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1 Abstract—Prior studies on detection of SCAs based on
low-level microarchitectural features captured from processors’
hardware performance counter (HPC) registers have consid-
ered collecting hardware events of both victim applications
(cryptographic application, e.g. RSA, AES and etc.) and attack
applications. However, as shown in recent works the attack HPCs
data can be easily corrupted which results in misleading the SCA
detection method. Furthermore, the prior works have explored
the suitability of a limited number of Machine Learning (ML)
algorithms in detecting SCAs without examining the instance
level false alarm rate that as we show in this work is a more
important evaluation metric for SCA detection techniques. In
response, in this paper, we propose DREAL, a customized
machine learning-based real-time side-channel attack detection
methodology using low level hardware features captured from
HPC registers. The experimental results indicate that with the
proposed detection methodology, we can achieve up to 97%inter-
val prediction accuracy eliminating the need for profiling SCAs.
Furthermore, DREAL detection methodology can obtain 100%
attack detection accuracy with 0instance level false alarm rate.

Index Terms—Side-channel Attacks, Mitigation, Frequency,
Prefetcher, Randomization, Adaptation.

I. INTRODUCTION

In the last few decades, the complexity of computing devices
has been extensively increased to support different function-
alities and meet performance demands. Despite the provided
performance benefits, they also present a bunch of hardware
vulnerabilities which can be exploited by side-channel attacks
(SCAs) [10], [17], [20]. Such exploits can be launched by the
attacker remotely and require no physical access. There exists
an emerging need to address the security risks and challenges
posed by such harmful exploits, calling for effective detection
methodology for protecting compute system from them with
minor overhead.

Prior works on exploits detection such as [6], [21] propose
the use of microarchitectural pattern analysis captured through
Hardware Performance Counters (HPCs) to detect the SCAs
with latency by order of ranging magnitude from milliseconds
to seconds. For instance, [6] proposes to detect the SCAs with
the usage of both victim and attack applications’ HPCs traces.
Then based on the obtained HPCs, the correlation between
the HPC events of victims’ and attacks’ traces. Similarly, in
[21] the authors present CloudRadar which aims at detecting
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cross-VM side-channel attacks by making use of HPC patterns.
Other work [2] focuses on the victim HPCs traces to detect
”under attack” condition to bypass the lack of attack HPCs
data circumstances. However, it employs the sum of HPCs
as the feature with only one classification model analyzed.
Undoubtedly, the prior SCA detection works have made some
progress in detecting the attacks. However, they fall short in
addressing the challenges defined above as well as several
drawbacks, as demonstrated below.

Lack of Robustness: Our comprehensive analysis shows
that the majority of previous works on side-channel attacks
detection jointly correlate the HPCs traces of victim and attack
applications [6]. However, recent studies [7] have demon-
strated that current HPC features monitoring methods suffer
from the overcounting issue that creates the opportunity for
attackers to manipulate HPCs data by slightly changing SCA
applications. Hence, current detection techniques relying on
the HPCs data of attack applications are facing with great
security threats.

Limited Machine Learning Classifiers: With the advance-
ments achieved in machine learning (ML) domain, a wide
range of classification and anomaly detection techniques are
developed by applying Machine Learning (ML) techniques.
However, existing works in particular on SCA detection have
primarily focused on one or a few ML techniques for the
purpose of attack detection and classification [6], [21]. Such
an analysis leaves a void in terms of performance of attack
detection, as various ML classifiers yield different performance
in detecting various types of attacks [11], [15]. As we show
in this work, the detection accuracy and performance of SCA
detection vary across different categories of ML algorithms. As
a result, it is crucial to comprehensively explore and examine
the suitability of various ML classifiers for effective SCA
detection.

High False Alarm Rate: Prior studies on real-time
HPCbased SCA detection have neglected to examine the
instance level (a complete temporal sequence of victim ap-
plications’ HPCs) false positives of HPC data and have only
evaluated the SCA detectors based on the interval level (a sub-
sequence

To address the aforementioned challenges, in this work we
propose DREAL, a machine learning-based real-time attack
detection methodology using low-level hardware features to



avoid exploit of hardware vulnerabilities. The main contribu-
tion of this work can be summarized as below:

• This work proposes DREAL to detect attacks based on
differentiating HPCs data of only the victim applications
under attack and under no attack.

• Various ML classification algorithms are explored.
• A customized set of HPC features is employed to improve

the detection accuracy further while lowering the false
alarm rate.

II. MOTIVATIONS AND BACKGROUND

In this section, we present a comprehensive analysis of
major motivations and case studies to propose SCA-Hunter
framework for detecting side-channel attacks at the hardware
level using effective machine learning-based solutions.

