What is One Wire Serial Communication

Serial data transmission over one wire(duh)
Great for cheap applications that don't require high speed data transfer

In theory, all AVR processors can handle One Wire Communication
Timing is extremely important

o The only way to discern signals from other signals

How Does it Work?

® Two basic implementations
o Polled Implementations(software only)
o Interrupt driven (counter required)
e Dallas 1-Wire Protocol
o Designed by the Dallas Semiconductor Corporation
o Can use either interrupt driven or polled implementations
o Polled requires no external hardware
o Half Duplex(transmitting or receiving not Both simultaneously)

Dallas 1-Wire

e Signalis idle High, need pull up resistor
e Signaling is divided into time slots of 60us
® Master initiates every communication
o Regardless of direction
® 5 basic signals: (Write 1, Write 0, Read, Reset, Presence)
® LSB sent first

Overall Communication process

All 1-Wire devices follow this basic sequence:

HwnN e

The Master sends the Reset pulse.

The Slave(s) respond with a Presence pulse.
Master sends a ROM command

Master sends a Memory command

How To Send Bits

® |n order to send bits in OW protocol it requires precise timing and precise
waveforms

® Errorsin these waveforms, or the timing can deliver corrupt data and
requires digital error checking

Bus Signals

e Writel
o The Master pulls the bus low for 15us then releases for
remainder of 60us window

Figure 1-1. "Write 1" Signal

W

Bus Signals Continued

e WriteO

o The master pulls the bus low for 60us
Figure 1-2. "Write 0" Signal

S\ /

e Read
o Master pulls bus low for 1 to 15us

o The slave then releases the line if it wants to write 1 or keeps

the line low for write O for remainder of 60 us window.
Figure 1-3. “Read"” Signal

S/ /

Timing Diagram of OW Signals

1-Wire Signaling—Read/Write Bit Waveforms

s~ '---suwe DEVICE(S)
WRITE1 \J 4 SAMPLE LINE
______ M SLAVEDEVICE(S) |
WRITE 0 \J _ SAMPLELINE 1/

______ —
READ 1 \ /7

LEGEND
A
MASTER

SLAVE ee——

SPEED = STANDARD (15.4kbps) T=0ps T=15y58 T=60ps

Reset/Presence Signal

® Reset Signal
o The master pulls the line low for 480us and then releases it
o If slave is present then the presence signal should be seen
o If no presence signal is detected there is no device connected
® Presence Signal
o After the Reset Signal has been sent it is the slave that must pull the line
low for 60us
o Must pull the line low within 60us

Reset Presence Signal Waveform

1-Wire Signaling —Reset/Presence Waveforms

RECOVERY

W So.8n
—
rd
\/ 7 \L_s
f)
480ps < 10T < 640ps / PRESENCE PULSE \

15ps < T < 60ps G0ps < 4T < 240ps 45ps < 3T < 180ps

PULLUP ——————
MASTER

SPEED = STANDARD (15.4khps)

Generating Signals through Software

ffidefine PINNUMEEER Z

#define

&

#define B

#define
#define
#define
#define
#define
#define
Hdefine
Hdefine

9 H & ¢ " ™ B8 0

&
=
&l
10
5
23
0
450
70
410

e Define delay values
e Define our BUS pin

® Initialize the bus as an output
DDRF |= (l<<PF5):

Structure of delayMicroseconds function

void delayMicroseconds (uintlé t wvalue) {// 16 cycles
if (value <= 2)return; /S 2 cycles

value <<= 1; // 2 cycles

f/ He must subtract 20 cycles from our iteration loop in order to get exact timing

S/ The above lines contribute to our timing so we mu3t subtract that from our loop number
value —= 537 JfS 2 cycles

S/ Every iteration of the loop is 0.5 microseconds so we double our value in order to get exact microsecond values

_asm __ wvolatile |
"1: sbiw %0,1™ ™\n\t™ f/2 cycles
"brne 1b"™ : "=w"(wvalue):"0" (wvalue)// 2 cycles

iz

One Wire Write function

void OWWrite (uintd t bit) {

if(bit){
f/Hrite "1" bit
digitalWrite (PINNUMBER, 0x00) ;//Drives bus low
delayMicroseconds (&) 7
digitalWrite (PINNUMBER, 0x00) ; //Belease the bus
delayMicroseconds (D) 7

