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Abstract—Recent microarchitectural security countermea-
sures by employing applications’ low-level features collected
from Hardware Performance Counters (HPCs) registers have
emerged as a promising solution to address the inefficiency of
traditional software-based methods. Furthermore, recent studies
have shown that malicious activities at the hardware level ranging
from application-based malware to microarchitecture-based Side-
Channel Attacks (SCAs) can be accurately distinguished from
normal traces using Machine Learning (ML) algorithms. Such
ML-based countermeasures reduce the latency of attack detec-
tion process as well as the hardware and resource utilization
overheads. This paper provides an in-depth analysis of recent
advancements in machine learning countermeasures for microar-
chitectural security to detect malicious software and emerging
side-channel attacks.
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I. INTRODUCTION

Cybersecurity for the past decades has been in the front
line of global attention as a critical threat to the information
technology infrastructures. Attackers are increasingly moti-
vated and enabled to compromise software and computing
hardware infrastructure. Recent studies have shown that the
attackers take advantage of emerging hardware vulnerabilities
to compromise systems and deploy malicious activities. Hence,
the security of a computer system can be compromised at the
hardware level through various types of attacks such as by
executing malicious applications to infect the target host or
deploying microarchitectural side-channel attacks (SCAs) to
infer confidential information. Malware refers to any piece of
software written with the intent of stealing data, unauthorized
data access, damaging devices, etc. Viruses, Trojans, Spyware,
Rootkits, and Ransomware are among the different types of
malware [1, 2]. Microarchitectural SCAs have also posed
serious threats to the security of modern computing systems.
Such attacks exploit side-channel vulnerabilities originating
from fundamental performance improving components such as
cache memories [3, 4].

The significant growth of modern computing systems in
embedded applications and Internet-of-Things (IoT) domains
has further highlighted the serious impact of such threats.
There exists some important factors influencing the security
vulnerability of embedded systems and IoTs including the
limited energy and resources available, the low computational
capacity, and significant number of computing nodes in the
network [5, 6]. Therefore, to keep on combating the increase
in malicious cyber-attacks, there is an urgent need to develop
intelligent security countermeasures to protect the integrity and
confidentiality of the authenticated users’ information.

Conventional software-based detection techniques have

shown to be inefficient mostly imposing significant complexity
and computational overheads on the system. In addition, such
detection methods depend on the static signature analysis of
executed applications that makes them incapable of detecting
complex unknown attacks. Recent advancements in microar-
chitectural security have demonstrated that malicious activities
at the processor hardware level ranging from application-based
malware to microarchitecture-level side-channel attacks can be
accurately identified with the aid of standard Machine Learning
(ML) algorithms [2, 7, 8]. Such methods apply the standard
ML techniques on the low-level features such as microarchi-
tectural events collected by Hardware Performance Counter
(HPCs) registers to train and test effective classifiers to detect
malicious patterns of running programs. HPC events have
primarily been deployed to conduct architectural performance
analysis and tuning. Recent works have proposed to utilize the
HPCs information for securing the hardware systems against
both malware software and microarchitectural SCAs.

Microarchitectural security in the form of detection of
malicious software and emerging side-channel attacks in com-
puting systems, is an area of major concern not only to the
research community but also to the general public. This paper
devotes to the comprehensive analysis of machine learning-
focused defense mechanisms against malicious applications
and SCAs targeting the available on-chip hardware perfor-
mance counters in modern microprocessors. In particular, we
present a review of recent ML-based detection mechanisms and
countermeasures for enhancing the security of the systems at
the microarchitecture level.

