Newton second law for the motion of an electron through a ring of charge
H.Tahsiri
Off[General::spell]; Off[General::spell1]; Pagewidth->70; Clear["Global`*"]; Clear[y,V,a,t]
1) The electric field near y=0 is
Ep = k Q y/R^3 k Q y ----- 3 R
2) Use Newton second law to write the equation of motion
F = ma;a=dV/dt
3) The force and the field are related by
F=q Ep =-e Ep
4) The angular frequency and the period are related by
w0=2Pi f=2Pi/T= k Q e/(m R^3)=1
5 ) The equation of motion is written as
equ= D[y[t],{t,2}]+ y[t] y[t] + y''[t]
6 ) The Solution is
sol=DSolve[{equ==0,y[0]==y0,y'[0]==0},y[t],t][[1,1]] y[t] -> y0 Cos[t]
7 ) The displacement of the electron as a function of time is
y[t_]=y0 Cos[t] y0 Cos[t]
8 ) The velocity of the electron as a function of time is
V[t_]=D[y[t],t] -(y0 Sin[t])
9 ) The acceleration of the electron as a function of time is
a[t_]=D[V[t],t] -(y0 Cos[t])
10 ) Plot the displacement, the velocity and the acceleration
ploty=Plot[y[t]/.y0->.1,{t,0,6}, PlotStyle->RGBColor[1,0,0]];
Plot of Displacement verses Time: y(t)=y0 sin(t)
Plot of Velocity verses Time: v(t)= - y0 sin(t)
plotV=Plot[V[t]/.y0->.1,{t,0,6}, PlotStyle->RGBColor[0,0,1]];
Plot of Acceleration verses Time: a(t)= - y0 cos(t)
plota=Plot[a[t]/.y0->.1,{t,0,6}, PlotStyle->RGBColor[0,1,0]];
11 ) Combine the plots
plotall=Show[{ploty,plotV,plota},PlotRange->{-.1,.1}];
y(t)=y0 cos(t)
v(t)= - y0 sin(t)
a(t)= - y0 cos(t)