}

else]
f/Hrite "0" bit
digitalWrite (PINNUMBEER, O0x00) ;//Drives bus low

C++ One Wire Write function

void OWWriteBit(uint8 t bit){

if{kbit = 1){

PORTF &= ~(l<<PF5):
delayMicroseconds (A) ;
PORTF |= ([1<<PF35);
delayMicroseconds (B) -

}

glae]

PORTF &= ~(l<<PF3):
delayMicroseconds [(C) ¢
PORTF |= (l1<<PF3):
delayMicroseconds (D) ¢

}

One Wire Read Function

uintd t OWRead (void) {
uintd t result;

digitalWrite (PINNUMBER, O0x00) » //Drives bus low

dflayHicrcse::nﬂs{h;:

digitalWrite (PINNUMBER, Ox01) r//Beleases the bus

delayMicroseconds (E) -

pinMode [PINNUMBER, INPUT) - //Makes the pin an input ao we can read from the alave

result = digitelBead (PINNUMBER): 0x01// Sample the kit walue from the slawve

delayMicroseconds (F) 7

pinMode (PINNUMBER, CUTEUT) -/ /Makes the pin an output so0 we can write for the next function call

return result;

C++ One Wire Read Bit Function

uintd t OWReadBit (void) {
uint8_ t result = 07

PORTF &= ~([l<<PF3);

delayMicroseconds (10] 7

BPORTF |= ([1<<PF35):

delayMicroseconds (20) 7

if[PINF & ([l<<PF5)){
reault = HIGH?

1

delayMicroseconds (30) ¢

return result;

One Wire Reset/Presence Signal

uintd_t OWResetPresence (woid) {
uintd t result;

delayMicroseconds [G) 7

digitalWrite (PINNUMBER, 0x00) »//Drives bus low

delayMicroseconds (H) ;

digitalWrite (PINNUMBEE, 0x00) »//Beleases the bus

delayMicroseconds(I):

pinMods (PINNUMBEER, INFUT) ;

reault = digitalRead (PINNUMBER) ~0x0l//5Sample presence pulse from slawve
delayMicroseconds (J) 7

pinMods (PINNUMBER, OUTEUT) &

return result:// Beturn sample presence pulse reset

C++ One Wire Reset/Presence Signal

uintd t OWResetPresence (void) {

uintd t result = LOW;
PORTF &= ~([1<<PF3);
delayMicroseconds (H) ;
PORTFE |= ([1<<PES):
delayvMicroseconds [(35) ;
if (PINF& (1<<PFS)){

result = HIGH?

1

eturn result:

Generating the Signals

e Software Only
o Simply changing the direction and value of a GPIO and generating
required delay is sufficient
e With UART
o Requires both TXD and RXD pins to be connected to the bus
o Need tri-state or open-collector buffer so the slave can pull the
line low.

IC for UART Signals

DM74LS126A Tri-state Buffer IC

tes s o L] 43 va

I” 1 17 ||a-] I! |I Functiﬂ“ TﬂhIE

Bus

Y=A
B r—| B r—| Inputs Output
c 0]
H L
H
L

b e I o

Hi-Z
H = HIGH Logic Level
L= LOW Logio Level
5 = ERher LOW or HIGH Logic Level
Hi-Z = 1ETATE (Ouipuss are disabled)

RXD

Generating UART Signals

e Baud rate is equivalent to bits/sec

® |n order to transmit 1-wire framed data from UART platform we must
frame the data into the same time slots as in the polled implementation

® One UART data frame is used to generate one waveform bit of 1 wire data
or one RESET/Presence signal

m Baud rate | Transmit value %Receive value

Write 1 115200 FFh FFh
Write O 115200 00h 00h
Read 115200 FFh FFh equals a '1" bit Anything else equals a '0’ bit

Reset/Presence .Qﬁﬂlﬂ FOh FOh eguals no presence. Anything else equals presence.

Framing 1-Wire from UART

Wawveform

START a 1 2 3 4 5 [7 STOP
UART bit pattern

To match waveform UART data
frame must match 1-Wire data
frame

All UART signals initiate with a start
bit “0” or LOW

To “Write 1” in one wire format all
bits in UART Frame after Start bit
must be HIGH or “1”

START 0 1 2 3 4 5 & 7 STOP
UART bit pattern

e To “Write 0” all bits in UART data
frame are “0” or LOW
e Stop bitis always HIGH or “1”

Generating One Wire Frame From UART

——
Wavetorm
START a i 2 3 4 5 [7 STOP

UART bit pattern

e “Read 1” Start bitis LOW and slave
writes bit “1” or HIGH in the
remaining data bits in UART frame

Waveform

il

START 0 1 2 3 4 5 -] 7 STOP

UART bit pattern

® “Read 0” start bitis LOW and the
slave drives the bus low by writing
“0” to the rest of the UART bit
pattern and drives the bus HIGH for
the STOP bit.

