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 Experiments at the University of California, Irvine 

indicate that a neutralized ion beam (NIB) propagates across a 

magnetic field in a time scale of less than 1 µs without a 

significant deflection.  It is shown for a constant beam 

density, the nonlinear and the linear diffusion times are too 

fast and too slow respectively to account for the observed 

diffusion time.  If there is a component of magnetic field 

normal to the surface of the beam, the Hall term becomes 

important and the magnetic field penetrates as dispersive 

whistler waves.  For a constant beam density, the penetration 

time scales with the whistler time rather than the classical 

diffusion time.  A one-dimensional computational calculation, 

using a Gaussian density profile, shows that as the magnetic 

field penetrates from a low to a high density region, the 

magnetic field amplitude grows at a slower rate in comparison 

with a uniform plasma peak density. 

 

I. Introduction 

 

 Experiments involving propagation of neutralized ion beams 

[1] across a magnetic field indicate a magnetic field 

penetration time determined by the plasma Hall resistivity. 
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Theoretical [2-4] investigations indicate that in the presence 

of the perpendicular field,   B! , the Hall resistivity enables the 

magnetic field to penetrate into a uniform density plasma as a 

whistler wave.  The fast penetration of the magnetic field into 

a non-uniform plasma has been recently investigated by 

Fruchtman, Gomberoff and Armale [5-7].  Armale showed, the 

inclusion of a small density gradient does not significantly 

effect the damping.  However, the magnetic field penetrates the 

region of lower density at a faster rate. 

 In this paper, we consider the behavior of whistler waves 

in a one-dimensional plasma slab with a Gaussian density 

profile.  On a short time scale, the ions are assumed to be 

immobile. 

 A time dependent external magnetic field is turned on in 

the vacuum adjacent to the plasma slab at t > 0 by an external 

current.  We further assume the possible existence of a normal 

field component at the slab interface.  We show that the 

magnetic field evolution can be described by a diffusion 

equation with a complex diffusion coefficient.   

For a Gaussian density profile, the numerical solution can be 

separated into real and imaginary parts.  These solutions show 

that the magnetic field penetrates the plasma as a whistler 

wave, with amplitude that decreases in the direction of 

penetration more rapidly for the Gaussian density profile than 

for the constant density. 

 

II. Basic equations 
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 Ohm's law (neglecting the pressure gradient term) for fluid 

plasma is [4]: 

 

 
    
E +

V ! B
c

=
m
ne2

"j
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+ #j +
1
nec

(j ! B),  (1) 

 

where 

 

 
  
! =

1
"

=
m

ne2#ei
, and     j ! n0e(V " ve), 

 

where E and B are the electric and magnetic fields, ! is the 

resistivity, ! is the conductivity, m is the electron mass, e is 

the electron charge, c is the velocity of light,   !ei is the 

electron-ion collision time, j is the current density,   V  (    v e) 

is the fluid (electron) flow velocity, and n is the plasma 

density which varies in the direction of the field penetration. 

 We consider a one dimensional slab model of a neutralized 

ion beam propagating with a constant ion flow velocity     V ! vi as 

shown in Figure 1.  To investigate the Hall effect, we assume 

the existence of a constant normal field component.  The 

motivation for this is explained in references [2,7].  The total 

field in its component form is: 

 

     B(x,t) = (B!,By(x,t),Bz(x,t)), (2) 

 

where   B! is a constant component normal to the plasma slab 

surface in the direction of the magnetic field penetration into 

the plasma.  Using the Maxwell's equations without the 

displacement current: 
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equation (1), for the y-component: 
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and for the z-component: 
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where 

 

 
  
D =

c2!

4"
 

 

is the standard diffusion coefficient, which is essentially 

constant because the resistivity has a weak logarithmic 

dependence on density n.  The second term on the right-hand side 

of the above equations is due to the electron inertia.  

Neglecting the inertia term [7] and introducing a complex 

quantity   B
~

= By + iBz, equations (4) and (5) are coupled to 

obtain: 
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We apply a time dependent external magnetic field as a boundary 

condition, at the vacuum-plasma interface x = ± L/2.  This 

equation is to be solved in the domain –L/2 ≤ x ≤ L/2.  The 

density will be defined only in this domain as constant or a 

Gaussian. 

The boundary condition is: 

 

   
Bs
~

±
L
2
,t! 

" 
# 
$ = Bs

~
(t) = B0

~
1 % e%t / &R( ) for   t > 0, 

 

where   !R is the rise time of the applied field.  The time 

variation of   Bs
~
 induces plasma currents in the slab which 

produce an internal field defined such that   B
~
(x,t) = Bs

~
(t) + b

~
(x,t), 

with the initial condition   Bs
~
(0) = b

~
(x,0) = 0.  We assume a density 

profile such that: 
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 for |x| < L/2, and   n = 0 for |x| > L/2. 

 

Substituting   B
~
(x,t) into equation (6), we obtain: 
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We introduce dimensionless variables 
  
x =

L

2
! and   t = !!D, where: 
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Define: 
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Equation (7) in dimensionless form becomes: 
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The initial condition is: 

 

   b
~
(!, " = 0) = 0 for   1 ! " ! 0. (9) 

 

The boundary conditions are: 

 

   b
~
(! = 1, ") = 0 for   ! > 0, and 

(10) 

 
  

!

!"
b
~
(" = 0, #) = 0 for   ! > 0. 

