)

4y + 1
, 0 < x < 1.

and

fY |X(y|x) =
f(x, y)

fX(x)
=

2
3
(x+ 2y)
2
3
(x+ 1)

=
x+ 2y

x+ 1
, 0 < y < 1.

We use the conditional densities to compute, for example,

P(X ≤ 0.5 |Y = 0.25) =

∫ 0.5

0

fX|Y (x|0.25) dx =

∫ 0.5

0

2(x+ 2(0.25))

4(0.25) + 1
dx

=
1

2

∫ 0.5

0

(2x+ 1) dx =
1

2
(x2 + x)

∣∣0.5
0

=
1

2

(1

4
+

1

2

)
=

3

8
,

and

P(Y ≤ 0.5 |X = 0.25) =

∫ 0.5

0

fY |X(y|0.25) dy =

∫ 0.5

0

0.25 + 2y

0.25 + 1
dy

=
1

5

∫ 0.5

0

(8y + 1) dy =
1

5
(4y2 + y)

∣∣0.5
0

=
1

5

(
(4)

1

4
+

1

2

)
=

1

5
+

1

10
=

3

10
.

We conclude this example with the following computation:

P
(
X <

1

2
|Y >

1

3

)
=

∫ 1/2

0

∫ 1

1/3

2(x+ 2y)

4y + 1
dy dx

=

∫ 1/2

0

∫ 1

1/3

(2x− 1

4y + 1
+ 1

)
dy dx =

∫ 1/2

0

(2x− 1

4
ln(4y + 1) + y

)∣∣∣y=1

y=1/3
dx

=

∫ 1/2

0

[2x− 1

4
ln
(15

7

)
+

2

3

]
dx =

[
(x2 − x)

1

4
ln
(15

7

)
+

2x

3

]∣∣∣1/2
0

=
1

3
− 1

16
ln
(15

7

)
= 0.2857.
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Exercise 21.1. The bivariate probability density of X and Y is

f(x, y) =
6− x− y

8
, 0 < x < 2, 2 < y < 4.

(a) Compute the marginal probability densities of X and Y . Answer: We write

fX(x) =

∫ 4

2

6− x− y
8

dy =
6y − xy − y2/2

8

∣∣∣y=4

y=2
=

3− x
4

, 0 < x < 2,

and

fY (y) =

∫ 2

0

6− x− y
8

dx =
6x− x2/2− xy

8

∣∣∣x=2

x=0
=

5− y
4

, 2 < y < 4.

(b) What is P(X ≥ 1 |Y = 3)? Answer: fX|Y (x|y) =
f(x, y)

fY (y)
=

6−x−y
8

5−y
4

, fX|Y (x|3) =

6−x−3
8

5−3
4

=
3− x

4
, P(X ≥ 1 |Y = 3) =

∫ 1

0

3− x
4

dx =
3x− x2/2

4

∣∣∣1
0

=
5

8
.

(c) What is P(2 < Y < 3 |X = 2)? Answer: fY |X(y|x) =
f(x, y)

fX(x)
=

6−x−y
8

3−x
4

, fY |X(y|2) =

6−x−3
8

5−3
4

=
4− y

2
, P(2 < Y < 3 |X = 2) =

∫ 3

2

4− y
2

dy =
1

2
(4y − y2/2)

∣∣∣3
2

=
3

4
.

Exercise 21.2. The bivariate probability distribution of X and Y is

p(x, y) =
x+ y

30
, x = 0, 1, 2, 3, y = 0, 1, 2.

(a) Find the marginal pmf pX(x). Answer:

pX(x) =
x+ 0

30
+
x+ 1

30
+
x+ 2

30
=

x+ 1

10
, x = 0, 1, 2, 3.

(b) Find the marginal pmf pY (y). Answer:

pY (y) =
0 + y

30
+

1 + y

30
+

2 + y

30
+

3 + y

30
=

2y + 3

15
, x = 0, 1, 2, 3.

(c) Compute P(X > 1 |Y = 1). Answer:

pX|Y (x|y) =
p(x, y)

pY (y)
=
(x+ y

30

)
/
(2y + 3

15

)
=

x+ y

4y + 6
, pX|Y (x|1) =

x+ 1

(4)(1) + 6
=

x+ 1

10
,

P(X > 1 |Y = 1) = pX|Y (2|1) + pX|Y (3|1) =
2 + 1

10
+

3 + 1

10
=

7

10
.

(d) Compute P(Y < 2 |X = 2). Answer:

pY |X(y|z) =
p(x, y)

pX(x)
=
(x+ y

30

)
/
(x+ 1

10

)
=

x+ y

3x+ 3
, pY |X(y|2) =

2 + y

(3)(2) + 3
=

2 + y

9
,
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P(Y < 2 |X = 2) = pY |X(0|2) + pY |X(1|2) =
2 + 0

9
+

2 + 1

9
=

5

9
.

