
Virtual Reality vs
Augmented Reality

Mark Huffman
EE 444, Professor Hill
11/29/2017
n

With an implementation of navigating the maze in virtual reality

What are they?

A complete computer
generated simulation,
obscuring the user's
vision, while allowing the
user to interact in the
simulation in a real or
physical way

Virtual Reality Augmented Reality
Computer generated
images or simulation
placed over the visible
world, typically through a
camera system or
transparent displays

What are they?

Virtual Reality Augmented Reality

https://www.cnet.com/videos/easy-ways-to-try-augmented-reality/
https://www.gamecrate.com/reviews/review-job-simulator-vr-riot-thats-better-audience/13249

https://www.cnet.com/videos/easy-ways-to-try-augmented-reality/
https://www.gamecrate.com/reviews/review-job-simulator-vr-riot-thats-better-audience/13249

“
AgmeealityA

Augmented Reality Summary

● Projection Methods
● Recognition Methods

Projection Methods
▪ External Camera Feed - Using a connected

camera, a computer generated image is generated
over the the live view feed proved by an external
camera

▪ Transparent Display - Solid Beam Splitter - used
with a polarizing beam splitter to combine light
from a LCOS microdisplay

http://www.realitytechnologies.com/augmented-reality

Recognition Methods
▪ Location Based - takes combined information

from gps, digital compass and gyroscope to with
a computer recognition method called SLAM
(Simultaneous Localisation and Mapping)

▪ Marker Based -A simple visual marker like a QR
code is identified and a known overlay is
produced in its location, taking low compute
power

▪

http://www.realitytechnologies.com/augmented-reality

“
AgmeealityA

Virtual Reality Summary

● Tracking Methods
● Display Breakdown

▪ Optical/Consolation - Reflective markers are
placed on the object and camera emit IR light
reflections are captured by the camera with an IR
pass filter

▪ IR Tracking/Lighthouse - IR beacon(s) sweep the
area vertically or horizontally in IR light, the
tacking device captures the timing

Tracking Methods

http://www.ps-tech.com/3d-technology/optical-tracking

▪ All HMDs are composed of a set of lens and
micro display panel(s)

▪ The lens magnify the screen giving the illusion
of a larger virtual image

▪ Lens create distortion, in the (x,y) plane that is
corrected in software before being displayed

Optics and Displays

http://stanford.edu/class/ee267/lectures/lecture7.pdf

“
AgmeealityA

Practical Experiment
● Traveling trough a virtual maze in

real time
● Version 1.0 (Proof of concept)
● Version 2.0 (Class implementation)

▪ Using Unity and public assets a small 3D version
of the maze was created on a simple grid
pattern

3D Hedge maze - Version 1 .0

▪ Adding a HC-06 Bluetooth Module to the bot
allowed coordinates to be sent back to the PC in
realtime based on the current location within
the physical maze

▪ This would then control the
movement of the camera within unity

HC-06 Communication to PC

https://www.amazon.com/Pass-Through-Communication-Compatible-Atomic-Market/dp/B00TNOO438

1. Connect to HC-06 (Using known COM port)
2. Start the bot, and trigger the first camera

movement
3. When the camera arrives at first target ping the

bot a wait for a responce to continue
4. Repeat for each additional

camera check point
5. Arduino: Respond to all requests

as “busy” or “advance” camera
depending on turning action

General Methodology - Version 1.0

▪ A free unity camera asset
▪ Modified to be triggered by receiving commands

from arduino
▪ Has built in functions to handle complex camera

rotation and movement through 3D space

Camera Movement Handled by CPC

https://www.linkedin.com/in/david-lawrence-7999bb115/

Unity Code to Trigger Camera Movement
void blueUpdate()
 {
 // Make sure bluetooth is connected
 if (!spOut.IsOpen)
 {
 Debug.Log("Open the port!");
 spOut.Open();
 }

 int trys = 0;
 Boolean communication = false;
 String message = "";