II. DEPLOYMENT OF HARDWARE PERFORMANCE
COUNTERS FOR SECURITY

The complexity of today’s computing systems has tremen-
dously increased in the past decades. Hierarchical cache sub-
systems and processor pipeline, simultaneous multithreading,
and out-of-order execution units have a significant impact on
the performance of computing systems. Access to the per-
formance monitoring module, an essential feature in modern
microprocessors (e.g. Intel, ARM, and AMD), is generally
provided in the form of programmable hardware performance
counter registers. HPCs are specialized registers designed
inside modern microprocessors to monitor and capture differ-
ent hardware-related events [9, 10]. Due to limited number
of physical expensive to implement HPC registers on the
processor chip, HPCs are constrained in the number of events
that could be counted concurrently.

HPCs are able to count a variety of low-level events such
as cache memories access and misses, TLB hits and misses,
and branch mispredictions for various optimization targets such
as performance, energy-efficiency, and security enhancement.



TABLE I: Common HPC features used for malware detection
I HPC event I Description |
Branch instructions
Branch-misses
Instructions
bus-cycles
Cache misses
Cache-references
L1-dcache-load-misses
L1-dcache-loads
L1-dcache-stores
L1-icache-load-misses
node-loads
node-stores
LLC-load-misses
LLC-loads
iTLB-load-misses
Branch-loads

# branch instructions retired
# branches mispredicted
# instructions retired
time to make a read/write between the cpu and memory
# last level cache misses
# last level cache references
# cache lines brought into L1 data cache
# retired memory load operations
# cache lines into L1 cache from DRAM
# instruction misses in L1 instructions cache
# successful load operations to DRAM
# successful store operations to DRAM
# cache lines brought into L3 cache from DRAM
# successful memory load operations in L3
# misses in instruction TLB during load operations
# successful branches

Table I reports some of the commonly deployed low-level
features captured by HPC registers from Perf tool under Linux
in a recent hardware-based malware detection work [2].

ITI. APPLICATION OF MACHINE LEARNING FOR
SECURITY COUNTERMEASURES

Recent developments in the area of machine learning
and data mining, motivated by a significant increase in the
size of data from high-performance computing systems, have
resulted to successful applications of ML in various domains
such as security enhancement of computing systems. Figure
1 demonstrates a general overview of machine learning-based
countermeasures for microarchitectural security in the form of
malware or SCAs detection. As shown, it often includes dif-
ferent stages such as monitoring the application to profile the
HPC data, feature analysis, training, and testing the ML-based
detector using the collected features. The ML models trained
by low-level microarchitectural features continuously learn by
analyzing the HPCs data to identify the malicious patterns and
protect the processor architecture against information leakage
caused by emerging SCAs.

A. Feature Selection: Key Microarchitectural Features

Identifying the prominent low-level features is an important
step for developing accurate ML-based countermeasures. There
exists numerous microarchitectural events with different func-
tionality available to collect from running programs in modern
microprocessors. Counting all possible features would result
in a high dimensional data which increases computational
complexity and induces delay. Moreover, including irrelevant
features could reduce the accuracy of classifiers [11, 12].

As a result, feature selection methods are beneficial for
enhancing the performance of learning process, reducing the
computational complexity and the required storage on the com-
puting systems. For effective run-time detection in resource-
limited systems (e.g. embedded devices) which have limited
number of HPCs physically available on the processor’s chip,
feature selection even plays a more important role in deter-
mining the minimal set of critical HPCs to collect the required
data in a single run [2]. The selected HPC features are then
used to train each ML-based detector in which the classifier
attempts to find a correlation between the feature values and
the application behavior to predict the existence of malicious
patterns (benign or attack type).

B. Performance Evaluation Metrics

Evaluating the performance of machine learning classifiers
is an important step in implementing effective ML-based
countermeasure techniques. In machine learning and statistics,
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Fig. 1: General overview of machine learning countermeasures for
malware and SCAs detection
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Fig. 2: Confusion matrix layout for a machine learning classifier

there are variety of measures that can be deployed to evaluate
the performance of a detection method in order to show its
detection accuracy. Confusion matrix is a basic evaluation mea-
sure for this purpose. In statistical machine learning domain,
a confusion matrix, is a specific table with four outcomes
produced as a result of binary classification that represents the
prediction performance of a classifier. As depicted in Figure
2, a confusion matrix comprised of two dimensions namely
as “actual” and “’predicted”, and identical sets of “classes” in
both dimensions. Each row of the confusion matrix represents
the instances in a predicted class while each column represents
the instances in an actual class.