Exercise 21.3. The joint probability density of V and W is given by f(v, w) =
2, 0 < v < w < 1.

(a) Find the marginal density of V . Answer: We �x a value of v, and integrate ver-
tically over the shaded region shown in the picture:

fV (v) =

∫ 1

v

2 dw = 2(1− v), 0 < v < 1.

(b) Find the marginal density of W . Answer: For a �xed w, we integrate horizontally
over the shaded region as depicted below:
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fW (w) =

∫ w

0

2 dv = 2w, 0 < w < 1.

(c) Compute P(V < 0.5 |W = 0.75). Answer: we calculate

P(V < 0.5 |W = 0.75) =

∫ 0.5

0

fV |W (v, 0.75) dv =

∫ 0.5

0

f(v, 0.75)

fW (0.75)
dv

=

∫ 0.5

0

2

(2)(0.75)
dv =

(4

3

)(1

2

)
=

2

3
.

22. INDEPENDENCE AND COVARIANCE

De�nition. Two discrete random variables X and Y are independent if and only
if p(x, y) = pX(x) pY (y).

Example. Random variables X and Y have the following joint probability distribu-
tion:

x
p(x, y) 2 4

1 0.10 0.15
y 3 0.20 0.30

5 0.10 0.15

We need to �nd out whether these random variables are independent. First, we com-
pute the marginal distributions:
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x
p(x, y) 2 4 pY (y)

1 0.10 0.35 0.45
y 3 0.20 0.10 0.30

5 0.10 0.15 0.25
pX(x) 0.4 0.6

We can see that pX(2) = 0.4, pX(4) = 0.6, pY (1) = 0.45, pY (3) = 0.30, and pY (5) =
0.25. Now, we multiply the marginal distribution functions and compare the product
with the joint probability function. If they are equal for all cells in the table, then
the random variables are independent. If the equality fails for at least one cell, the
variables are not independent. We write pX(2) pY (1) = (0.45)(0.4) = 0.18 6= 0.10,
hence, the variables are not independent.

Example. It is known that X and Y are independent. Suppose the marginal pmfs
are pX(2) = 0.4, pX(4) = 0.6, pY (1) = 0.45, pY (3) = 0.30, and pY (5) = 0.25. The joint
probability can then be computed as the product of the marginal totals as in the table.

x
p(x, y) 2 4 pY (y)

1 (0.45)(0.4)=0.18 (0.45)(0.6)=0.27 0.45
y 3 (0.30)(0.4)=0.12 (0.30)(0.6)=0.18 0.30

5 (0.25)(0.4)=0.10 (0.25)(0.6)=0.15 0.25
pX(x) 0.4 0.6

De�nition. Two continuous random variables X and Y are independent if and
only if f(x, y) = fX(x) fY (y).

Example. The joint density function is f(x, y) = 4xy, 0 < x, y < 1. The marginal

density functions are fX(x) =
∫ 1

0
(4xy) dy = 2x y2

∣∣y=1

y=0
= 2x, 0 < x < 1, and

fY (y) =
∫ 1

0
(4xy) dx = 2y x2

∣∣x=1

x=0
= 2y, 0 < y < 1. We can see that the product

of the marginal densities is equal to the joint density, f(x, y) = 4xy = (2x)(2y) =
fX(x)fY (y), and hence, X and Y are independent.

Example. Suppose X ∼ Exp(mean = 2) and Y ∼ Exp(mean = 4) are indepen-
dent. To �nd, for example, P(X < 3, Y > 2), we write

P(X < 3, Y > 2) =

∫ 3

0

∫ ∞
2

f(x, y) dy dx =

∫ 3

0

∫ ∞
2

(1

2
e−x/2

)(1

4
e−y/4

)
dy dx

=
(∫ 3

0

1

2
e−x/2dx

)(∫ ∞
2

1

4
e−y/4 dy

)
=
(

1 − e−3/2
)(
e−2/4

)
= 0.4712.

De�nition. Let X and Y be two random variables. The covariance between X
and Y is Cov(X, Y ) = E

[
(X − EX)(Y − EY )

]
. The computational formula for
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covariance is Cov(X, Y ) = E(XY ) − (EX)(EY ).

Example. Two continuous random variables X and Y have a joint density f(x, y) =
2
3
(x+ 2y), 0 ≤ x, y ≤ 1. The marginal distribution functions of X and Y were com-

puted before. They are fX(x) =
2

3
(x+ 1), 0 < x < 1, and fY (y) =

1

3
(4y+ 1), 0 <

y < 1. The covariance between X and Y is calculated as

Cov(X, Y ) = E(XY ) − (EX)(EY ) =

∫ 1

0

∫ 1

0

xy
2

3
(x+ 2y) dy dx

−
(∫ 1

0

x
2

3
(x+ 1) dx

)(∫ 1

0

y
1

3
(4y + 1) dy

)
=

∫ 1

0

[x2y2
3

+
4xy3

9

]∣∣∣y=1

y=0
dx −

(∫ 1

0

[2x2

3
+

2x

3

]
dx
)(∫ 1

0

[4y2

3
+
y

3

]
dy
)

=

∫ 1

0

[x2
3

+
4x

9

]
dx −

([2x3

9
+
x2

3

]∣∣∣1
0

)([4y3

9
+
y2

6

]∣∣∣1
0

)
=

1

3
−
(5

9

)(11

18

)
= − 3

162
= −0.01852.

