
MySQL Programming
Mimi Opkins & David Brown

CECS 323

Ô There are several different ways to protect a database from
corruption:

ÔDatatypes for the individual columns

ÔPrimary key and other uniqueness constraints

ÔReferential integrity constraints:

ÔImplement relationships between tables

ÔEnsure that enumerated values are valid

ÔImplementing reference data

ÔDatabase code that implements complex (non declarative) constraints

ÔOne major benefit to doing all of this in the database is that there is
no way to òback dooró the database.

Ô The other benefit is that the stored procedure/function/trigger runs
on the server, which saves on network traffic.

General Introduction

ÔAlternatively, you could require that all access to a given

database (using that term loosely) has to be brokered by an

application.

ÔItõs not uncommon to have an application start off òowningó the

data, then that data becomes of interest to other applications.

ÔThat means that outside applications coming in through an

interface somehow need to use that application so that the

business rules are only implemented once.

ÔOr, the business rules need to be published and agreed to by all

users of the data to prevent corruption.

Other Approaches

Ô SQL Server has T-SQL, Oracle uses PL/SQL for their programmatic
interface to the database.

Ô The programming concepts are very similar to MySQL.

ÔWeõre using MySQL for your term project, and this is a great way to
apply the notion of programmatic constraints to the data.

Ô The syntax, however, will be significantly different from one platform
to the next.

ÔWe have to use some RDBMS to implement these non -declarative
constraints.

ÔMySQL is a mature, industrial strength RDBMS that you are very likely
to run into in your work, particularly now that Oracle has bought it.

Ô You will see first hand the stark contrast between the constraints that
can be captured declaratively in the referential integrity constraints
versus those that you have to program.

Why MySQL?

Before we get started on triggers, here

are some handy MySQL features

ÔThe next few slides go over some features that MySQL

provides you that will prove useful.

ÔThis is by no means systemic. These are just features that

have cropped up in work that has been turned in by

other students.

ÔBear in mind that many of these are either not

implemented at all in other relational database

management systems using this syntax, or the underlying

functionality might be absent altogether.

Group concat

Ô Allows you to gather up a given column from a set of rows,
and concatenate the value of that column for each row
together into a single string.

Ô This is handy for creating a multi -valued attribute from a
junction table.

Ô Read more about it at:
https://dev.mysql.com/doc/refman/5.7/en/aggregate -
functions.html#function_group -concat

Ô Note that you can nest functions, so you could have a
complex function and then group concat over that.

ÔGroup concat is a great way to do things like reassemble a
repeating value attribute that you have normalized.

Ôselect cLastName , cFirstName , group_concat (distinct hobby)

Ô from contacts inner join hobbies using(contactID)

Ôgroup by contactID ;

Extract Function

Ô Can be used to get at any component of a given date
value.

Ô For instance, in Derby we used the year() function to get the
year of a given date value.

Ô To do that in MySQL, you would do something like select é
from orders where extract (year from orderDate) = 2015 é

Ô To learn more, see: http://www.mysqltutorial.org/mysql -
extract/ for a complete explanation. It turns out that there is
a wide variety of elements that you can extract from the
date in MySQL.

Other date operations

Ôselect datediff ("2016-06-15", "2017-06-15");

ÔYields -365

ÔNote that you need to use double quotes on the date literals.

Ônow() yields the current date and time.

ÔSelect date_add (ò2017-06-15ó, interval 10 day);

ÔReturns a date object that is 10 days after the supplied date.

Ôselect date_add (now(), interval -10 day); goes back 10 days.

Ôselect "2020 -12-31" < now();

ÔReturns an integer ò1ó just like Java.

ÔYou can use this sort of expression in your SQL where clauses.

First N rows of a query

Ô If you want a query to only report out the first few rows of a
query, use the limit keyword.

Ô The limit clause is the last thing in your query.

Ô It takes two arguments or one.

Ô If only one argument, that argument is the number of rows to
return.

Ô If both arguments are supplied, then MySQL returns the second
argument (the number of rows) starting at the offset (the first
argument.

Ô Note that this can be used with an order by so that you can
get the last few or the first few rows by setting up the proper
order by.

Explicit casting

ÔThe convert function (documented at:

https://dev.mysql.com/doc/refman/5.7/en/cast -

functions.html) allows you to cast an expression or a

column value to a different type.

Ô It also allows you to set the format:

convert(sum(service_instance.totalHours)* 50,

decimal(10,2)) would provide the result of that

calculation with two digits of decimal precision.

