H.Tahsiri
x={50.36,50.35,50.41,50.37,50.36,50.32,50.39,50.38,50.36,50.38} {50.36, 50.35, 50.41, 50.37, 50.36, 50.32, 50.39, 50.38, 50.36, 50.38}
n=Length[x] 10 meanx=1/n Sum[x[[i]],{i,1,n}] 50.368
sigmax=Sqrt[1/(n-1) Sum[(x[[i]]-meanx)^2,{i,1,n}]] 0.024404
sdomx=sigmax/Sqrt[n]//N 0.00771722
<<DescriptiveStatistics.m
Clear[x,n,meanx,sigmax,sdomx]
x={50.36,50.35,50.41,50.37,50.36,50.32,50.39,50.38,50.36,50.38} {50.36, 50.35, 50.41, 50.37, 50.36, 50.32, 50.39, 50.38, 50.36, 50.38}
n=Length[x] 10
meanx=Mean[x] 50.368
sigmax=StandardDeviation[x] 0.024404
sdomx=sigmax/Sqrt[n]//N 0.00771722
StandardErrorOfSampleMean[x](*this uses Sqrt[n-1]*) 0.00813467
Clear[x,y,n]
x={1,2,3,4,5} {1, 2, 3, 4, 5}
y={7.57,11.97,16.58,21,25.49} {7.57, 11.97, 16.58, 21, 25.49}
n=Length[x Or y] 5
s1= Sum[x[[i]] y[[i]],{i,n}];
s2=Sum[x[[i]],{i,n}];
s3=Sum[y[[i]],{i,n}];
s4= Sum[x[[i]]^2,{i,n}];
s5=(Sum[x[[i]],{i,n}])^2;
s7=(Sum[x[[i]]^2,{i,n}]);
s8=(Sum[y[[i]]^2,{i,n}]);
corrcoeff=(n s1-s2*s3)/((Sqrt[n s4-s5])*(Sqrt[n s8-s9]))//N 0.99998
m=(n*s1-s2*s3)/(n*s4-s5) 4.487
b=(s3*s4-s1*s2)/(n*s4-s5) 3.061
Y=m X + b 3.061 + 4.487 X
Clear[t,v0,v]
v[t_]:=3.061 + 4.487 t
fitplot=Plot[v[t],{t,0,5},DisplayFunction->Identity];
data={{1,7.57},{2,11.97},{3,16.58},{4,21},{5,25.49}} {{1, 7.57}, {2, 11.97}, {3, 16.58}, {4, 21}, {5, 25.49}}
dataplot=ListPlot[data,PlotRange->{{0,5},{0,30}}, PlotStyle->PointSize[0.02],DisplayFunction->Identity]; together=Show[{dataplot,fitplot}, DisplayFunction->$DisplayFunction];
data={{1, 7.57}, {2, 11.97}, {3, 16.58}, {4, 21}, {5, 25.49}} {{1, 7.57}, {2, 11.97}, {3, 16.58}, {4, 21}, {5, 25.49}}
squarefit=Fit[data,{1,t},t] 3.061 + 4.487 t
plotsquarefit=Plot[squarefit,{t,0,5},DisplayFunction->Identity]; dataplot=ListPlot[data,PlotStyle->PointSize[0.02], DisplayFunction->Identity]; pp=Show[dataplot,plotsquarefit,DisplayFunction->$DisplayFunction];
<<DescriptiveStatistics.m
x={50.36,50.35,50.41,50.37,50.36,50.32,50.39,50.38,50.36,50.38} {50.36, 50.35, 50.41, 50.37, 50.36, 50.32, 50.39, 50.38, 50.36, 50.38}
y={24.25,24.26,24.22,24.28,24.24,24.25,24.22,24.26,24.23,24.24} {24.25, 24.26, 24.22, 24.28, 24.24, 24.25, 24.22, 24.26, 24.23, 24.24}
n=Length[x Or y] 10
xmean=Mean[x] 50.368
ymean=Mean[y] 24.245
sigmax=StandardDeviation[x] 0.024404
sigmay=StandardDeviation[y] 0.0190029
sdomx=sigmax/Sqrt[n]//N 0.00771722
sdomy=sigmay/Sqrt[n]//N 0.00600925
AreaAverage=N[Sqrt[(ymean^2*sdomx^2+xmean^2*sdomy^2)],1] 0.4 Back to Problems