Proposition. If X and Y are independent, then Cov(X, Y ) = 0, and X and Y are
termed uncorrelated.

Proof. We use the independence to write

E(XY ) =

∫ ∞
−∞

∫ ∞
−∞

xyf(x, y) dy x =

∫ ∞
−∞

∫ ∞
−∞

xyfX(x)fY (y) dy x

=
(∫ ∞
−∞

xfX(x) dx
)(∫ ∞

−∞
yfY (y) dy

)
= (EX)(EY ).

Therefore,

Cov(X) = E(XY ) − (EX)(EY ) = (EX)(EY ) − (EX)(EY ) = 0.

Remark. The converse statement to the one in the above proposition is false in gen-
eral. Two variables can be uncorrelated, but not independent. A simple example is
given in the table below. In�nitely many examples can be constructed in the same
fashion.

x
p(x, y) 0 1 pY (y)
-1 0.3 0.1 0.4

y 0 0.2 0.0 0.2
1 0.3 0.1 0.4

pX(x) 0.8 0.2
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We can see that E(XY ) = (0)(−1)(0.3) + (1)(−1)(0.1) + (0)(0)(0.2) + (1)(0)(0.0) +
(0)((1)(0.3) + (1)(1)(0.1) = −0.1 + 0.1 = 0, and EY = (−1)(0.4) + (0)((0.2) +
(1)(0.4) = 0. Therefore, Var(X) = E(XY ) − (EX)(EY ) = 0 − 0 = 0, and so, X
and Y are uncorrelated. However, X and Y are not independent since,for example,
P(X = 0) = 0.8 and P(Y = −1) = 0.4 but P(X = 0, Y = −1) = 0.3 6= 0.32 =
(0.8)(0.4).

Proposition (Useful Formulas). The following statements are true.

(1) For any X and Y (independent or not) and any real-valued a and b,

E(aX + bY ) = aE(X) + bE(Y ).

(2) If X and Y are independent, then E(XY ) = (EX)(EY ).

(3) For any X and Y (independent or not) and any real-valued a and b,

Var(aX + bY ) = a2V(X) + 2abCov(X, Y ) + b2Var(Y ).

(4) If X and Y are uncorrelated, then Var(aX + bY ) = a2Var(X) + b2Var(Y ).

Proof. We will consider only continuous random variables, but the discrete case is
proven analogously, with sums in place of integrals.

(1) By linearity of integration,

E(aX + bY ) =

∫ ∞
−∞

∫ ∞
−∞

(ax+ by)f(x, y) dy dx

= a

∫ ∞
−∞

∫ ∞
−∞

x f(x, y) dy dx + b

∫ ∞
−∞

∫ ∞
−∞

y f(x, y) dy dx

= a

∫ ∞
−∞

x
[ ∫ ∞
−∞

f(x, y) dy
]
dx + b

∫ ∞
−∞

y
[ ∫ ∞
−∞

f(x, y) dx
]
dy

= a

∫ ∞
−∞

x fX(x) dx + b

∫ ∞
−∞

y fY (y) dy = aE(X) + bE(Y ).

(2) By independence,

E(XY ) =

∫ ∞
−∞

∫ ∞
−∞

xy f(x, y) dy dx =

∫ ∞
−∞

∫ ∞
−∞

xy fX(x)fY (y) dy dx
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=
(∫ ∞
−∞

x fX(x) dx
)(∫ ∞

−∞
y fY (y) dy

)
= (EX)(EY ).

(3) By de�nition,

Var(aX + bY ) = E
(
aX + bY − E(aX + bY )

)2
= E

(
aX − aEX + bY − bEY

)2
= a2E(X − EX)2 + 2 abE

[
(X − EX)(Y − EY )

]
+ b2E(Y − EY )2

= a2V(X) + 2 abCov(X, Y ) + b2Var(Y ).

(4) If X and Y are uncorrelated, then Cov(X, Y ) = 0, and so Var(aX + bY ) =
a2Var(X) + b2Var(Y ).

Exercise 22.1. Random variables X and Y have the following joint probability
distribution:

x
p(x, y) 0 1
-1 0.10 0.25

y 0 0 0.30
1 0.20 0.15

(a) Are X and Y independent? Answer: The marginal distributions are pX(0) =
0.3, pX(1) = 0.7, pY (−1) = 0.35, pY (0) = 0.3, and pY (1) = 0.35. The variables are
not independent because, for instance, p(1,−1) = 0.25 6= 0.245 = (0.7)(0.35) =
pX(1)pY (−1).