Any and some
ÔWeõve been using the in keyword to match on any value in a

collection. Any and some are related:

Ôexpression comparison_operator ANY (subquery)

Ôexpression IN (subquery)

Ôexpression comparison_operator SOME (subquery)

Ô Any is true if the operand value meets the comparison
operator for any of the values in the subquery.

Ô Some is true if the operand value meets the comparison
operator for some of the values in the subquery.

Ô The comparison operator can be =, >, <, <=, >=, <>, or !=

Ô The in operator is actually just a special case of = any.

ÔSome is just an alias for any. I donõt make this stuff up, I just
report it. Donõt shoot the messenger.

Ô Look at: https://dev.mysql.com/doc/refman/5.7/en/any -in-
some -subqueries.html for more information.

The use òcommandó

ÔWhen entering a trigger, function or procedure in at the

command prompt, if you preface that with the òuse

<schema name >;ó òcommandó, then MySQL will store

anything created after that in the given schema.

ÔThis makes your DDL simpler since you do not have to

fully qualify all your names.

Ô It is possible to automatically assign a surrogate key to

new rows in a table.

Ô In MySQL, the mechanics are:

Create table <table name> (<id column name> integer

not null auto_increment , é)

ÔThe auto_increment keyword ensures that the next

integer value for the id column (whatever you choose to

name it) is doled out each time an insert occurs.

auto_Increment

Multiple columns in in
ÔThe in Boolean function for most RDBMSs only allows one expression

to be searched for from a list. But MySQL allows for you to use more

than one expression in a tuple. For example :

select lastName , firstName from student

natural join Membership natural Join OficeUse

where oficeTYpe = ôPresidentõ and (lastname , firstName) in

(select lastName , firstName

from student natural join Membership

natural join officeUse

where officeType = ôVice Presidentõ);

Coalesce

ÔWorks exactly like the coalesce function in Derby.

ÔCoalesce (expr1, expr2, [é]) returns the first expression

that does not evaluate to a null.

ÔThis way, if you have an optional attribute, and you want

to put in something to indicate a null, you can essentially

report out a default value.

ÔRemember that the expressions that you pass in as

arguments to coalesce can be arbitrarily complex, and

include select statements if you need to.

ÔMySQL has the enumeration type which looks like:

MySQL Enumerations

CREATE TABLE shirts (

name VARCHAR(40),

size ENUM('x-small', 'small', 'medium', 'large', 'x -large'));

INSERT INTO shirts (name, size) VALUES ('dress shirt','large '), ('t -shirt','medium '),

('polo shirt','small');

SELECT name, size FROM shirts WHERE size = 'medium';

ÔThings like state code, gender, titles, are really data, and the

enumeration treats it like meta data (data about the data).

ÔChanging the member list is expensive ðfull table scan of the

table using the enumeration.

Ô It is impossible to add related data. For instance, the full name

of the state cannot be added to the state code.

ÔYou have a very difficult time using the enumeration values to

populate a drop down list in a GUI control.

ÔThe performance benefits seldom pan out in practice.

ÔYou cannot share that enumeration with other tables.

Problems with the MySQL Enumerations

Shamelessly borrowed from: http://komlenic.com/244/8 -reasons-why -mysqls-enum -data -type -is-evil/

ÔMySQL will truncate the incorrect value (unless itõs not null)

whereas a foreign key constraint would prohibit the entire

insert.

ÔMySQL stores the actual value as an integer lookup, which

means that you can inadvertently store an integer as well.

ÔThis particular feature of MySQL is proprietary and will not easily

transfer to other DBMSs.

ÔThe larger point of this discussion is when you are looking at a

particular feature of a specific RDBMS, ask yourself whether the

benefit of that feature outweighs the loss of portability, and

whether the feature really serves your needs long term.

MySQL Enumeration Evils (continued)

Bottom line for MySQL enums :

ÔDonõt do it!

Alternatives
ÔMake the enumeration a lookup table as we have talked about in

class.

ÔUse a MySQL check constraint:

ÔCreate table persons (

Ôé,

ÔConstraint <constraint name> check (é))

ÔThe expression in () after check can be as complex as needed, it

can only reference columns in that table.

ÔBottom line, I will dock you for using the MySQL enum . I only brief

you on it because you are likely to run into in practice, and

because Iõve had students use this in the past and I want to head it

off.