A. SCA Detection based on Victim Applications’ HPCs

As described, SCA-Hunter by using only the HPC features
of victim applications could highly accurately detect the side-
channel attacks. The motivations behind employing victim
applications’ HPCs traces are described as follows:

Unreliable Attackers’ HPCs: Recent work [23] presents the
problem of detecting attackers by classifying anomalies and
benign applications based on HPC information with the aid
of ML techniques. The work in [7] further points out the
non-deterministic and over-counting problems of instructions
associated with HPCs information, in which the attackers
can intentionally modify instructions slightly and manipulate
the counters. Such researches indicate that attackers’ HPCs
information could be easily manipulated, thus is not a reliable
source for security enhancement of computer systems.

Side-Channel Attacks Design Principle: Current SCAs
intentionally cause influence on victim applications’ cache or
branch predictor units by flushing/priming cache, mistraining
branch predictors and then observing access time of the cache
sets, which changes caching victims’ data and microarchitec-
tural behaviors of victim applications [22]. This also provides
the opportunity of detecting SCAs by observing the alteration
in microarchitectural behaviors.

Fig. 1. Various ML classifiers prediction accuracy for RSA under Flush-
Reload attack (dataset based on Section III-A)

B. Comprehensive Analysis of Various ML Classifiers

Our comprehensive comparison of different ML classifiers
indicates that the prediction accuracy of SCA detection for
different classifiers can vary significantly. For instance, AES

under Flush Reload (AES-FR) attack is analyzed with five
classification techniques including OneR, multilayer percep-
tron (MLP), DecisionTable (DT), J48, and BayesNet as shown
in Figure 1. As shown, these ML classifiers have different SCA
detection accuracy ranging from 80% to 93%. This highlights
the importance of exploring the suitability of a wide range of
machine learning algorithms for the purpose of SCA detection
in order to identify the best ML classifiers achieving the
highest possible detection accuracy.

Fig. 2. Traditional and customized features based classifiers comparison
(datasets collected based on Section III-A)

C. Customized Features based ML Classifiers
Prior works on SCA detection capture the sum of HPCs

value for a certain time period as features and employ tradi-
tional ML classification methods to achieve a high prediction
accuracy. However, as mentioned before, such methods could
cause a high false alarm rate. As a result, in this work
we proposed customized features based ML classifiers which
extract more features, such as min, max, stdev, and sum of
an interval to further boost the prediction accuracy and reduce
false alarm rate. Prediction accuracy and false alarm rate of
traditional and customized features based classifiers are plotted
in Figure 2. It can be seen that customized features based
ML classifiers outperform traditional methods by around 4%
prediction accuracy. Furthermore, the false positive rate sig-
nificantly drops from 87.2% to 4.7% for MLP when applying
customized features based classifiers. Hence, for effective real-
time SCA detection customized features based classifiers with
more extracted HPCs features could enhance the detection
accuracy while substantially reducing the false alarm rate.

TABLE I
ATTACKS LIST

Victim Attack Source

RSA L3 Flush Reload Masitk [19]
L1 Prime Probe Masitk

AES Flush Reload Xlate [5]
L3 Flush Flush Xlate

victim function Spectre Spectre [4]

III. PROPOSED METHODOLOGY

In this section, we first present details of the experimental
setup and configurations. And then the proposed DREAL



Fig. 3. Overview of DREAL, the proposed real-time SCAs detection methodology based on victim application HPCs

TABLE II
SELECTED MONITORING HPCS LIST

L1 HIT L1 MISSES
L2 HIT L2 MISSES
L3 HIT L3 MISSES
All BRANCHES RETIRED BRANCHES MISPREDICTED
BR NONTAKEN CONDITIONAL BR TAKEN CONDITIONAL
TAKEN INDIRECT NEAR CALL UOPS RETIRED.ALL
INST RETIRED.ANY DTLB LOAD MISSES
DTLB STORE MISSES ITLB MISSES

methodology shown in Figure 3 will be introduced. As shown,
DREAL is comprised of three major steps including data
collection, training phase, and testing phase. First, for feature
extraction the ”under no attack” and ”under attack” HPC data
will be collected within a) isolated scenario, and b) non-
isolated scenario. The ”isolated” refers to the case that a com-
puter only processes victim applications; whereas the ”non-
isolated” denotes that a computer system processes victim
applications on one core while benign applications are being
executed on the rest of the cores. Then customized features are
extracted and the data will be used to train various classifiers.
The trained models will be employed in the testing phase and
false alarm minimization technique further helps to reduce
false alarm rate.
A. Data Collection

In this work, all experiments are conducted on an Intel
I5-3470 desktop with 4 cores, 8GB DRAM, and three-level
cache system. Victim applications and side-channel attacks
are selected from Mastik [19] and Xlate [5]. Furthermore,
MiBench [9] benchmark suit is used to represent benign
applications. In this work, we propose using a customized
tool to collect hardware performance counters based on model-
specific registers (MSRs). The proposed customized monitor-
ing tool collects HPCs per processor at microsecond scale with
privileged access to avoid HPCs contamination from other
processes addressing the overcounting challenges presented in
a recent study [7]. Based on the behavior and functionality of
studied SCAs, 16 HPCs are considered in this work for further
analysis as listed in Table II.