(b) Compute the covariance ofX and Y . Answer: Cov(X+Y ) = E(XY ) (EX)(EY ) =(
(1)(−1)(0.25)+(1)(1)(0.15)

)
−
(
(1)(0.7)

)(
(−1)(0.35)+(1)(0.35)

)
= −0.1 (0.7)(0) =

−0.1.

(c) What is E(2X−5Y )? Answer: E(2X−5Y ) = 2EX − 5EY = (2)(0.7)−(5)(0) =
1.4.

(d) What is Var(2X−5Y )? Answer: Var(X) = (0.7)(1−0.7) = 0.21, and Var(Y ) =
(−1)2(0.35) + (1)2(0.35) = 0.7. We compute Var(2X − 5Y ) = (2)2Var(X) −
(2)(2)(5)Cov(X, Y ) + (5)2Var(Y ) = (4)(0.21) − (20)(−0.1) + (5)(0.7) = 6.34.

Exercise 22.2. Suppose that random variables X and Y are independent with
marginal pdf's fX(x) = 2x, 0 ≤ x ≤ 1, and fY (y) = 1, 0 ≤ y ≤ 1. Calculate
P(Y > 2X). Answer: We need to integrate the joint density f(x, y) = fX(x)fY (y) =
2x over the shaded region shown in the picture:
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We integrate, for example, vertically. We write P(Y > 2X) =

∫ 1/2

0

∫ 1

2x

2x dy dx =∫ 1/2

0

2x(1− 2x) dx =
[
x2 − 4

3
x3
]∣∣∣1/2

0
=

1

4
− 1

6
=

1

12
.

Exercise 22.3. Random variables X1, X2, and X3 are independent with marginal
densities fXi(xi) = 3x2i , 0 ≤ xi ≤ 1, i = 1, 2, 3.

(a) Compute E(X1X2 +X1X3 +X2X3). Answer: Since the three variables are identi-

cally distributed, their means are equal, that is EX1 = EX2 = EX3 =
∫ 1

0
3x3 dx =

3
4
, and E(X1X2 +X1X3 +X2X3) = (3)(EX1)

2 = (3)
(

3
4

)2
= 27

16
= 1.6875.

(b) Compute Var(X1 +X2
2 +X3

3 ). Answer: Since the variables are independent, their
covariances are equal to zero, and so, the variance of the sum is the sum of variances,
Var(X1+X2

2 +X3
3 ) = Var(X1)+Var(X2

2 )+Var(X3
3 ). We compute each variance as

follows. Var(X1) = EX2
1 − (EX1)

2 =

∫ 1

0

3x4 dx −
( ∫ 1

0

3x3 dx
)2

=
3

5
−
(3

4

)2
=

0.0375, Var(X2
2 ) = EX4

2 − (EX2
2 )2 =

∫ 1

0

3x6 dx −
( ∫ 1

0

3x4 dx
)2

=
3

7
−
(3

5

)2
=

0.0686, and Var(X3
2 ) = EX6

3 − (EX3
3 )2 =

∫ 1

0

3x8 dx −
( ∫ 1

0

3x5 dx
)2

=
3

9
−(3

6

)2
= 0.0833. Thus, Var(X1) + Var(X2

2 ) + Var(X3
3 ) = 0.1894.

Exercise 22.4. The bivariate distribution of discrete random variables is
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x \ y -3 1 2 pX(x)
0 1/3 0 1/2 20/24
1 1/24 1/8 0 4/24

pY (y) 9/24 3/24 12/24

(a) Are X and Y independent? Answer: The variables are not independent since,
for example, pX(0)pY (1) = (20/24)(3/24) 6= 0 = p(0, 1).

(b) Are X and Y uncorrelated? Answer: Cov(X, Y ) = E(XY ) − (EX)(EY ) =(
(1)(−3)(1/24)+(1)(1)(1/8)

)
−
(
(1)(4/24)

)(
(−3)(9/24)+(1)(3/24)+(2)(12/24)

)
=

0 − (1/6)(0) = 0, therefore, the variables are uncorrelated.

Exercise 22.5. Continuous random variables Y1 and Y2 have joint density given by
f(y1, y2) = 6y1, 0 ≤ y1 ≤ y2 ≤ 1.

(a) Can Y1 and Y2 be independent? Answer: Since the ranges of the variables are
interdependent, they cannot be independent. We show it formally by computing the
marginal densities. We integrate over the shaded region (see the picture). We get

fY1(y1) =

∫ 1

y1

6y1 dy2 = 6y1(1 − y1), 0 < y1 < 1, and fY2(y2) =

∫ y2

0

6y1 dy1 =

3y22, 0 < y2 < 1.