 // Loop to allow fails in communication
 while (!communication)
 {
 try
 {
 // Send "Ready" command to bot
 spOut.Write("R");
 System.Threading.Thread.Sleep(100);
 // Read incoming message from bot
 message = spOut.ReadLine();
 communication = true;
 }
 catch (IOException)
 {
 // Failure on reading message
 // After 10 failed attempts giveup
 if (trys > 10)
 communication = true;
 // wait and then try again
 System.Threading.Thread.Sleep(100);
 trys++;
 }

 }
 Debug.Log("Received: "+message);

 // If message is "-" continue moving camera
 if (message.EndsWith("-"))
 WaitFor = false;
 else
 System.Threading.Thread.Sleep(200); // Else wait a bit longer, bot not ready
 }

 public void connectBluetooth()
 {
 // Setup serial bluetooth communication
 spOut = new SerialPort("COM7", 9600, Parity.None, 8, StopBits.One);
 spOut.Handshake = Handshake.None;
 spOut.ReadTimeout = 3000; // Note* Must have a long time out
 spOut.WriteTimeout = 500;

 // Open the port for communication
 if (!spOut.IsOpen)
 {
 Debug.Log("Open the port!");
 spOut.Open();
 }
 Debug.Log("Connected!");
 }

Arduino Trigger Camera Movement
void blueToothCheck(){
 // Check if a signal was received
 if (blueTooth.available()) {

 // Read the incoming signal
 char c = blueTooth.read();
 //Serial.print("BT read: "); Serial.println(c);
 // If 'R' received then Unity is expecting the next command
 if(nextStep && c == 'R'){
 // Send Next "Move" Command
 blueTooth.println("-"); // Move clip further
 // clear the flag
 nextStep = false;
 // Initial Startup received
 if(start){

 motorControl("Go");
 start = false;

 }
 }else{

 // Received Signal but not read for next action
 // Tell Unity to wait
 blueTooth.println("w"); // Wait bot not ready

 }
 }
}

https://docs.google.com/file/d/1PpDD8bKfthqH195ni8vCk-n9HI23DOB0/preview

Next Step
▪ This proof of concept shows that this method

could be adapted to the actual maze and then
be redesigned in such a way that any route
could be taken through the maze
▫ Feedback turn, direction and coordinates to

Unity and then move the camera as defined
by these received actions

▪ Design the code to be adapted to any bot and
take any path through the maze

3D Hedge Maze Version 2.0
▪ 3D Version of our full Hedge Maze

1. Connect to HC-06 (By scanning all COM ports)
2. Start the bot and receive timing data
3. Receive a camera command from arduino

a. Indicating a Left, Right or U-turn
Or a distance to travel forward in “squares”

Move the camera as appropriate to the received
commands and keep track of location and orientation

Ask for new direction instructions when action is
completed

General Methodology - Version 2.0

▪ Heavily Modified version of CPC Script
▪ void connectBluetooth()

▫ Scan all com ports and find one with response
▪ void initalizeArdunio()

▫ Tell bot to start moving and interpret timing information
▪ void blueUpdate()

▫ Ping bot then receive next action commands and decode
▪ float timePerSegmentDef(int type, int num)

▫ Determines time of each action based on timing values
▪ void updatePos(int squares, int turn)

▫ Updates in maze position based on new request and
current position

▪ IEnumerator FollowPath(float time)
▫ Calls all action functions and is the calling “process”

Unity Code - Breakdown

▪ Vector3 GetBezierPosition(CPC_Point current,
CPC_Point next, float time)

▫ Moves the camera vector based on position change and time
▪ private Quaternion GetLerpRotation(CPC_Point

current, CPC_Point next, float time)
▫ Rotates the camera vector based on quaternion math

Unity Code - Breakdown Continued

Unity Code - Communication

 void initalizeArdunio()
 {
 // Make sure bluetooth is connected
 if (!spOut.IsOpen)
 {
 Debug.Log("Open the port!");
 spOut.Open();
 }
 int trys = 0;
 Boolean communication = false;
 String message = "";