Ô IF(exp,exp_result1, exp_result2) will return exp_result1 if the
expression evaluates to true, and exp_result2 otherwise.

ÔOne application of the if function is for handling null values:
if(state is null, ôN/Aõ, state) will make sure that you have
something in your report for every record.

ÔAnd, you can nest these, so that the first argument to the if
could be another if expression if need be.

Ex. Select If(1<2,2,3); (returns 2)

Ex. SELECT IF(STRCMP('test','test1'),'no','yes ');

The IF() Function in MySQL Select

Reverse Engineering using the MSQL

workbench
Ô I strongly encourage you to be very careful to always have

an up to date set of scripts to create all your tables,
constraints, and perform the inserts that you need to
populate your database.

Ô However, it can be useful at times to have the database
generate a script for you based on what you have in the
database.

Ô To do this in MySQL Workbench, select Database | Reverse
Engineer. That will prompt you for a connection to the
database (even if you already connected in MySQL).

Ô The wizard will prompt you through and eventually generate
a script for you. Just bear in mind that it will use the `quotes`
around all your table and column names, which means that if
you use that script to create everything, you will have to use
the `quotes` as well.

Ô Stored Procedures

ÔBlocks of code stored in the database that are pre -compiled.

ÔThey can operate on the tables within the database and return scalars
or results sets.

Ô Functions

ÔCan be used like a built -in function to provide expanded capability to
your SQL statements.

ÔThey can take any number of arguments and return a single value.

Ô Triggers

ÔKick off in response to standard database operations on a specified
table.

ÔCan be used to automatically perform additional database
operations when the triggering event occurs.

Basic Programming Structures

ÔNone of this is original, look at it as a digest from:

http://dev.mysql.com/doc/ .

ÔMore specifically, weõll be talking about material found in:

https://dev.mysql.com/doc/refman/5.7/en/sql -compound -

statements.html .

Basic Programming Structures Reference

Stored Procedures in MySQL

Ô A stored procedure contains a sequence of SQL commands stored in the
database catalog so that it can be invoked later by a program

Ô Stored procedures are declared using the following syntax:

Create Procedure <proc -name>

(param_spec 1, param_spec 2, é, param_spec n)

begin

-- execution code

end;

where each param_spec is of the form:

[in | out | inout] <param_name > <param_type >

Ô in mode: allows you to pass values into the procedure,

Ôout mode: allows you to pass value back from procedure to the calling
program

Ô You can declare variables in stored procedures

Ô Can have any number of parameters.

Ô Each parameter must specify whether itõs in, out, or inout.

ÔThe typical argument list will look like

(out ver_param varchar(25), inout incr_param int é)

ÔBe careful of output parameters for side effects.

Ô Your varchar declarations for the parameters must specify the maximum
length.

Ô The individual parameters can have any supported MySQL datatype.

Ô They can be called using the call command, followed by the procedure
name, and the arguments.

Ô You can use flow control statements (conditional IF -THEN-ELSE or loops
such as WHILE and REPEAT)

More about Stored Procedures

ÔA condition is somewhat like an exception.

ÔYou can declare your own conditions, but weõre not going

to get into that for the purposes of this course.

ÔA handler is somewhat like the catch block in a

try/catch construct.

ÔThe òcannedó conditions that MySQL has will prove to be

enough for our purposes.

ÔWe should be able to get by with just a few conditions,

weõll see as we go along.

Conditions and Handlers

ÔNote that <condition> is a generic Boolean expression, not a
condition in the MySQL sense of the word.

IF <condition> then

<statements>

ELSEIF <condition> then

<statements>

ELSE

<statements>

END IF

ÔNote the annoying syntax: END IF has an embedded blank, ELSEIF
does not.

ÔThere can be any number of ELSIF clauses in your IF statement.

IF

Ô Two different syntaxes:

CASE <expression>

WHEN <value> then

<statements>

WHEN <value> then

<statements>

é

ELSE

<statements>

END CASE;

Case Statement

CASE

WHEN <condition> then

<statements>

WHEN <condition> then

<statements>

é

ELSE

<statements>

END CASE;

CASE Statement (Continued)

Ô [begin_label :] LOOP

Ô<statement list>

Ô END LOOP [end_label]

Ô Note that the end_label has to = the begin_label

Ô Both are optional

Ô [begin_label :] REPEAT

Ô<statement list>

Ô UNTIL <search_condition >

Ô END REPEAT [end_label]

Looping

Repeat Until Example

DELIMITER //

CREATE FUNCTION CalcIncome (starting_value INT)

RETURNS INT

BEGIN

DECLARE income INT;

SET income = 0;

label1: REPEAT

SET income = income + starting_value ;

UNTIL income >= 4000

END REPEAT label1;

RETURN income;

END; //

DELIMITER ;

Notes on the previous example

ÔThe DELIMITER // statement sets a session variable so that

the // becomes the statement terminator.