Reset/Presence Signal with UART

- RESET ! #—PRESEMNCE—=
Wavetorm

fL
L]

START 1] i 2 3 4 5 6 7 STOP
UART bit pattern

e UART bits 0-3 are LOW, 4 is HIGH, and Slave writes UART bits 5,6,&7
LOW
e Stop bit for this signal is HIGH

Overall Communication process

All 1-Wire devices follow this basic sequence(MUST FOLLOW):

s |

The Master sends the Reset pulse.

The Slave(s) respond with a Presence pulse.
Master sends a ROM command

Master sends a Memory command

ROM Commands

e All 1-Wire devices contain a 64 bit identifier stored in ROM

e ROM Commands address those 64 bit identifiers

® After bus master detects a presence pulse it can issue a ROM command to
detect how many slaves are on the bus, and which slave to address.

ROM Commands MAX31820

e Read ROM(33h)-Reads the ROM code of single slave device. If there are
multiple slave devices and the command is issued, data collision will occur.
e Skip ROM(CCh)-Sends data for addressing to all connected slave devices

® Match ROM(55h)-Is used to address individual slave devices on the bus

e Search ROM(FOh)-Is used to get the ID of slave devices if not known

Cyclic Redundancy Check

® CRCis usedan every ROM command to check for data integrity.

® CRC-isan error detection code for digital networks.

® It sends a check value along with the data that is transmitted. This value is
determined by dividing the data by a nominal value and returning the
remainder.

e If once the data is received and the remainder value is not the same, after
the received data has been divided by the nominal value, then we know the
data has been corrupted.

How CRC works

® We can think of CRC as an 8 bit shift register with feedback

Polynomial = X8 + X5 + X% + 1
187 D 3RD 4TH 5TH &TH TTH BTH
STAGE ™ STAGE ™ STAGE ™ STAGE STAGE | _ STAGE [*] STAGE [STAGE
X0 X! X2 x3 x4 X3 X5 X X8
INPUT DATA

How CRC Works

At the beginning of a 64 bit Read ROM command the CRC shift register has
an initial value of zero. CRC = 0x00

The LSB of the 64 bit identifier is XORd with the LSB of the input data. In the
case of 64 bit identifiers the LSB is a family CRC code(ex: 0xA2). So after the
first byte of data has been processed the CRC register will contain the value
of the CRC code. CRC = 0xA2

After the entire 64 bit identifier has been shifted into and out of the CRC
register the register should have a final value of 0x00 if no data was
corrupted. If data was corrupted we would have a value inside the CRC shift
register and the data would have to be retransmitted.

CRC Computation of 1-Wire(Look up Table)

1.

Dallas Semiconductor Corp. provides a table for CRC calculations. This table
rapidly increase CRC calculations and can process entire bytes of data per
loop run.

CRC register is initially zero we then shift in the first byte of 64 bit ID into
register

Then we XOR the next byte of data with the CRC register

Using pgm_read_byte we point to the index of our table and set our CRC
register to that new value. We are indexing by the XORd value of the CRC
register and the input data.

We repeat steps 4 and 5 until we are done with all 64 bits or 8 bytes of our
ID.

If CRCis 0 then no data was corrupted else data has been corrupted.

CRC Function Code Example

|
static const uint& t PROGMEM dscrc_table[] = {
8, 94,188,226, 97, 83,221,131,194,156,126, 32,183,253, 31, &5, uintd_t OneWire::crcd(const wintd_t *addr, uintd_t len)

157,195, 33,127,252,162, 64, 38, 95, 1,227,189, 62, 95,138,228,
35,125,159,193, 66, 28,254,168,225,191, 93, 3,128,222, 6@, OF,
198,224, 32, 92,223,129, 99, 61,124, 34,192,158, 29, 67,161,255,
78, 24,258,164, 39,121,155,197,132,218, S56,182,229,187, 89, 7,
219,133,103, 57,186,228, &, 88, 25, 71,165,251,128, 38,196,154, while (lem--) {
181, 59,217,135, 4, 90,184,238,167,249, 27, 69,198,152,122, 3§, pam_read_byte(dsERE table + (crc » *addrs+));
248,166, 68, 26,153,199, 37,123, 58,10@,134,216, 91, 5,231,185,
14@,210, 48,118,237,179, 81, 15, 78, 15,242,172, 47,113,147,205,