 // Loop to allow fails in communication
 while (!communication)
 {
 try
 {
 // Send "Ready" command to bot
 spOut.Write("C");
 System.Threading.Thread.Sleep(10);
 // Read incoming message from bot
 message = spOut.ReadLine();
 communication = true;
 }
 catch (IOException)
 {
 // Failure on reading message
 // After 10 failed attempts giveup
 //Debug.Log("ERROR");
 if (trys > 10)
 {
 communication = true;
 Debug.Log("ERROR Communication Failed!");
 }

Unity Code - Communication

 void blueUpdate()
 {
 // Make sure bluetooth is connected
 if (!spOut.IsOpen)
 {
 Debug.Log("Open the port!");
 spOut.Open();
 }

 int trys = 0;
 Boolean comunication = false;
 String message = "";

 // Loop to allow fails in comunication
 while (!comunication)
 {
 try
 {
 // Send "Ready" comand to bot
 spOut.Write("R");
 System.Threading.Thread.Sleep(10);
 // Read incomming message from bot
 message = spOut.ReadLine();
 comunication = true;
 }
 catch (IOException)
 {
 // Failure on reading message
 // After 10 failed attempts giveup
 //Debug.Log("ERROR");
 if (trys > 10)
 {
 comunication = true;
 Debug.Log("ERROR Comunication Failed!");
 }

Unity Code - Communication

Unity Code - Communication

 else if (message.StartsWith("-"))
 {
 // Test Message
 //WaitFor = false;
 }
 }

IEnumerator FollowPath(float time)
 {
 initalizeArdunio(); // Start Android (recive timming data)
 while (!endOfpath) // loop until the end of path is declared
 {

 currentTimeInWaypoint = 0;
 if (WaitFor == false) // Check bluetooth first before next command
 {
 WaitFor = true;
 while (currentTimeInWaypoint < 1)
 {
 if (!paused)
 {
 if (!startup)
 {
 spOut.Write("C"); // Start motors
 startup = true;
 }
 // Determine Time of Segment
 currentTimeInWaypoint += Time.deltaTime / timePerSegmentDef(nextInstuction, strightCount); // determine timing of segment
 // Move Camera to desired coordinates
 selectedCamera.transform.position = GetBezierPosition(Currentpoint, Nextpoint, currentTimeInWaypoint); // move camera
 selectedCamera.transform.rotation = GetLerpRotation(Currentpoint, Nextpoint, currentTimeInWaypoint); // rotate camera
 }
 yield return 0;
 }
 }
 else
 {
 yield return new WaitForSeconds(0.2f); // Delay in the unity engine without holding up everything
 blueUpdate(); // ping bot wait for response
 }

Unity Code - Camera Control

Requirements
▪ Your bot must stop before making a turn and

after completing a turn
▫ Communication commands will hold up the rest of

your code and your bot will wonder off the maze
otherwise.

▪ Completion of Lab 5-6 (Whichway and
navigation out off the maze instructions)

▪ HC-06 or similar setup with bluetooth to
arduino, serial communication

Arduino Code - Implementation

▪ Add “unity_commands.ino” to your project
▪ Modify countTillNextTurn() to save whatever variables

are used in your which way to determine your path
(AKA hold1,hold2)

▪ Add to your main file:
▫ #include <SoftwareSerial.h>
▫ SoftwareSerial blueTooth(txPin, rxPin); // define to connected pins

▪ At the very end of setup() add:
▫ connectUnity();
▫ int times[] = {2,0,2,4,4,0}; // Modify time values
▫ setupUnity(times);

Arduino Code - Implementation Instructions

Note*
0,1 [#.#f] (Time for a single straight block)
2,3 [#.#f] (Time for a 90 degree turn)
4,5 [#.#f] (Time for a 180 degree turn)
Example: {1, 2 , 0, 0, 0, 0}
1.2f = 1.2 seconds for straight block

▪ In the main loop() add the following before anything
▫ if(start){
▫ // Start Motors
▫ unityUpdate(countTillNextTurn(mazeBot));
▫ // ADD: Call whatever command starts Motors here
▫ start = false;
▫
▫ }else{ // Everything else in loop()

▪ At the very end of loop() add: checkUnity();
▪ Call unityUpdate(countTillNextTurn(mazeBot)); After every Turn
▪ Call unityUpdate(getNextTurnAction(mazeBot)); Before every Turn

Arduino Code - Implementation Instructions

Note*
Must be called after motors
have stopped!
Will hold up ALL code until a
response from unity is
received.

