
UART

Universal Asynchronous Receiver-Transmitter

UART Operation Principles
UART is a parallel to serial converter, and vice versa, and a serial transmitter and receiver.

Bytes are read from memory in parallel by the transmitting UART, transmitted bit by bit to the receiving

UART, and then reassembled in parallel into byte packets by the receiving UART.

There are two shift registers in each UART: One is responsible for receiving serial data and parallel
output to memory, the other is responsible for broadside loading from memory and transmitting serial
data.

All UART packets have a start bit, a series of 4-9 data bits depending on the UART configuration, and 1
to 2 stop bits. A parity bit may also be used for error detection or signaling.

2

UART VS. USART (Asynchronous or Synchronous)
Asynchronous Mode - Clock signal generated internally with Fosc and prescaler

Synchronous Modes: Data Direction Bit of XCK1 pin determines master or slave mode (Port D, Bit 5)

Master: XCK1 as output. Clock signal generated internally and output to pin XCK1.

Slave: XCK1 as input. Clock signal generated externally and input to pin XCK1.

3

Max Baud Rate with Fosc = 8MHz

4 Mbps

1 Mbps

500 kbps

 UART Hardware Flow Control
Enables a receiver to pause transmission if data is being transmitted too fast

-Uses a scheme called CTS/RTS - Clear to Send, and Ready to Send,

respectively.

-Receiver RTS line connected to the Transmitter’s CTS line

-One way flow control requires one connection, while two-way flow

control requires two.

-Both lines are normally low

-RTS goes high when data buffer is full, notifying transmitter it is not

clear to send

-RTS returns to low state once it is ready to receive new data,

notifying the transmitter it is clear to send

4

One-Way Flow Control

The Questions That Need Answering to
Properly Configure the UART

1. Receiving, Transmitting, or Both?

2. What operation mode (asynchronous normal, asynchronous double speed, or synchronous)?

3. What baud rate?

4. What parity mode?

5. How many data bits?

6. How many stop bits?

7. Hardware flow control on or off?

8. Multiprocessor Communication Mode?

9. Clock Polarity? (Synchronous mode only)

10. Enable Receive/Transmit complete interrupts?

5

Answers for our Specific Application

6

1. Transmitting, Receiving, or Both? A: Both - Set TXEN1 and RXEN1

2. What operation mode ? A: asynchronous normal - Leave UMSEL11 and UMSELL10 at default 0 and 0

3. What baud rate? A: 38400 - Based on asynchronous normal mode, Fosc 8MHz, Set UBRR1L = 12

4. What parity mode? A: None - Leave UPM11 and UPM10 at default 0 and 0

5. How many data bits? A: 8 - Leave UCSZ1 and UCSZ0 at default 1 and 1

6. How many stop bits? A: 1 -Leave USBS1 at default 0

7. Hardware flow control on or off? A: off - Leave CTSEN1 and RTSEN1 at default 0 and 0

8. Multiprocessor Communication Mode? A: off - Leave MPCM1 at default 0

9. Clock Polarity? (Synchronous mode only) :A N/A - Leave UCPOL1 at default 0

10. Enable Receive/Transmit complete interrupts? A: No - Leave RXCIE and TXCIE at default 0

ATmega 32U4 USART Register Summary

7

The ATmega 32U4 has a single USART, designated USART1

Data Registers:

Baud Rate Registers:

Operation

Initialization

ATmega 32U4 USART Register Summary
 Control and Status Register A

8

Control and Status Register B

Control and Status Register C

Control and Status Register D

 Initialization

Initialization/Operation

Initialization/Operation

Initialization

Initializing the USART: Enabling Reception and Transmission

9

Initializing the UART: Setting Baud Rate

10

Initializing the USART

11

Operation: Transmitting

12

Operation: Receiving

13

Continual
Process
While
RXEN1
Is Set:

When USART_Receive is Called:

Demo:
Wireless
Control
of a
Robot via
UART and
Bluetooth

14

 Serial Bitstream of Demonstration Data (LSB First)

15

UART Review Questions

1) When using UART, which data framing bits are required, which are optional, how many

are there of each, and what are their values?