The product of the marginal densities is fY1(y1)fY2(y2) = 6y1(1 − y1) 3y22. It is not
equal to the joint density f(y1, y2) = 6y1, so, the variables are not independent.
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(b) Compute Cov(Y1, Y2). Answer:

Cov(Y1, Y2) = E(XY ) − (EX)(EY )

=

∫ 1

0

∫ 1

y1

(y1y2)(6y1) dy2 dy1 −
(∫ 1

0

y1 6y1(1− y1) dy1
)(∫ 1

0

y2 3y22 dy2

)
= 1− 3

5
−
(

2− 3

2

)(3

4

)
= 0.4 − (0.5)(0.75) = 0.025.

(c) Compute Var(Y1 − Y2). Answer:

Var(Y1) = E(Y 2
1 ) −

(
EY1

)2
=

∫ 1

0

y21 6y1(1−y1) dy1 −
(1

2

)2
=

3

2
− 6

5
− 1

4
= 0.05,

and

Var(Y2) = E(Y 2
2 ) −

(
EY2

)2
=

∫ 1

0

y22 3y22 dy1 −
(3

4

)2
=

3

5
− 9

16
= 0.0375.

We have Var(Y1−Y2) = Var(Y1) − 2Cov(Y1, Y −2) + Var(Y2) = 0.05−(2)(0.025)+
0.0375 = 0.0375.

23. FUNCTIONS OF RANDOM VARIABLES

Let X be a continuous random variable, and let Y = g(X) where g is some known
function. The goal is to �nd the cdf and pdf of Y . The method that always works is
the cumulative distribution function method. Below we consider several exam-
ples.

Example. Let X ∼ fX(x), FX(x), and Y = aX + b for some real-valued a and b.

Then the cdf of Y is FY (y) = P(Y ≤ y) = P(aX + b ≤ y) = P
(
X ≤ y − b

a

)
=

FX

(y − b
a

)
, and the pdf of Y is fY (y) = F ′Y (y) =

1

a
fX

(y − b
a

)
.

Example. Let X ∼ fX(x), FX(x), x > 0, and Y =
√
X. The cdf of Y is

FY (y) = P(Y ≤ y) = P(
√
X ≤ y) = P

(
X ≤ y2

)
= FX(y2),

and the pdf of Y is fY (y) = F ′Y (y) = 2y fX(y2).

Example. Let X ∼ fX(x), FX(x), and Y = X2. The cdf of Y is

FY (y) = P(Y ≤ y) = P(X2 ≤ y) = P
(
−√y ≤ X ≤ √y

)
= FX(

√
y)−FX(−√y),
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and the pdf of Y is fY (y) = F ′Y (y) =
1

2
√
y
fX(
√
y) +

1

2
√
y
fX(−√y).

Exercise 23.1. Suppose X ∼ Exp(mean = β) and let Y = X + a for some a > 0.

Show that the pdf of Y is fY (y) =
1

β
e−(y−a)/β, y > a. It is called a shifted

exponential distribution. Answer: The cdf of X is FX(x) = 1− e−x/β, x > 0. We
�nd the cdf of Y as FY (y) = P(Y ≤ y) = P(X + a ≤ y) = P(X ≤ y − a) =
FX(y−a) = 1 − e−(y−a)/β, y−a > 0 or y > a, and the pdf of Y is fY (y) = F ′Y (y) =
1

β
e−(y−a)/β, y > a.

Exercise 23.2. Consider X ∼ N(µ, σ2) and let Y = eX . Prove that fY (y) =
1

y
√

2πσ2
exp

{
− (ln(y) − µ)2

2σ2

}
. It is called a log-normal distribution. Answer:

The cdf of Y can be derived as FY (y) = P(Y ≤ y) = P
(
eX ≤ y

)
= P(X ≤ ln(y)) =

FX(ln(y)). The density of Y is fY (y) = F ′Y (y) =
1

y
√

2πσ2
exp

{
− (ln(y) − µ)2

2σ2

}
.

Exercise 23.3. Let Z ∼ N(0, 1) and let X = µ + σ Z. Show that X ∼ N(µ, σ2).

Answer: The cdf of X is FX(x) = P(X ≤ x) = P(µ+σ Z ≤ x) = P
(
Z ≤ x− µ

σ

)
=

Φ
(x− µ

σ

)
. The pdf of X is

fX(x) = F ′X(x) = Φ′
(x− µ

σ

)
=

1

σ
· 1√

2π
exp

[
− 1

2

(x− µ
σ

)2]
=

1√
2π σ2

exp
[
− (x− µ)2

2σ2

]
.

Exercise 23.4. Let X ∼ Unif(−π/2, π/2). Take Y = tan(X). Show that Y follows

a Cauchy distribution with the pdf fY (y) =
1

π(1 + y2)
, −∞ < y <∞.