The standard evaluation metrics used for performance anal-
ysis of ML-based security countermeasures are summarized
in Table II. For analyzing the detection rate, malicious appli-
cations samples are considered as positive instances. Hence,
the True Positive Rate (TPR) represents the proportion of
correctly identified positive instances or malicious samples.
The True Negative Rate (TNR) also evaluate the specificity that
measures the proportion of correctly identified bengin files or
negative samples. In addition, the False Positive Rate (FPR) is
the rate of benign files that are wrongly classified as malware.

The F measure (F score) in ML is interpreted as a weighted
average of the precision (p) and recall (r). The precision is
the proportion of the sum of true positives versus the sum of
positive instances and the recall is the proportion of instances
that are predicted positive of all the instances that are positive.
F measure is a more comprehensive evaluation metric over
accuracy (percentage of correctly classified samples) since it
takes both the precision and the recall into consideration. More
importantly, F measure is also resilient to class imbalance in
the dataset which is the case in our experiments. The Detection
Accuracy (ACC) further measures the rate of the correctly
classified positive and negative samples [9, 13].

Receiver Operating Characteristic (ROC) is a statistical



TABLE II: Evaluation metrics for performance of ML-based detection
Evaluation Metric Description
True Positive (1T'P) Correct positive prediction
False Positive (F'P) Incorrect positive prediction
True Negative (T'N) Correct negative prediction
False Negative (F'N) Incorrect negative prediction
Specificity: True Negative Rate TNR=TN/(TN + FP)
False Positive Rate FPR=FP/(FP+TN)
Precision P=TP/(FP+TN)
Recall: True Positive Rate TPR=TP/(TP + FN)
F measure (F score) Fmeasure =2 X (P X R)/(P+ R)
Detection Accuracy ACC=(TP+TN)/(TP+FP+TN + FN)
Error Rate ERR=(FP+FN)/(P+N)
Area Under the Curve AUC = [] TPR(z)dz = [} P(A > r(z))dz

plot that depicts a binary detection performance while its
discrimination threshold setting is changeable. The ROC space
is supposed by FPR and TPR as x and y axes, respectively.
It determines trade-offs between TP and FP (the benefits and
costs analysis). Given that the TPR and FPR are equivalent
to sensitivity and (1-specificity) respectively, each prediction
result represents one point in the ROC graph in which the point
in the upper left corner ([0, 1]) stands for the perfect detec-
tion result, indicating 100% sensitivity and 100% specificity.
Area Under the Curve (AUC) is another important evaluation
metric for checking any ML model’s performance at various
thresholds settings. It shows how well a classification model
is capable of distinguishing between different classes.

IV. MICROARCHITECTURAL SECURITY

This section presents the state-of-the-arts on malware and
side-channel attack detection using machine learning tech-
niques at processor microarchitecture level. Table III further
characterizes recent hardware-assisted malware and SCA de-
tection techniques and their deployed classification methods.

A. Malware Detection using HPCs information

In response to the challenges of traditional malware detec-
tion solutions, Hardware-assisted Malware Detection (HMD)
methods were proposed that use low-level features captured
by HPCs combined with ML techniques to distinguish the
malicious patterns from benign applications. The recent studies
have also demonstrated the efficacy of HMD methods in
lowering the computational latency and hardware overheads of
detection process [2]. The work in [8] was the first proposal
that explored the feasibility of deploying HPCs information for
building accurate ML-based malware detectors. They applied
ML algorithms such as Neural Network and K-Nearest Neigh-
bour and demonstrated high detection accuracy for Android
malware detection. Tang et al. [14] further discussed the appli-
cation of unsupervised learning on low-level hardware-related
data to identify buffer overflow attacks. In a different work,
Ozsoy et al. [15] deployed sub-semantic features to implement
Logistic Regression (LR) and Neural Network-based classi-
fiers for real-time malware detection. While effective, their
proposed solution suggested modification in microprocessor
pipeline which increases the overhead and complexity.