ÔFor the purposes of that session, the ò;ó within the stored

procedure are just like any other character.

ÔWhen the stored procedure is run, however, the ò;ó

function the way that they normally do in MySQL.

ÔYou always want to make the delimiter a ò;ó again when

you change it.

Ô [begin_label :] WHILE <condition> DO

Ô<statements>

ÔEND WHILE [end_label]

While

Ô Iterate <label> ðstart the loop again

ÔCan only be issued within LOOP, REPEAT, or WHILE statements

ÔWorks much like the òcontinueó statement in Java or C++.

Ô Leave <label> ðjumps out of the control construct that has

the given label.

ÔCan only be issued within LOOP, REPEAT, or WHILE statements,

just like the iterate statement.

ÔYou can use this at any level of nesting, Ą you can jump out to

the out of the outermost loop if you desire.

Loop Control Flow

Example

Ô Suppose we want to keep track of the total salaries of

employees working for each department

We need to write a procedure

to update the salaries in

the deptsal table

Example ðStep 1

Step 1: Change the delimiter (i.e., terminating character) of SQL

statement from semicolon (;) to something else (e.g., //) So that

you can distinguish between the semicolon of the SQL statements

in the procedure and the terminating character of the procedure

definition

Example ðStep 2

Step 2:

1. Define a procedure called updateSalary which takes as

input a department number.

2. The body of the procedure is an SQL command to update

the totalsalary column of the deptsal table.

3. Terminate the procedure definition using the delimiter you

had defined in step 1 (//)

Example ðStep 3

Step 3: Change the delimiter back to semicolon (;)

Example ðStep 4

Step 4: Call the procedure to update the totalsalary for each

department

Example ðStep 5

Step 5: Show the updated total salary in the deptsal table

Stored Procedures in MySQL

Ô Use show procedure status to display the list of stored

procedures you have created

Ô Use drop procedure to remove a stored procedure

Ô Using the select statement

ÔSELECT ôCommentõ; -- Put the literal Comment out to console

ÔSELECT concat (ômyvar is ô, myvar); -- Put the literal prompt out,

followed by the current value of a variable named myvar .

ÔNote, you cannot do this in a function as that is regarded as returning

a result set.

Ô Insert into a table. Putting the current time and date stamp into a

column with the message would be good too.

ÔLog messages to an output file: select é into outfile

ô<file_name >õ;

ÔWhich might be blocked by the secure -file-priv option in MySQL.

Debugging your stored procedures

Stored Procedures in MySQL

ÔMySQL also supports cursors in stored procedures.

ÔA cursor is used to iterate through a set of rows returned by a query

so that we can process each individual row.

ÔTo learn more about stored procedures, go to:

http://www.mysqltutorial.org/mysql -stored -procedure -tutorial.aspx

Example using Cursors

ÔThe previous procedure updates one row in deptsal table based

on input parameter

ÔSuppose we want to update all the rows in deptsal simultaneously

ÔFirst, letõs reset the totalsalary in deptsal to zero

Example using Cursors ðPart 2

Drop the old procedure

Use cursor to iterate the rows

Example using Cursors ðPart 3
Ô Call procedure

Another Example

Ô Create a procedure to give a raise to all employees

Another Example ðPart 2

Another Example ðPart 3

Ô Your user-defined functions can act just like a function defined in the
database.

Ô They take arguments and return a single output.

Ô The general syntax is: create function <name> (<arg1> <type1>,
[<arg2> <type2> [,é]) returns <return type> [deterministic]

ÔDeterministic means that the output from the function is strictly a
consequence of the arguments.

ÔSame values input Ą same values output.

ÔLike a static method in Java.

ÔNote that the arguments cannot be changed and the new values
passed back to the caller.

ÔFollow that with begin é end and you have a function.