Answer: We start with the cdf of Y . We write FY (y) = P(Y ≤ y) = P(tan(X) ≤
y) = P

(
X ≤ tan−1(y)

)
= FX

(
tan−1(y)

)
, −π

2
< tan−1(y) <

π

2
, and thus, the pdf

of Y is fX(y) = F ′Y (y) = F ′X
(

tan−1(y)
)

=
(

tan−1(y)
)′ 1

π
=

1

π(1 + y2)
,−∞ < y <

∞.

Exercise 23.5. Consider X and Y independent Unif(0, 1) random variables, and
let W = X +Y . Show that W has a triangular distribution with the pdf given by
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fW (w) =


(w2

2

)′
= w, if 0 < w < 1,(

1 − (2− w)2

2

)′
= 2− w, if 1 < w < 2,

0, otherwise.

Plot the graph of this function. Answer: Starting with the cdf, we write

FW (w) = P(W ≤ w) = P(X + Y ≤ w).

There are two cases: 0 < w < 1 and 1 < w < 2.

Case 1. 0 < w < 1. We integrate over the shaded region (see the picture). We get

P(X + Y ≤ w) =

∫ w

0

∫ w−x

0

dy dx =

∫ w

0

(w − x) dx = w2 − w2

2
=

w2

2
, the area

of the shaded triangle since the density is equal to 1.

Case 2. 1 < w < 2. The integration should be done over the shaded region as in the
picture, but since we are dealing with a unit density, we just need to �nd the area
of the shaded region, and that can be found as one minus the area of the unshaded

triangle, that is, P(X + Y ≤ w) = 1 − (2− w)2

2
.
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The density function combines both cases. We write

fW (w) = F ′W (w) =


(w2

2

)′
= w, if 0 < w < 1,(

1 − (2− w)2

2

)′
= 2− w, if 1 < w < 2,

0, otherwise.

Here is the plot of the triangular density. Note that it indeed has the shape of a tri-
angle and also note that the total area under the curve is equal to one, as it should be.
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24. METHOD OF TRANSFORMATIONS

Proposition (Method of Transformations or Change of Variable Method). Let
X ∼ fX(x) and suppose Y = g(X) where g is a strictly increasing or strictly de-

creasing function. We can write X = g−1(Y ). Then fY (y) = fX(g−1(y))
∣∣∣d g−1(y)

d y

∣∣∣.
Here

∣∣∣d g−1(y)

d y

∣∣∣ is termed the Jacobian of the transformation.

Proof. We start with the cdf of Y . We �rst consider the case of a strictly increasing
function g. Note that in this case, as depicted in the picture, g(x) ≤ y if and only if
x ≤ g−1(y).

We get

FY (y) = P(Y ≤ y) = P(g(X) ≤ y) = P
(
X ≤ g−1(y)

)
= FX

(
g−1(y)

)
,

and thus, the pdf of Y is obtained as

fY (y) = F ′Y (y) = fX
(
g−1(y)

) d g−1(y)

dy
.
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Now we consider the case of a strictly decreasing function g. As shown in the picture,
g(x) ≤ y if and only if x ≥ g−1(y). So, we write

FY (y) = P(Y ≤ y) = P(g(X) ≤ y) = P
(
X ≥ g−1(y)

)
= 1 − FX

(
g−1(y)

)
,

and thus, the pdf of Y is obtained as

fY (y) = F ′Y (y) = − fX
(
g−1(y)

) d g−1(y)

dy
.

Since for a decreasing function,
d g−1(y)

dy
is negative, putting a minus in front of it,

makes it positive. Combining both cases, of increasing and decreasing function g, we
can write

fY (y) = fX(g−1(y))
∣∣∣d g−1(y)

d y

∣∣∣.
Example. Suppose X ∼ Exp(mean = β), and Y =

√
X. Since a square root is a

strictly increasing function, we can use the method of transformations to �nd the pdf
of Y . We invert the function y = g(x) =

√
x, to get x = g−1(y) = y2, y > 0. Now we

write the pdf of Y :

fY (y) = fX(g−1(y))
∣∣∣d g−1(y)

d y

∣∣∣ = fX(y2) · d y
2

dy
=

2y

β
e−y

2/β, y > 0.

Example. Suppose X ∼ Exp(mean = β), and Y = e−X . The function y = g(x) =
e−x is strictly decreasing, and solving for x, we get x = g−1(y) = − ln(y). By the
method of transformations, we �nd the cdf of Y as follows:

fY (y) = fX(g−1(y))
∣∣∣d g−1(y)

d y

∣∣∣ = fX(− ln(y)) ·
∣∣∣d (− ln(y))

dy

∣∣∣ =
1

yβ
eln(y)/β

where − ln(y) > 0 or 0 < y < 1.