▪ void checkUnity()
▫ Called by the main program loop, responds to unity if a command is ever

received early as “Wait!”
▪ void connectUnity()

▫ Called in setup, holds until an initialize ping is received from unity
(Correct COM port selected)

▪ void setupUnity(in timings[])
▫ Called next in setup, holds until unity is done loading then passes timing

▪ void unityUpdate(String command)
▫ Called before the start of a turn and just after the completion of a turn,

holds till unity pings “ready” (Called with the next two functions)
▪ String countTillNextTurn(MyRobot mazeBot)

▫ Placed in unityUpdate() after completing a turn, calculates number of
squares to next to turn action using virtual instructions and whichway

▪ String getNextTurnAction(MyRobot mazeBot)
▫ Placed in unityUpdate() before starting a turn, sends command based on

current virtual .turn instruction

▪

Arduino Code - unity_commands.ccp

void checkUnity(){
 // Responds to all Unity requests as "Bot" not ready
 // Keeps connection live
 if (blueTooth.available()) {
 // Read the incomming signal
 char c = blueTooth.read();
 if(c == 'R') {
 // Not Ready to send next instuction
 blueTooth.println("W"); // tell unity to wait
 }
 }
}

void connectUnity(){
 // Holds here till unity replies with a connection signal
 // Note* Bot must not be moving when calling this command!
 boolean sentcommand = false;
 while(!sentcommand){
 if (blueTooth.available()) {
 // Read the incomming signal
 char c = blueTooth.read();
 if (c == 'I') {
 // Send connection valid signal!
 blueTooth.println("-");
 sentcommand = true;
 }
 }else{
 delay(10);
 }
 }
}

Arduino Code - Communication
void setupUnity(int timings[]){
 // Holds here till unity replies with a ready signal
 // Note* Bot must not be moving when calling this command!
 // --- Unity Timmings ---
 // - 0,1 [#.#f] (Time for a single straight block)
 // - 2,3 [#.#f] (Time for a 90 degree turn)
 // - 4,5 [#.#f] (Time for a 180 degree turn)
 boolean sentcommand = false;
 while(!sentcommand){
 if (blueTooth.available()) {
 // Read the incomming signal
 char c = blueTooth.read();
 if (c == 'C') {
 // Send Timming Initalize Command
 String command = "";
 command = command + timings[0] + timings[1] + timings[2] + timings[3] + timings[4] + timings[5];
 blueTooth.println(command);
 sentcommand = true;
 }
 }else{
 delay(10);
 }
 }
}

void unityUpdate(String command){
 // Waits for unity to send request command, then responds with next action
 // Note* Bot must not be moving when calling this command!
 // --- Unity Commands: ----
 // - S# (Continue straight for # number of intersections)
 // - TR (Turn right 90 degrees)
 // - TL (Turn Left 90 degrees)
 // - TA (Turn Around 180 degrees)
 boolean sentcommand = false;
 while(!sentcommand){
 if (blueTooth.available()) {
 // Read the incomming signal
 char c = blueTooth.read();
 if (c == 'R') {
 // Send Next "Move" Command
 blueTooth.println(command);
 sentcommand = true;
 }
 }else{
 delay(10);
 }
 }
}

Arduino Code - Communication

String countTillNextTurn(MyRobot mazeBot){
 // Gets squares count to next intersection based on maze coordinates and whichway command
 // Make new instance of MazeBot
 // Start at same position
 // Simulate continued movement till turn required.
 MyRobot tempBot{mazeBot.dir, mazeBot.turn, mazeBot.row, mazeBot.col, mazeBot.room, 0x00};
 uint8_t squares = 0;
 // Save Whichway Counters
 uint8_t hold1 = physicalBot.routeN;
 uint8_t hold2 = physicalBot.routeI;

 while(tempBot.turn == 0x00 || squares == 0){

 /* Update dir by turing in the maze */
 tempBot.dir = turnInMaze(tempBot);