17, 79,173,243,112, 46,204,146,211,141,111, 49,178,236, 14, 88,
175,241, 19, 77,206,144,114, 44,1@9, 51,289,143, 12, 82,176,238, h
5@,108,142,708, 83, 13,239,177,248,174, 76, 18,145,287, 45,115,
202,148,118, 48,171,245, 23, 73, 8, 86,180,234,185, 55,213,133,

87, 9,235,181, 54,184,138,212,149,283, 41,119,244,178, 72, 22,
233,183, 85, 11,136,214, 52,186, 43,117,151,201, 74, 28,246,168,
116, 42,200,158, 21, 75,169,247,182,232, 18, 84,215,137,187, 53};

1

uint® t crc = @;

crc

h

return Crgc;

CRC Look Up Method

Table 1. Table Lookup Method for Computing 1-Wire CRC

Current CRC Value (= Current Table Index) Input Data New Index (= Current CRC xor Input Data) Table (New Index) (= New CRC Value)
0000 0000 = 00 hex 0000 0010 = 02 hex {00 H xor 02 H) = 02 hex = 2 dec Table[2]= 1011 1100 = BC hex = 188 dec
1011 1100 = BC hex 0001 1100 = 1C hex (BC H xor 1C H) = A0 hex = 160 dec Table[160]= 1010 1111 = AF hex = 175 dec
1010 1111 = AF hex 1011 1000 = B8 hex {(AF H xor B8 H) = 17 hex = 23 dec Table[23]= 0001 1110 = 1E hex = 30 dec
0001 1110 = 1E hex 0000 0001 = 01 hex (1EHxor 01 H)=1F hex = 31 dec Table[31]= 1101 110 = DC hex = 220 dec
1101 1100 = DC hex 0000 0000 = 00 hex {DC H xor 00 H) = DC hex = 220 dec Table[220]= 1111 0100 = F4 hex = 244 dec
11110100 = F4 hex 0000 0000 = 00 hex (F4 H xor 00 H) = F4 hex = 244 dec Table [244]= 0001 0101 = 15 hex = 21 dec
0001 0101 = 15 hex 0000 0000 = 00 hex {15 H xor 00 H) = 15 hex = 21 dec Table[21]= 1010 0010 = A2 hex = 162 dec
1010 0010 = A2 hex 10100010 = A2 hex (A2 Hxor A2 H) = hex =0 dec Table[0]=0000 0000 = 00 hex = 0 dec

This table shows how each byte of data gets shifted into our CRC register and how we
calculate the next index for our CRC value.

Overall Communication process

All 1-Wire devices follow this basic sequence(MUST FOLLOW):

= | |

The Master sends the Reset pulse.

The Slave(s) respond with a Presence pulse.
Master sends a ROM command

Master sends a Memory command

Memory Commands

® Are commands specific to slave devices or a class of devices
e They deal with the internal memory and registers of slave devices
e Therefore for each device memory commands are specific to that device

MAX31820 Memory Registers

SCRATCHPAD [POWER-LIP STATE MAX31820 - Ambient Tem pe rature
SHOWN IN PARENTHESES)
BYTED | TEMPERATURE REGISTER LGB (506 Sensor
BYTE 1 | TEMPERATURE REGISTER MSE {05h) EEPROM
BYTEZ | Ty REGISTER OR USER BYTE I Ty REGISTER OR USER BYTE 1
BYTEZ | T, REGISTEROR USEREYIEZ T, REGISTER OR LGEREVTE 2
BYTE 4 CONFIGURATION REGISTER" CONFIGURATION REGISTER
BYTES RESERVED (FFh)
BYTE 6 RESERVED
BYTE 7 'RESERWED [100)
BYTE B CRC
*POWER.UP STATE DEPENDS ON VALUE(S) STORED IN EEPROM,

Figure 4. Memory Map

Configuration Register Format

BIT7 BIT 6 BIT 5 BIT 4 BIT3 BIT 2 BIT 1 BIT 0
[0 | R1 | RO | 1 1 1 1 1

Memory commands specific to this device would address this device's internal memory
registers

TH and TL would address BYTE 2 and BYTE 3 of the temperature sensors internal
scratchpad memory

MAX31820 Configuration Registers

R1 RO RESOLUTION (BITS) MAX CONVERSION TIME

]] g 53.75ms (tconwiB)
0 1 10 187 .5ms (ticonv/4)
1] 11 375ms (tconw’2)
1 1 12 T750ms {teony)

e Bits R1 and RO control the resolution of the temperature reading

e Better resolution slower conversion time, and faster conversion time less
resolution