Functions

Functions

Ô You need ADMIN privilege to create functions on mysql -user server

Ô Functions are declared using the following syntax:

function <function -name> (param_spec 1, é, param_spec k)

returns <return_type >

[not] deterministic allow optimization if same output

for the same input (use RAND not deterministic)

Begin

-- execution code

end;

where param_spec is:

[in | out | in out] < param_name > <param_type >

Example of Functions

Another Example of Functions

SQL Triggers

Ô To monitor a database and take a corrective action when a

condition occurs

Ô Examples:

ÔCharge $10 overdraft fee if the balance of an account after a

withdrawal transaction is less than $500

ÔLimit the salary increase of an employee to no more than 5% raise

CREATE TRIGGER trigger - name

trigger - time trigger - event

ON table - name

FOR EACH ROW

trigger - action ;

trigger -time Í{BEFORE, AFTER}

trigger -event Í{INSERT,DELETE,UPDATE}

Triggers

CREATE

[DEFINER = { user | CURRENT_USER }]

TRIGGER trigger_name

trigger_time trigger_event

ON tbl_name FOR EACH ROW

[trigger_order]

trigger_body

trigger_time : { BEFORE | AFTER }

trigger_event : { INSERT | UPDATE | DELETE }

trigger_order : { FOLLOWS | PRECEDES } other _trigger_name

ÅPlease see:
http://dev.mysql.com/doc/refman/5.7/en/create -
trigger.html for the complete specification for triggers.

SQL Triggers: An Example

ÔWe want to create a trigger to update the total salary of

a department when a new employee is hired

SQL Triggers: Another Example

Create a trigger to update the total salary of a department

when a new employee is hired:

The keyword ñnewò refers to the new row inserted

SQL Triggers: Another Example ðPart 2

totalsalary increases by 90K

totalsalary did not change

SQL Triggers: Another Example ðPart 3

Ô A trigger to update the total salary of a department when an

employee tuple is modified:

SQL Triggers: An Example ðPart 4

SQL Triggers: Another Example ðPart 5

Ô A trigger to update the total salary of a department when an

employee tuple is deleted:

SQL Triggers: Another Example ðPart 6

ÔA given trigger can only have one event.

Ô If you have the same or similar processing that has to go
on during insert and delete, then itõs best to have that in
a procedure or function and then call it from the trigger.

ÔA good naming standard for a trigger is
<table_name >_event if you have the room for that in
the name.

ÔJust like a function or a procedure, the trigger body will
need a begin é end unless it is a single statement
trigger.

A Few Things to Note

ÔWhile in the body of a trigger, there are potentially two sets of

column values available to you, with special syntax for denoting

them.

Ôold.<column name> will give you the value of the column before the

DML statement executed.

Ônew.<column name> will give you the value of that column after the

DML statement executed.

Ô Insert triggers have no old values available, and delete triggers

have no new values available for obvious reasons. Only update

triggers have both the old and the new values available.

ÔOnly triggers can access these values this way.

The Special Powers of a Trigger

Changing columns in a trigger

Ô In the body of a trigger, it is possible to change the

values for the columns in the current row.

ÔJust use the òsetó verb to change them.

ÔYou can only do this for an update or insert trigger.

ÔYou can only change the values of new.<column

name> since there is no point to changing the old

values.

ÔSimplified example of a parent table: hospital_room as

the parent and hospital_bed as the child.

ÔThe room has a column: max_beds that dictates the

maximum number of beds for that room.

ÔThe hospital_bed table has a before insert trigger that

checks to make sure that the hospital room does not

already have its allotted number of beds.

More Examples

The Trigger

CREATE DEFINER=`root`@`localhost `

TRIGGER `programming`.` hospital_bed_BEFORE_INSERT̀

BEFORE INSERT ON `hospital_bed ` FOR EACH ROW

BEGIN

declare max_beds_per_room int;

declare current_count int;

select max_beds into max_beds_per_room

from hospital_room

where hospital_room_no = new.room_id ;

select count(*) into current_count

from hospital_bed

where room_id = new.room_id ;

if current_count >= max_beds_per_room then

signal sqlstate '45000' set message_text ='Too many beds in that room already!';

end if;

END;

Firing the trigger

insert into hospital_bed (room_id , hospital_bed_id)

values ('323B', 1);

insert into hospital_bed (room_id , hospital_bed_id)

values ('323B', 2);

insert into hospital_bed (room_id , hospital_bed_id)

values ('323B', 3);

insert into hospital_bed (room_id , hospital_bed_id)

values ('323B', 4);

insert into hospital_bed (room_id , hospital_bed_id)

values ('323B', 5);

Error Code: 1644. Too many beds in that room already!