 /* Reference return variable */
 uint8_t *updateValues;

 /* Update col and row loaction */
 updateValues = stepInMaze(tempBot);
 tempBot.row += *(updateValues);
 tempBot.col += *(updateValues + 1);

 /* Update room and bees */
 updateValues = roomInMaze(tempBot);
 tempBot.room = *(updateValues);
 tempBot.bees = *(updateValues + 1);

 /* Determine if a turn is needed */
 tempBot.turn = whichWay(tempBot);
 squares++;
 }

Arduino Code - Next Action

 // Reset real bot to original
 physicalBot.routeN = hold1;
 physicalBot.routeI = hold2;
 String command = "S";
 command = command + squares;
 return command;
}

String getNextTurnAction(MyRobot mazeBot){
 // uses whichway command and determines turn direction
 // Read mazeBot.turn for current turn instuction
 if(mazeBot.turn == 0x01) // Turn right
 return "TR";
 else if(mazeBot.turn == 0x02) // Turn left
 return "TL";
 else if(mazeBot.turn == 0x03) // Turn Around
 return "TA";
return "S0"; // error don't move anywhere?
}

https://docs.google.com/file/d/1cDdZKfwkCNL1RL7GrW2ijx21H-Ug_O7u/preview

Possible Future Updates
▪ This could easily be improved to work for the

3Dot however the serial communication portion
would need to be rewritten into USART

▪ Visual improvements could be made to the
maze

▪ Currently any changes to the maze have to be
manually built, an automated mode would be a
neat addition

▪ A path indicator/path taken could be a cool
visual addition

Issues Experienced
▪ Commands are not always received!

▫ ReadTimeout error very likely
▫ Could be serial.print

▪ HC-06 setup is very important and instructions can
be inconsistent depending on source
▫ Pin configuration arduino bluetooth setup

▪ Camera manipulation in Unity can be complex

“
AgmeealityA

Appendix - Further Details
● Augmented Reality
● Virtual Reality

“
AgmeealityA

Augmented Reality
● Projection Methods
● Recognition Methods
● Practical use Cases

Projection Methods - External Camera Feed

▪ Using a connected camera, a computer
generated image is generated over the
the live view feed proved by an external
camera
▫ Marker Based, Superimposition

▪ Currently a native feature in Windows
10 (Mixed Reality Viewer)

http://www.realitytechnologies.com/augmented-reality

Projection Methods - Transparent
Display

▪ A digital image is “projected” onto a transparent
surface

▪ Google glasses, Hololens and heads-up displays
in cars

▪ Solid Beam Splitter - used with a polarizing
beam splitter to combine light from a LCOS
microdisplay

http://www.kguttag.com/2017/07/18/disney-lenovo-ar-headset-part-1/

Projection Methods - Transparent
Display

▪ Semi-spherical combiner - Act as a magnifying
mirror moving the focus point

▪ Tited Thin Flat - Tilted combiner thats typicly
very large and cheaper to produce

http://www.kguttag.com/2017/03/03/near-eye-bird-bath-optics-pros-and-cons-and-immys-different-approach/

Recognition Methods - Location Based
▪ One of the most used methods, takes combined

information from gps, digital compass and
gyroscope to display relevant information

▪ This is then combined with a computer
recognition method called SLAM (Simultaneous
Localisation and Mapping)
▫ This method runs complicated depth

calculations and creates a digital map of the
environment and then compares it to known
mapped environments

Recognition Methods - Marker Based
▪ A simple visual marker like a QR code is

identified by an device's camera and a known
overlay is produced in its location instead