Various hardware performance counters data are collected
using the four available HPC registers in the experimented I5
processorat every 50 microseconds. Each pair of a VNA and
VA executes for 50 times. Next, both VA and VNA HPC data

are merged together to create the final dataset. Furthermore,
Weka data mining tool is deployed for implementing the
machine learning classifiers in which 70% of the randomized
data is used for training the classifiers and the rest of 30% is
used for testing evaluation.

B. Customized Features based classifiers
The proposed customized features based classification is

comprised of three main steps: 1) feature extraction and
representation; 2) HPCs selection due to a limited number
of registers for effective real-time detection of the attacks; 3)
training the ML classification algorithms.

1) Feature Vector Extraction and Representation: For pro-
posed classification, time-series data will be transformed from
a time sub-sequence to a vector of features. In the first step of
the transformation process, the raw data will be received from
the monitoring module. The time-series sub-sequences’ prop-
erties will be extracted which include statistics of distribution
values (e.g., max value, min value, sum value, Gaussianity),
stationarity (e.g.,StatAv) and etc. In order to effectively de-
termine the most prominent features for the purpose of real-
time SCA detection, we deployed Greedy Forward Selection
algorithm [3], [8] and we found that max, and stdev contribute
more to assisting in distinguishing the difference between
”under no attack” and ”under attack” conditions. Hence, the
input for each transformation is T = (t1, t2, ..., tm) where
tm is a vector of HPCs values. Furthermore, the outputs
of transformation are a vector of actual HPC values i.e.,
L1HIT sum, L1 HIT max, L1 HIT min, L1 HIT stdev,
..., ITLB MISSES sum, ITLB MISSES max, ITLB MISSES
min, ITLB MISSES stdev.

2) HPCs Selection: Given that there exists a limited num-
ber of HPCs available (only 4 HPCs) to be collected one time
simultaneously [14]–[16], it is necessary to identify the most
important HPCs for classifying the VA and VNA conditions
for different types of SCAs. For HPCs reduction, we employ
Correlation Attribute Evaluation (CorrelationAttributeEval
in Weka) with its default settings to calculate the Pearson
correlation between attributes (HPC features) and class (VA
and VNA conditions). And then the sum score of each HPC
features (min, max, stdev, and sum in this work) will be
calculated.



C. ML Classifiers Implementation

For the purpose of a thorough analysis of various types of
ML classifiers, OneR, MLP (multilayer perceptron), DT (deci-
sion table), J48, and BayesNet ML algorithms are deployed as
our final classification models. The rationale for selecting these
machine learning models are: firstly, they are from different
branches of ML: regression, neural network, decision tree, and
rule-based techniques covering a diverse range of learning
algorithms which are inclusive to model both linear and
nonlinear problems; secondly, the prediction model produced
by these learning algorithms can be a binary classification
model which is compatible with the SCA detection problem
in our work. As mentioned before, only four HPCs can be
collected for most processors once due to a limited number of
registers for storing them. For this purpose, various number of
HPCs from 16 to 4 (16, 12, 8 and 4) are examined to evaluate
the influence of reduced HPCs on classification accuracy and
highlight the importance and motivation of using a lower
number of HPCs (only 4) for effective real-time SCA detection
in DREAL method.

IV. RESULTS EVALUATION

In this section, we evaluate the effectiveness of the detection
approach and compare it in terms of various evaluation metrics
including detection accuracy, false alarm rate, and performance
overhead of proposed customized features based classifiers
over traditional and time-series classifiers.

