Plank's  Radiation  Law

plankrad[lambda_,T_]=2 h c^2/((lambda^5 ( Exp[h c/(lambda k T)]-1)))
                      2
2 c h
----------------------------------
(c h)/(k lambda T) 5
(-1 + E ) lambda

Integrate to find the total radiation output by the source with teperature T.

outputrad=Integrate[plankrad[lambda,T],{lambda,0,Infinity}][[2]]
        4   4  4
2 k Pi T
-----------
2 3
15 c h

The above result shows that the total output radiation from a blackbody is proportional to the forth power of the temperature.Stefan-Boltzmann Law.

Now evaluate the amount of radiation within the visible part of the spectrum.Take this spectral region to be between 400 and 700 nanometer.

given={k->1.380658 10^(-23),h->6.626076 10^(-34),c->3 10^8.}
                     -23                 -34            8
{k -> 1.38066 10 , h -> 6.62608 10 , c -> 3. 10 }

p6000=Plot[plankrad[lambda,6000]/.given,{lambda,0, 1500 10^(-9)},PlotRange->{{0,1500 10^(-9)},{0,3.5 10^13}}, PlotStyle->RGBColor[0,0,1],Ticks->{{0,400. 10^(-9),800. 10^(-9),1200. 10^(-9)},{0,5. 10^12,1.5 10^13,2.5 10^13,3.5 10^13}},AxesLabel->{"wavelength","Intensity"},Epilog->{{Text["T = 6000 K ",{1.3 10^(-6),1.5 10^13}]}}];
[Graphics:plankgr2.gif][Graphics:plankgr1.gif]

p5000=Plot[plankrad[lambda,5000]/.given,{lambda,0, 1500 10^(-9)},PlotRange->{{0,1500 10^(-9)},{0,3.5 10^13}}, PlotStyle->RGBColor[1,0,0],Ticks->{{0,400. 10^(-9),800. 10^(-9),1200. 10^(-9)},{0,5. 10^12,1.5 10^13,2.5 10^13,3.5 10^13}},AxesLabel->{"wavelength","Intensity"},Epilog->{{Text["T = 5000 K ",{1.2 10^(-6),1 10^13}]}}];
[Graphics:plankgr2.gif][Graphics:plankgr3.gif]

p4000=Plot[plankrad[lambda,4000]/.given,{lambda,0, 1500 10^(-9)},PlotRange->{{0,1500 10^(-9)},{0,3.5 10^13}},
PlotStyle->RGBColor[1,0,1],Ticks->{{0,400. 10^(-9),800. 10^(-9),1200. 10^(-9)},{0,5. 10^12,1.5 10^13,2.5 10^13,3.5 10^13}},AxesLabel->{"wavelength","Intensity"},Epilog->{{Text["T = 4000 K ",{8 10^(-7),1 10^13}]}}];
[Graphics:plankgr2.gif][Graphics:plankgr4.gif]

planktogether=Show[{p6000,p5000,p4000},Epilog->{Text["T=6000 K ",{1 10^(-6),2.5 10^13}],Text["T=5000 K ",{6 10^(-7),1.5 10^13}],
Text["T=4000 K ",{7 10^(-7),5.8 10^12}]},AxesLabel->{"Wavelength","Intensity"}];
[Graphics:plankgr2.gif][Graphics:plankgr5.gif]

p=Do[Plot[plankrad[lambda,T]/.given,{lambda,0, 1500 10^(-9)},PlotRange->{{0,1500 10^(-9)},{0,50 10^13}},
Ticks->{{0,400. 10^(-9),800. 10^(-9),1200. 10^(-9)},{0,1. 10^14,2. 10^14,3. 10^14,4. 10^14,5. 10^14}},AxesLabel->{"wavelength","Intensity"}],{T,4000,10000,1000}];


Stefan's  Law

Total radiation output over all wavelenght ,when summed ove solid angles gives the Stefan law

stefan=Pi outputrad/.given
               -8  4
5.66266 10 T

Wien's law

Plank' law, when the exponetial becomes very large compared to unity becomes

wien [lambda_,T_]=2 h c^2/((lambda^5 ( Exp[h c/(lambda k T)])))
                  2
2 c h
---------------------------
(c h)/(k lambda T) 5
E lambda

maximize=D[wien [lambda,T],lambda]//Simplify
          2
2 c h (c h - 5 k lambda T)
-------------------------------
(c h)/(k lambda T) 7
E k lambda T

maxlambda=Solve[maximize==0,lambda]/.given
                 0.00287953
{{lambda -> ----------}}
T

wienplot1=Plot[wien[lambda,6000]/.given,{lambda,0, 1500 10^(-9)},PlotRange->{{0,1500 10^(-9)},{0,3.5 10^13}},Ticks->{{0,400. 10^(-9),800. 10^(-9),1200. 10^(-9)},{0,5. 10^12,1.5 10^13,2.5 10^13,3.5 10^13}}, PlotStyle->RGBColor[0,0,0],DisplayFunction->Identity];

wienplot2=Plot[wien[lambda,5000]/.given,{lambda,0, 1500 10^(-9)},PlotRange->{{0,1500 10^(-9)},{0,3.5 10^13}},Ticks->{{0,400. 10^(-9),800. 10^(-9),1200. 10^(-9)},{0,5. 10^12,1.5 10^13,2.5 10^13,3.5 10^13}}, PlotStyle->RGBColor[0,0,0],DisplayFunction->Identity];

[Graphics:plankgr2.gif][Graphics:plankgr6.gif]

[Graphics:plankgr2.gif][Graphics:plankgr7.gif]
[Graphics:plankgr2.gif][Graphics:plankgr8.gif]

[Graphics:plankgr2.gif][Graphics:plankgr9.gif]
[Graphics:plankgr2.gif][Graphics:plankgr10.gif]