 

  b
~
(!, ") is an even function of ξ and need only to be determined in 

the domain 0 ≤ ξ ≤ L/2. 

 

A. The case of plasma of uniform density 

 

For   n(x) = n0, equation (8) reduces to a simple diffusion 

equation: 
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where the complex diffusion coefficient is defined as 

  D
~

= (1 ! i").  The analytical solution [4] to equation (11), 

satisfying equations (9) and (10), is: 
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where: 
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These solutions are complex quantities, and are separated into 

real and imaginary parts.  The real and imaginary parts of 

equation (12) are given by: 
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In the absence of the Hall diffusion coefficient,   ! = 0,   D

~
= 1, 

and   by = 0, and equation (11) becomes: 
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Substituting   ! = 0 in equation (14), the solution to equation 

(15) becomes: 
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For a very short magnetic rise time, ! " # and the boundary 

condition at the vacuum-plasma interface becomes a step function 

in time. 

For this case, equation (16) reduces to Armale's result [3].  

The time evolution of equation (14) for   ! = 0,   ! = 20, with 

  ! = 10,   ! = 50, and   ! = 103 are presented by figures 2 to 4 

respectively.  The oscillation frequency for these figures in 

dimensionless form is given by   ̃ ! n = !n"D, with 
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L
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  !n is known as a whistler frequency [8]. 
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As shown in figures, the amplitude increases drastically as ! 

drops from   103 to 10.  Therefore, as ! decreases, so does the 

oscillation frequency, but the amplitude of oscillation 

increases.  Using equation (13), similar results obtain for   by 

component. 

This effect is due to the imaginary part of the complex 

diffusion coefficient containing the Hall resistivity.  The 

exponential decaying parts of the components,   by and   bz, are due 

to the real part of the complex diffusion coefficient.   

This part is the usual collisional resistivity that determines 

the rate of the dissipative collisional diffusion.  When the 

Hall resistivity is much larger than the collisional 

resistivity, i.e.,   ! = "H " » 1, where 

 

 
  
!H =

B"

n0ec
, 

 

the rate of the magnetic field penetration is determined by the 

Hall resistivity. 

The experiment [1] shows that the average decay time is 

determined by the whistler time.  They show for a magnetic field 

of 100 G, an observable penetration time of 17 ns, which 

corresponds to a frequency of 60 MHz.  The whistler time and the 

diffusion time are scaled as: 
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The ratio of   !" !D = 1 # « 1.  For   ! = 103 and   !D = 25 µs, the 

whistler time   !" = 25 ns, close to Armale’s result [7].  From the 

plot of   bz, it is evident that this field should decay to zero 

in a time average equal to the whistler time.  For   n = 2, the 

time average integration of equation (14) approaches zero in a 

time scale   !"# = 12 ns, close to the observed time [1].  This 

clearly shows that the fast penetration time observed in the 

experiments [1] is due to the whistler time. 

 

B. The case of plasma of non-uniform density 

 

We now consider the numerical solution to equation (8) subject 

to initial and boundary conditions: equations (9) and (10).  

Numerical values for: 

 
 

  
! =

DH
D

= "#$ei, 

 

where 

 

 
  
!" =

eB"

mc
, and 

  
! =

"D
"R

» 1, 

 

are determined by the following assumed values: an electron 

temperature of   Te = 10 ev , electron density of   n0 = 3 ! 1011 cm "3, 

collision time of   !ei = 10"6 sec,   B! = 100 G,   ! " 103, and   ! = 20. 

We have also assumed that the rise time of the external magnetic 

field,   !R, is much less than the diffusion time,   !D. 

Figures 4 and 5 represent the time evolution of   bz at locations, 

  ! = 0 and   ! = 0.9, with a constant density   n0 and a Gaussian 



 11 
variable density given by   n(!) = n0e

" !2
 respectively. As shown, the 

amplitude for   ! = 0 is the largest with respect to other 

amplitudes at other locations for the same value of !.  Figure 5 

shows that the magnetic field amplitude grows as it penetrates 

from a low to a high-density region.  A similar result is also 

obtained for   by.  The rate of growth of the magnetic field 

amplitude in the high-density region could be accounted for by 

the energy transport equation: 

 

 
  
S =

cB2!ph

4"
, and 

 

the whistler dispersion relation: 

 

 
  

!ph =
c2"e#Kn

"p
2

$
1

n(x)
. 

 

S represents energy flow and   !ph is whistler phase velocity.  It 

is clear that in the high-density region, the phase velocity of 

the whistler waves that carries the field lines is reduced.  

This reduction causes the amplitude of the field inside the slab 

to increase in order to conserve power in the energy transport 

equation.  A simpler density profile case has been carried out 

by Armale [7].  His results are similar to ours. 

 

III. Conclusion 

 

 We have found that for a one-dimensional slab model of a 

neutralized ion beam of a constant density, when the Hall term 

is introduced into the linear diffusion equation, the magnetic 
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field penetration is enhanced, if the background magnetic field 

has a component in the direction of penetration.  It is shown 

that the Hall resistivity enables the magnetic field to 

penetrate as a whistler wave.  We also found that the time 

average of the magnetic field due to the plasma current goes to 

zero on the whistler time scale rather than the diffusion time 

scale. 

Furthermore, a numerical solution is obtained for the diffusion 

equation using a Gaussian density profile.  We have found that 

the diffusion of the magnetic field from the low to high-density 

regions into the slab results in an increase of the magnetic 

field amplitude at a slower rate. 
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