▪ Takes far less computation than markless
▪ The markers are typically easily distinguishable

for any camera system

http://www.realitytechnologies.com/augmented-reality

Practical Use Cases
▪ CAD design and collaboration
▪ Repair and maintenance instructions
▪ Military training
▪ Surgery guidance and access to references
▪ Collision guidance
▪ GPS navigation
▪ Job Training

https://www.scopear.com/

“
AgmeealityA

Virtual Reality
● Tracking Methods
● Display Breakdown
● Practical use Cases

▪ Reflective markers are placed on the object and
camera emit IR light and the reflections are
captured by the camera with an IR pass filter

▪ Multiple markers and cameras can be used to
track an object's orientation and location within
3D space

Tracking Methods -
Optical/Constellation

http://www.ps-tech.com/3d-technology/optical-tracking

▪ A IR beacon strobes the space at 60 times per
second then one of two spinning IR beacons
sweep the area vertically or horizontally
alternating

Tracking Methods - IR
Tracking/Lighthouse

▪ The sensors located on the
tracked object can then
calculate their known
position in 3D space using
the fixed reference of the
beacon

▪ 3D position can be updated every 4 cycles
cycles are 8.333ms exactly 120Hz

IR Tracking/Lighthouse - Breakdown

Pulse start, µs Pulse length, µs Source station Meaning

0 65–135 A Sync pulse (LED array, omnidirectional)

400 65-135 B Sync pulse (LED array, omnidirectional)

1222–6777 ~10 A or B Laser plane sweep pulse (center=4000µs)

8333 End of cycle

https://github.com/ashtuchkin/vive-diy-position-sensor/

▪ 3D position then determined by solving:
▫ Known Base Station orientation and location

(x,y,z,ϕ,θ,ψ)

▪ Finding the point of intersection of the two lines
from current readings allows the vector position
to be found from the reference locations

▪ Allows millimeter precision within a 3D space

IR Tracking/Lighthouse - Calculations

https://trmm.net/Lighthouse#HTC_Vive_Lighthouse

▪ All HMDs are composed of a set of lens and
micro display panel(s)

▪ The lens magnify the screen giving the illusion
of a larger virtual image

▪

Optics and Displays

http://stanford.edu/class/ee267/lectures/lecture7.pdf

▪

▪ Lens create distortion, in the (x,y) plane either as
pincussion or barrel distortion

▪ Lens also cause chromatic aberrations
depending on the color

Optics and Displays

http://stanford.edu/class/ee267/lectures/lecture7.pdf

▪ Corrections are made in software
before sent to the display

▪

▪

Practical Use Cases

▪
▪

▪ Medical Training and Practice
▪ 3D medical scan analysis
▪ Technical Training
▪ Large complex data analysis
▪ Immersive Movies & Theme Park Rides
▪ Military Training
▪ Spectating Sports
▪ Tourism and Travel

Sources
● http://www.realitytechnologies.com/augmented-reality
● http://www.wikitude.com/blog-shaping-future-technology-slam

/
● http://www.sciencedirect.com/science/article/pii/S1877705812

019698
● https://www.forbes.com/sites/quora/2017/01/09/how-do-aug

mented-reality-displays-work/#2cc085e47315
● http://www.ps-tech.com/3d-technology/optical-tracking
● https://github.com/ashtuchkin/vive-diy-position-sensor/
● https://trmm.net/Lighthouse#HTC_Vive_Lighthouse
● http://stanford.edu/class/ee267/lectures/lecture7.pdf

http://www.realitytechnologies.com/augmented-reality
http://www.wikitude.com/blog-shaping-future-technology-slam/
http://www.wikitude.com/blog-shaping-future-technology-slam/
http://www.sciencedirect.com/science/article/pii/S1877705812019698
http://www.sciencedirect.com/science/article/pii/S1877705812019698
https://www.forbes.com/sites/quora/2017/01/09/how-do-augmented-reality-displays-work/#2cc085e47315
https://www.forbes.com/sites/quora/2017/01/09/how-do-augmented-reality-displays-work/#2cc085e47315
http://www.ps-tech.com/3d-technology/optical-tracking
https://github.com/ashtuchkin/vive-diy-position-sensor/
http://stanford.edu/class/ee267/lectures/lecture7.pdf