Exercise 24.1. Let X ∼ Unif(0, 1). Use the method of transformations to show
that Y = −β ln(X) has an exponential distribution with mean β. Answer: A negative
natural logarithm is a strictly decreasing function. Its inverse is x = g−1(y) = e−y/β.
The pdf is

fY (y) = fX(g−1(y))
∣∣∣d g−1(y)

d y

∣∣∣ = fX(e−y/β) ·
∣∣∣d (e−y/β)

dy

∣∣∣ =
1

β
e−y/β,

where 0 < e−y/β < 1 or y > 0.

Exercise 24.2. Suppose X has a Pareto distribution with parameter a, for which

the pdf is given as fX(x) =
a

xa+1
, 1 ≤ x <∞, a > 0. Use the method of transfor-

mations to �nd the pdf of Y if

100



(a) Y = ln(X). Answer: ln(x) is an increasing function with inverse g−1(y) = ey.
Therefore, the pdf of Y is

fY (y) = fX(ey) · d e
y

dy
=

a

e(a+1)y
ey = a e−ay

where ey > 1 or y > 0. This is an exponential distribution with a mean 1/a.

(b) Y = 1/X. Answer: 1/X is a decreasing function with inverse g−1(y) = 1/y.
Therefore, the pdf of Y is

fY (y) = fX(1/y) ·
∣∣∣d (1/y)

dy

∣∣∣ = aya+1
∣∣− 1

y2
∣∣ = a ya−1

where 1/y > 1 or 0 < y < 1.

Exercise 24.3. Consider X ∼ fX(x) = 3x2, 0 ≤ x ≤ 1, and letY = 1/X2. Use the
method of transformations to determine the pdf of Y . Answer: On the interval [0, 1],
1/X2 is a decreasing function with the inverse x = g−1(y) = 1/

√
y. The pdf of Y is

fY (y) = fX(1/
√
y) ·

∣∣∣d (1/
√
y)

dy

∣∣∣ = 3y
∣∣− 1

2y
√
y

∣∣ =
3

2
y−5/2

where 0 < 1/
√
y < 1 or y > 1.

25. METHOD OF MOMENT GENERATING FUNCTIONS

Proposition. Suppose X1, . . . , Xn are independent identically distributed (iid) ran-
dom variables with the mgfs M(t), i = 1, . . . , n. Then the mgf of the sum S =
X1 + · · ·+Xn is MS(t) = Mn(t).

Proof. We writeMS(t) = EetS = E
[

exp{t(X1 + · · ·+Xn)}
]

= {by independence}
= EetX1EetX1 · · ·EetXn = Mn(t).

Example. Suppose X1, . . . , Xn
iid∼ Ber(p). The mgf is M(t) = pet+1 − p. Then the

sum S = X1 + · · ·+Xn has the mgf MS(t) = Mn(t) = (pet + 1− p)n which is the mgf
for Bi(n, p) distribution.

Exercise 25.1. Let X1, . . . , Xn
iid∼ Geom(p). Prove that X1 + · · ·+Xn ∼ NB(n, p).

Answer: The mgf of Geom(p) is M(t) =
pet

1− (1− p)et
. The mgf of the sum S is

MS(t) =
(

pet

1−(1−p)et

)n
which means that the sum has a negative binomial distribution

with parameters n and p.

Exercise 25.2. Consider X1, . . . , Xn
iid∼ Poi(λ). Show that X1+· · ·+Xn ∼ Poi(λn).

Answer: The mgf for a Poi(λ) distribution is M(t) = exp(λ(et− 1)), and so, the mgf
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of the sum is MS(t) =
(

exp(λ(et − 1))
)n

= exp((λn)(et − 1)) which corresponds to

a Poisson distribution with rate λn.

Exercise 25.3. Let X1, . . . , Xn are iid random variables having exponential distri-
bution with mean β. Show that X1 + · · ·+Xn has a gamma distribution with param-
eters n and β. A gamma distribution with parameters α and β has density f(x) =
xα−1

Γ(α) βα
e−x/β, x ≥ 0, α, β > 0 where the gamma function Γ(α) =

∫ ∞
0

xα−1 e−x dx

is the normalizing constant. The mean of this distribution is αβ, variance is αβ2,

and the mgf is M(t) =
( 1

1− β t

)α
. Answer: By the method of moment generating

functions, we have that the mgf of X1 + · · ·+Xn is
(

1
1−β t

)n
which corresponds to a

gamma distribution with parameters n and β.

Exercise 25.4. Suppose X1, . . . , Xn
iid∼ N(µ, σ2). Verify that X1 + · · · + Xn ∼

N(nµ, nσ2). Answer: The mgf of a normal distribution with parameters µ and σ2

is M(t) = exp
{
µ t + σ2 t2

2

}
. The mgf of the sum is MS(t) =

(
exp

{
µ t + σ2 t2

2

})n
=

exp
{
nµ t + nσ2 t2

2

}
which corresponds to a normal distribution with parameters nµ

and nσ2.