2) What is the purpose of the parity bit?

3) T/F: The baud rate of the receiving USART must be set before receiving data in

synchronous mode.

4) Write a one-line C++ Code to configure the ATmega32U4 in synchronous mode.

5) What do RTS and CTS mean? What is their purpose?

6) The Sparkfun Pro Micro runs at 8MHz and is configured in asyncrhonous double speed

mode. What hex values should be loaded into UBRR1H and UBRR1L to achieve a baud

rate of 2400?

7) Which flag bit should be polled before attempting to read serial data?

8) Which register is UART serial data transmitted from?

9) Which register is UART serial data received to?

10) Which ASCII character is represented by this bitstream (no frame bits and first bit listed

is received first) 0,1,1,0,0,1,1,0?
16

UART Review Answers

1) Required: Start -1 bit, value 0. Stop-1,1.5 or 2 bits, value 1.

Optional: Parity bit-1 bit, value 1 or 0 depending on bit sequence and parity type.

2) Error detection.

3) False, synchronous mode uses an external clock to synch the transmitter and receiver, so

the receiver doesn’t have to know the baud rate beforehand.

4) UCSR1C &= ~((1<<UMSEL11) | (1<<UMSEL10));

5) Request to Send, Clear to Send. Hardware flow control.

6) UBRR1H = 0x01, UBRR1L = 0xA0 (Decimal 416)

7) RXC1 in Register UCSR1A. It is set when there are unread data in the receive buffer, and

cleared when the receive buffer is empty.

8) UDR1

9) UDR1

10) f

17

Object-Oriented Programming in C++: Classes
A Class is type of object with certain properties such as variables and functions. Multiple objects of the same class
can be created and used.

Classes are usually built using two files: A header (.h) file with variable and function declarations, which is linked
to an implementation file (.cpp) which contains variable and function definitions, constructors and destructors.

C++ components specific to classes:

18

Private Variables and Methods: Used by objects in the class but not directly accessible to the class user.

Public Variables and Methods: Accessible to the class user.

Constructor: A special type of member function that is executed every time a new object of the class is
created. It has the same name as the class and returns nothing, not even void.

Destructor: Another special type of member function that clears the object out of memory any time the
program goes out of scope, ends, or when the object is explicitly deleted using the ‘delete’ operator. It also has
the same name as the class, but with a tilde in front. It also returns nothing, not even void.

Appendix: Emulating UART with SoftwareSerial

 Appendix: Emulating UART: SoftwareSerial Class Declaration File: SoftwareSerial.h

19

Appendix: Emulating UART: SoftwareSerial Class Definition File: SoftwareSerial.cpp
Constructor, Destructor, Read and Write Functions Shown. For full file go to:

C:\Program Files (x86)\Arduino\hardware\arduino\avr\libraries\SoftwareSerial\src

20

Image Sources

Slide 2: CircuitBasics.com, ElectricImp.com:

http://www.circuitbasics.com/wp-content/uploads/2016/01/Introduction-to-UART-Data-Tran

smission-Diagram.png

https://electricimp.com/docs/attachments/images/uart/uart3.png

Slides 3,6,7,10-13: Atmel ATmega32U4 datasheet:

http://www.atmel.com/Images/Atmel-7766-8-bit-AVR-ATmega16U4-32U4_Datasheet.pdf

21

http://www.circuitbasics.com/wp-content/uploads/2016/01/Introduction-to-UART-Data-Transmission-Diagram.png
http://www.circuitbasics.com/wp-content/uploads/2016/01/Introduction-to-UART-Data-Transmission-Diagram.png
https://electricimp.com/docs/attachments/images/uart/uart3.png
http://www.atmel.com/Images/Atmel-7766-8-bit-AVR-ATmega16U4-32U4_Datasheet.pdf