Using a Stored Procedure Instead
CREATE DEFINER=`root`@`localhost ` PROCEDURE t̀oo_many_beds `(in room_id varchar(45))
BEGIN

declare max_beds_per_room int;
declare current_count int;
declare room_count int;
-- see if the hospital room exists
select count(*) into room_count
from hospital_room
where hospital_room_no = room_id ;
if room_count = 1 then -- we can see if room for 1 more bed
begin

select max_beds into max_beds_per_room
from hospital_room
where hospital_room_no = room_id ;
-- count the beds in this room
select count(*) into current_count
from hospital_bed
where room_id = room_id ;
if current_count >= max_beds_per_room then

-- flag an error to abort if necessary
signal sqlstate '45000' set message_text ='Too many beds in that room already!';

end if;
end;

end if;
END

The new & improved trigger

CREATE DEFINER=`root`@`localhost̀
TRIGGER
`programming`.h̀ospital_bed_BEFORE_INSERT`
BEFORE INSERT ON `hospital_bed̀ FOR EACH
ROW
BEGIN

call `too many beds`(new.room_id);
END;

ÔBecause that is in isolation from the beds table, we have to

check to make sure that the room number is viable.

ÔAs a stored procedure, this can be called directly from the

command line as a means of unit testing.

ÔIõm still not too sure how exacting the typing of the parameters

has to be. For instance, does that one argument have to be

exactly a varchar(45) in order for it to work, or not?

Comments on the Procedure

ÔMySQL has a schema that has tables for all of the information
that is needed to define and run the data in the database.
This is meta data.

Ô select * from information_schema.triggers where
trigger_schema =ô<your schema name>'; -- retrieve the trigger
information for the triggers in <your schema name>.

ÔAlternatively, you can use the òshow triggersó command (this
is not SQL) that will display a report of your triggers from the
default schema.

mysql> show triggers;

Viewing Your Triggers

ÔIf youõre using MySQL Workbench, the IDE provides access to your
triggers:

Ô In the navigator pane, right click the table that has the trigger.

ÔSelect "Alter Table"

ÔThis will open up a rather lavish dialog which has tabs down near the
bottom. One of those tabs is "Triggers". Select that.

ÔThat will open up another dialog, and over to the left will be the list of
events that you can define triggers for.

ÔAt this point, you can right click one of those events and it will pop up
a menu that will give you the option to create a new trigger for that
event.

ÔOr you can double click an existing trigger to get into an editor on that
particular trigger . This will allow you to update the trigger in place as it
were, rather than drop and recreate it.

Viewing Your Triggers (Continued)

ÔSometimes you need to operate against a table or columns that

are not known at compile time. MySQL has a process using set,

prepare, execute, and deallocate.

Dynamic SQL

CREATE DEFINER=`root`@`localhost ` PROCEDURE `dynamic`(in tableName varchar(40))

begin

set @statement = concat ('select * from ', tableName);

prepare stmt from @statement;

execute stmt ;

set @statement = concat ('select count(*) from ', tableName , ' into @count');

prepare stmt from @statement;

execute stmt ;

select concat ('Count was: ', @count, ' from table: ', tableName);

deallocate prepare stmt ;

end

ÔThe @ in front of a name makes it a user variable, which
is shared between the command session and the stored
procedure.

Ôconcat will take any number of arguments.

ÔJust like the Java API, you can have bind variables in the
SQL that you submit, then use the using clause in the
execute statement.

ÔThe bind variables have to map one for one to the
variables in the using clause: execute stmt using @var1,
@var2, é

Dynamic SQL (Continued)

ÔRemember that all objects that you create, be they tables,

indexes, constraints, triggers, stored procedures, functions,

é exist in the database.

ÔThe data dictionary has the definition of these objects, and

generally speaking, you can use utilities (either in the IDE or

the RDBMS) to reverse engineer those objects.

ÔMySQL Workbench has a way to reverse engineer an entire

schema. Read about it at:

https://dev.mysql.com/doc/workbench/en/wb -reverse -

engineer -live.html .

Configuration Management

Credits

Presentation taken from:

Ôwww.cse.msu.edu/~pramanik/teaching/courses/cse480

/14s/lectures/12/lecture13.ppt by Sakti Pramanik at

Michigan State University

ÔMySQL Procedural Language by David Brown at

California State University Long Beach