26. THE CENTRAL LIMIT THEOREM

Theorem (The Central Limit Theorem (CLM)). LetX1, X2, . . . , Xn be iid with
a common mean µ and standard deviation σ. Denote by X̄n = (X1 + · · · + Xn)/n.
Then,

Zn =
X̄n − µ

σ/
√
n
→ N(0, 1), as n→∞.

In other words, for large n, X̄n has an approximate normal distribution with mean µ
and variance σ2/n.

Proof. First we write

Zn =
X̄n − µ

σ/
√
n

=
X1 + · · ·+Xn − nµ√

nσ
=

1√
n

n∑
i=1

Xi − µ
σ

.

The mgf of Zn is MZn(t) = Mn
( t√

n

)
where M(t) is the mgf of

Xi − µ
σ

for i =

1, . . . , n. The Taylor's expansion of M(t) is M(t) =
∞∑
k=0

M (k)(0)
tk

k!
. Here M(0) =

1, M ′(0) = E
(Xi − µ

σ

)
= 0, and M ′′(0) = E

(Xi − µ
σ

)2
= Var

(Xi − µ
σ

)
= 1.
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Thus, M
( t√

n

)
= 1 +

t2

2n
+ terms of higher order of

t√
n
. Putting it together, we

obtain that

MZn(t) ≈
(

1 +
t2

2n

)n
→ exp

{t2
2

}
, as n→∞,

which is the mgf of a N(0, 1) random variable.

Remark. In practice, the CLT is used if n is at least 30.

Example. The lifespan of a light bulb has a mean of 750 hours and a standard
deviation of 90 hours. The probability that, for example, in a random sample of
100 bulbs, the average lifespan is less than 730 hours is found as follows. We use the
Central Limit Theorem (CLT) to assert that X̄ is approximately normally distributed

with a mean of µ = 750 hours and a standard deviation of
σ√
n

=
90√
100

= 9 hours.

Thus, P(X̄ < 730) = P
(X̄ − µ
σ/
√
n
≥ 730− 750

90/
√

100

)
= P(Z ≥ −2.22) = 1 − P(Z <

−2.22) = 1 − P(Z > 2.22) = 0.0132.

Exercise 26.1. The amount of time that a drive-through bank teller spends on a
customer is a random variable with a mean of 3.2 minutes and a standard deviation
of 1.6 minutes. If a random sample of 64 customers is observed, evaluate the approx-
imate probability that their mean time at the teller's counter is at least 3 minutes.
Answer: By the CLT, X̄

approx∼ N
(
3.2, (1.6/

√
64)2

)
. So,

P(X̄ ≥ 3) = P
(X̄ − µ
σ/
√
n
≥ 3− 3.2

1.6/
√

64

)
= P(Z ≥ −1) = 1 − P(Z < −1) = 1 − P(Z > 1) = 1 − 0.1587 = 0.8413.

Exercise 26.2. Japan's birth rate is believed to be 1.57 births per woman with a
population standard deviation of 0.8. If a random sample of 200 women is selected,
approximate the probability that the sample mean falls above 1.6. Answer: By the
CLT, X̄

approx∼ N
(
1.57, (0.8/

√
200)2

)
. Hence,

P(X̄ > 1.6) = P
(X̄ − µ
σ/
√
n
≥ 1.6− 1.57

0.8/
√

200

)
= P(Z ≥ 0.53) = 0.2981.

Exercise 26.3. In a very large group of gifted children, the average IQ is 120 and
the standard deviation is 15. If 100 children are randomly selected from this group,
what is the approximate probability that the average IQ of the children in the sample
will be less than 117? Answer: By the CLT, X̄

approx∼ N
(
120, (15/

√
100)2

)
. Therefore,

P(X̄ < 117) = P
(X̄ − µ
σ/
√
n
<

117− 120

15/
√

100

)
= P(Z < −2) = P(Z > 2) = 0.0228.
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Exercise 26.4. Insurance claims have a mean of $5, 000 with a standard deviation of
$3, 000. What is the approximate probability that in a random sample of 50 claims,
the average is above $6, 000? Answer: By the CLT, X̄

approx∼ N
(
5000, (3000/

√
50)2

)
.

Thus, P(X̄ > 6000) = P
(X̄ − µ
σ/
√
n
>

6000− 5000

3000/
√

50

)
= P(Z > 2.36) = 0.0091.

Exercise 26.5. Coke bottles have a mean of 19.8 oz with a standard deviation of 1
oz. Find the approximate probability that in a random sample of 60 Coke bottles,
the sample mean exceeds 20 oz. Answer: By the CLT, X̄

approx∼ N
(
19.8, (1/

√
60)2

)
.

So, P(X̄ > 20) = P
(X̄ − µ
σ/
√
n
>

20− 19.8

1/
√

60

)
= P(Z > 1.55) = 0.0606.
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