The research in [16] applied logistic regression to classify
malware into different types and trained a specialized classifier
for detecting each type. The work in [10] proposed accurate
ML model to detect synthetic rootkits based on HPCs fea-
tures. To address the challenges of HPC-based run-time mal-
ware detection, Sayadi et al. [2] proposed ensemble learning
techniques to improve the performance of hardware-assisted
malware detectors by accounting for the impact of reducing
the number of HPC features on the performance of malware
detectors. In addition, a recent work in [9] proposed a two-

stage machine learning-based approach for run-time malware
detection in which in the first level classifies applications using
a multiclass classification technique into either benign or one
of the different malware classes In the second level, to have a
high detection performance, the authors deploy an ML model
that works best for each class of malware and further apply
effective ensemble learning to enhance the performance HMD.

B. Side-Channel Attack Detection using HPCs information

With increasing computation demand in modern computer
systems, different components such as cache memories, branch
predictors, and out-of-order execution units are designed in
processors to enhance the performance. Nevertheless, recent
studies have shown that such solutions have resulted in new
microarchitectural vulnerabilities which could be exploited
in modern processors. Cache-based SCAs have demonstrated
powerful capabilities of stealing users’ critical information (e.g
secret keys of cryptographic applications) within the same
processing core or cross-core residency of victim applications.

Flush+Reload: Flush-Reload [20, 21] exploits the weak-
ness of page de-duplication and monitors memory access lines
in shared pages. This attack flushes out the victim data in the
cache and waits for the victim execution. The attacker then
reloads data by accessing them and measures the accessing
time. If accessing time is shorter, it infers the data is accessed
by the victim; else, it has not been accessed by the victim.

Flush+Flush: This attack relies on the execution time of
the flush instruction. Unlike prior attacks, Flush-Flush does not
make any memory accesses, nor it relies on the access latency
of the data. In particular, in this type of SCA, the setup and
first stage is the same as Flush-Reload. In the second stage,
instead of reloading the shared memory blocks, the adversary
flushes the blocks. If the victim fetches a block into the cache,
then flushing this block will take a longer time than when
it is out of the cache. Hence, the Flush has the same effect
as Reload. Moreover, a single Flush operation can serve as a
Check for the current round as well as Set for the next round.

Prime+Probe: This attack targets at L1/L3 data caches.
Prime Probe attack consists of two stages including Prime and
Probe. In the Prime stage, the attacker builds an eviction set (a
group cache sets causing potential conflict with victims) and
fills cache with the eviction sets. Next, the attacker waits for
victim execution and then re-accesses the eviction sets (Probe
stage). If the accessing time is long enough, it means the victim
accessed the data; else, the victim does not access the data [22].

Spectre Attack: Recent Spectre attack takes exploit specu-
lative execution by locating the instructions firstly and tricking
the CPU into speculatively and erroneously executing this
instruction sequence, which leaks information [23]. Specu-
lative execution is used in commercial processors to boost
performance by executing the next execution path predicted
by control flow [24]. When CPU waits for data coming from
memory or disk, the current register state is stored and then
the speculative instruction is executed.

