Electric field Plot
Approximate the potential and the electric field, on the axis of a possitively charged ring
H.Tahsiri
Off[General::spell]; Off[General::spell1]; Pagewidth->70;
Clear[Vp,Q,R,k,y]
1) Find the Electric potential
Vp[y_]=k Q/Sqrt[y^2+R^2] k Q ------------- 2 2 Sqrt[R + y ]
2) Taylor expand the potential, up to a second order, near the center of the ring
Vpnear=Series[Vp[y],{y,0,2}]//Normal//Simplify 2 2 k Q (2 R - y ) --------------- 2 3/2 2 (R )
3) Find the potential far away from the center of the ring
Vpfar=Series[Vp[y],{y,Infinity,2}]//Normal k Q --- y
4) Find the electric field , by taking the first derivative or the gradient of the potential found in (1)
Ep=-D[Vp[y],{y,1}] k Q y ------------ 2 2 3/2 (R + y )
5) Taylor expand the electric field up to a second order
Epnear=Series[Ep,{y,0,2}]//Normal k Q y ------- 2 3/2 (R )
6) Find the electric field far from the center of the ring ( a point charge approximations)
Epfar=Series[Ep,{y,Infinity,3}]//Normal k Q --- 2 y
7) Plot of the electric field as a function of y ( in blue )
given={k->1,Q->1,R->1}; Epplot=Plot[Ep/.given,{y,-5,5},PlotRange->{{-5,5},{-.5,.5}}, PlotStyle->{Hue[0.6]},AxesLabel->{"y",""},PlotLabel -> StyleForm[TraditionalForm["E=(k Q y)/(R^2 + y^2)^(3/2)"], FontSize -> 12]];
8) Plot of the electric field as a function of y near y=0 (near field approximation )
Epnearplot=Plot[Epnear/.given,{y,-5,5},PlotRange->{{-5,5},{-.5,.5}}, PlotStyle->{Hue[0.9]},AxesLabel->{"y",""},PlotLabel -> StyleForm[TraditionalForm["E=(k Q y)/ R^3 ( E near center )"], FontSize -> 12]];
9) Plot of the electric field as a function of y, far from the center ( far field approximations)
Epfarplot=Plot[Epfar/.given,{y,-5,5},PlotRange->{{-5,5},{-100,100}}, PlotStyle->{Hue[.4]},AxesOrigin->{0,0}, AxesLabel->{"y",""},AxesLabel->{"E","y"},PlotLabel -> StyleForm[TraditionalForm["E=(k Q)/ y^2,(E far from center)"], FontSize -> 12]];
Epsurfacetopbottom3=SurfaceOfRevolution[Epfar/.given,{y,-8,8}, PlotRange->All,RevolutionAxis->{1,0,0}, Boxed->False,AxesEdge->None, ViewVertical->{0.,1.,1.},ImageSize->250,PlotLabel -> StyleForm[TraditionalForm["E=(k Q)/ y^2,( y verses E )"], FontSize -> 12]];
10 ) Show all of the plots together
text=Graphics[{Text["NearField(red)",{4.3,.2}], Text["FarField(green)",{4.3,.3}],Text["E-Field(blue)",{4.1,.4}]}]; Eplotall=Show[{Epplot,Epnearplot,Epfarplot},PlotLabel-> Electric Field Plots, PlotRange->{{-5,5},{-.5,.5}},AxesLabel->{"y",""},Epilog->text[[1]], PlotLabel->"E-Fields"];
1) E-field plot verses y. (no approximation)
2) E-field plot for a distance near the center of the ring.( a near point approximation )
1) E-field plot for a distace far from the center of the ring.(a point charge approximation)