A. Classifiers Comparison

In order to present the effectiveness of using customized
features, ML classifiers are fed with only sum value of HPCs
named as traditional classifiers. The implemented ML classi-
fication algorithms are OneR, multi-layer perceptron (MLP),
DecisionTable (DT), J48, and BayesNet that are covering a
diverse range of machine learning techniques.
Prediction Accuracy: Figure 4-(a) presents the SCA detection
accuracy with a varied number of HPCs for the proposed
detector (customized features based classifiers) and existing
works (traditional and time-series classifiers using different
techniques) [6], [21]. As shown, the proposed and traditional
classifiers achieve above 80% prediction accuracy despite
utilizing less number of HPCs, which makes them formidable
candidates to consider for real-time SCA detection. Figure 4-
(b) zooms in the comparison between proposed and traditional
classifiers. It can be seen that the method by using customized
features based ML classifiers is able to further boost prediction
accuracy, ranging from 2% to 6%.
False Alarm Rate: As discussed, despite high detection
accuracy, one of the major challenges associated with detection
is the false alarms in which we evaluate the false alarm rate
for different techniques below. Figure 5 depicts the false alarm
rate with proposed and existing techniques when utilizing a
varied number of HPCs for SCA detection. The false alarm
rates produced by traditional classifiers based SCA detection is
significantly high, 57% on an average across all ML techniques
and HPC values. This is due to the fact that traditional methods

are biased to “under attack”. However, the proposed technique
with using customized features employs more features that
aid the ML classifiers to predict “under attack” scenario
with higher confidence and accuracy. Taking MLP-based SCA
detector as an example, the proposed customized classifier can
decrease false alarm rate from 87% (obtained when utilizing
traditional classifier) to 4.7%, though the detection accuracy
is similar.
Classifiers Performance Overhead: In order to perform
real-time detection, the latency of SCA detection needs to
be minimal (in the range of a few hundred of µs, as the
SCAs need dozens of ms to execute). As shown in Table
III, traditional classifiers and proposed customized features
based classifiers have much lower overhead and no more
than 300 µs. It can also be observed that proposed detection
using customized features based classifiers have only a few
microseconds performance overhead compared to traditional
classifiers. This is because while both of the methods adopt
the same algorithms, the proposed customized features based
classifiers have fewer dimensions (min, max, stdev of HPCs)
which leads the classifiers to detect the SCA behavior with
much lower performance overhead.

V. RELEVANT WORKS

In this section, we discuss the latest studies on side-channel
attack detection. Recent work [18] uses cache latency to
build cache occupancy of victims and attacks. Based on the
cache occupancy relation of the two processes, SCAs can be
deduced. However, some attacks rely on ”flush” instruction
to identify the position of victim and do not have cache
occupancy including Flush Flush and Spectre. The work in
[13] proposes to analyze the executable binary file and detect
if there is any potential risk for Prime Probe attacks. It shows
100% attacks detection with 7.4% false positive rate. However,
it only evaluates Prime Probe attack with timing analysis at the
granularity of minute. Such works are offline and not able to
provide effective real-time protection for the computer system.

Prior detection work [1] monitors HPCs trace of both victim
and attack processes and compare the effectiveness of three
ML classifiers: neural network, decision tree C4.5, and K
nearest neighbors. [12] proposes a detection system containing
one analytic server and one or more monitored computing
devices to detect SCAs including Spectre and Meltdown. The
analytic server receives HPCs data from monitored devices and
identifies suspicious core activity. Once detected, application
level monitor will be deployed on the computing devices and
take corrective actions as soon as finding suspicious applica-
tion activity. However, these two works can be bypassed when
SCAs manipulate HPCs values according to HPC monitoring
challenges discussed in recent work [7].

VI. CONCLUSION

In this work, we propose DREAL, a machine learning-
based methodology for detecting SCAs at real-time using the
processor’s Hardware Performance Counters (HPCs) informa-
tion. The proposed SCA detection methodology first solves



a) b)
Fig. 4. Prediction accuracy comparison: a) prediction accuracy of proposed customized features based classifiers and the rest two type classifiers; b) zooming
in prediction accuracy of traditional and customized features based classifiers

TABLE III
LATENCY COMPARISON BETWEEN TRADITIONAL AND CUSTOMIZED FEATURES

Traditional-based classifiers Customized features based classifiers
Models OneR MLP DecisionTree J48 BayesNet OneR MLP DecisionTree J48 BayesNet

Overhead (us) 212 231 252 235 228 226 241 267 248 232

Fig. 5. False alarm rate comparison

the challenge of the lack of attacks’ HPCs data by analyzing
the difference between Victim under Attack (VA) and Victim
Under No Attack (VNA) conditions. Next, it uses HPCs
importance evaluation with Correlation Attribute Evaluation
algorithm to identify the most prominent HPC features suitable
for real-time SCA detection. Furthermore, DREAL presents
customized features based machine learning classifiers to
achieve accurate real-time SCA detection based on only victim
applications’ HPCs with optimal false alarm rate. Compared to
state-of-the-art solutions, the proposed machine learning-based
approach shows higher detection accuracy and robustness with
lower false alarm rate, achieving 100% attack detection rate
with 0% false alarm rate.
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