The work in [25] proposed an HPC monitoring model
to detect the SCAs collected from both victims and at-
tacks applications. Similarly, in [17] the authors presented
CloudRadar which aims at detecting cross-VM side-channel
attacks by deploying HPC patterns. The research in [26]
offered a detection system containing one analytic server and
one or more monitored computing devices to detect SCAs. The



TABLE III: Summary of recent hardware-assisted malware and side-channel attack detection techniques and their classification methods

Research Platform Classification Model Threat Type Microarchitectural Features Evaluation Metric

81 Android, Linux KNN, NN, DT, RF Malware Low-level hardware performance counters in the form of multi-dimensional time series data FP, ROC, AUC

[14] Linux 0cSVM Malware 22 features including LLC, Load & store instructions retired, Branch instructions retired, etc. F Score, AUC, ROC

[15] ‘Windows LR, NN Malware Instruction mix features, Memory reference patterns, and Architectural events ACC, S, C, FP, ROC

[16] Windows LR, NN, EL Backdoor, PWS, Rogue, Instruction mix features, Memory reference patterns, and Architectural events same as [15] ACC, FP, ROC, AUC
Trojan, Worm

[10] Linux SVM, 0cSVM, NB, DT Kernel Rootkits 8 low level events (branch instructions, cache misses, etc.) Confusion Matrix, ROC

2] Linux BN, J48, JRip, MLP, OneR, Malware (32/16/8/4/2) low-level events (branch instructions, cache misses, etc.) ACC, AUC, ACC*AUC, HWO

RT, SGD, SMO, AB, BG

91 Linux J48, JRip, MLP, OneR, AB Virus, Trojan, Rootkits, 8/4 low-level events (branch instructions, cache misses, etc.) F Score, AUC, F Score*AUC, HWO
Backdoor

[17] Linux DTW Flush+Reload, 16 low-level features (instructions, branch instructions, mispredicted branch instructions, etc. ACC, F Score, ROC
Prime+Probe

[18] Linux LDA, LR, and SVM Flush+Reload, Flush+Flush 4 low-level features (L1 data cache misses, L1 instruction cache accesses, L3 cache misses and cycles ACC, FP, ROC

31 Linux CPD Flush+Reload, 7 low-level features (PAPI_L3_TCM, Cycles, PAPI_REF_CYC, PAPI_CA_SNP, etc.) ACC, FP
Flush+Flush, Prime+Probe

[19] Linux NN Spectre Attacks 3 low-level features (L3 cache misses (L3_TCM), L3 cache accesses (L3_TCA) and total number of ACC, F Score, FP

instructions (TOT_INS)

Accuracy: ACC, Hardware Overhead: HWO, Sensitivity: S, Specificity: C, K Nearest Neighbor: KNN, BayesNet: BN, NaiveBayes: NB, Logistic Regression: LR, AdaBoost: AB, Bagging: BG, Support Vector Machine: SVM, One Class SVM: ocSVM, Neural

Netework: NN, Last Level Cache References: LLC, REPTree: RT, Decision Tree: DT, Random Forest: RF, Ensemble Learning: EL, Dynamic Time Warping: DTW, Linear Discriminant Analysis: LDA, Change Point Detection theory: CPD.

analytic server receives HPCs data from monitored devices and
identifies suspicious core activity. Then, an application level
monitor is deployed to perform corrective actions. Other work
in [27] proposed an online detection of Spectre by monitoring
microarchitectural features using time series classification.

V. CONCLUSION

Hardware performance counter registers are special hard-
ware units used for counting microarchitectural events in mod-
ern microprocessors. While cyber-attacks such as malicious
software and Side-Channel Attacks (SCAs) are increasing in
number and sophistication, the vast majority of them are
targeting basic hardware signatures, such as missed branch
predictions, cache misses, etc. to perform malicious activities.
Recent advancements have demonstrated the application of
Machine Learning (ML) techniques for detecting malware and
emerging SCAs using HPCs profiles. In addition, emergence
of adversarially crafted malicious software and complex SCAs
highlights the importance of developing advanced analysis
techniques for achieving a higher security. Efficient deploy-
ment of on-chip HPC registers is also imperative for accurate
and cost-effective security enhancement. Therefore, this paper
attempted to provide a comparative analysis of recent studies
on microarchitectural security countermeasures for malware
and SCAs detection using ML techniques.
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