MAX31820 Function Command Set

Table 3. MAX31820 Function Command Set

1-Wire BEUS ACTIVITY AFTER COMMAND 15
COMMAND DESCRIPTION PROTOCOL g
ISSUED
Convert T A 3 The device fransmits conversion status to master
Initiates te: at 4 44h
(Mote 1) B iiican oot gt oo (not applicable for parasite-powered devices).
Read Scratchpad Reads the entire scratchpad . ;
(Note 2) including the CRC byte. BEh The device transmits up to 9 data bytes to master.
2 Writes to scratchpad bytes 2, 3,
Wnt&:;:trat;:hpad and 4 (Ty, Ty. and configuration 4Eh The master transmits 3 data bytes to the device.
{Now:2) registers).
= Copies Ty, Tp. and configuration
Cnpj.r”m t;:hpad register data from the scratchpad to 43h Mone.
e EEPROM.
Recalls Ty, Ty, and configuration
Recall E2 register data from EEFROM to the B&h The device transmits recall status to the master.
scratchpad.
Signals the device's power-supply " .
Read Power Supply SR B4h The device transmits supply status to the master.

Overall Communication process

All 1-Wire devices follow this basic sequence:

111

The Master sends the Reset pulse.

The Slave(s) respond with a Presence pulse.
Master sends a ROM command

Master sends a Memory command

1 Wire Digital Temperature Sensor Implementation

Step 1

COMPUTER
UsB

{Bottom View)

® Assemble this simple circuit, the resistor is needed for the idle state of the
bus(HIGH)
® Also because it will act as a pull up resistor

1 Wire Digital Temperature Sensor Implementation

Step 2
Download Necessary Libraries

e Download OneWire Arduino Library

e Download DallasTemperature Arduino
Library

e Place both libraries into your Arduino
library path

® Include both libraries in your C++ code

1 Wire Digital Temperature Sensor Implementation
Step 3 Arduino Code

F7 Firat we include the libraries
#include < i -h

S/ Data wire is plugged into pin Z on the Arduino
i ONE_WIRE_BUS =

S Setup a oneWire imnstance to communicate with any OneWire devices
£ (not just Maxim/Dallas temperature ICs)
oneWire (OME_WIRE_ BUS) ;

i

our onewWire reference to Dallas Temperature.

gensors {soneWire) »

d setup (void)

/4 start serial port

Serial .begin{2600) >

Serial.p tln{"Dallas Temperature IC Control Library Demo™) s
/4 Start up the library

sensors.begin() 5

d loop{(wvcocid)

S/S call sensors.reguestTe

eratures () To issue a global Ttemperature
S/ request to all devices on the bus

Serial.print{™ Reguesting temperatures...™):
sensors.regquestTemper
Serial .println ("DONE™) &

u

2s3(); // Send the command to get temperature readings

nt ("Temperature is: ™)
int (sensors.

=mpCB

c{0)}) s // Why "byIndex™?
S15BZ0 on the same bus.

Ff 0 refers to the first IC on the wire

¥ {1000} 7

Bdw

F4f ¥ou can have more than one

OneWire and DallasTemperature functions

® OneWire oneWire(ONE_WIRE_BUS) - this is a data structure defined in the one
wire library

e DallasTemperature sensors(&oneWire) - this is another data structure defined in
the DallasTemperature library that is an array of 8 bytes.(that is why the structure
must be passed as a pointer)

OneWire and DallasTemperature functions

sensors.begin - is a subroutine in the DallasTemperature library that
identifies the type of temperature sensor on the bus and initializes the type
of power supply the temperature sensors requires.
sensors.requestTemperatures - sends a reset/presence signal to begin
communication with device. Once presence is detected skip ROM command
is sent because only one temperature sensor is on the bus. Then we issue a
memory command that begins to send data of the temperature back to the
master device.

OneWire and DallasTemperature functions

® sensors.getTempCBylndex(0) - This function returns the temperature in
celsius detected by the temperature sensor. If device is disconnected
during process it will return “DEVICE_DISCONNECTED_C”.

References

https://en.wikipedia.org/wiki/1-Wire

http://www.atmel.com/images/Atmel-2579-Dallas-1Wire-Master-on-tinyAVR-and-megaAVR_ApplicationNote AVR318.pdf

https://www.maximintegrated.com/en/app-notes/index.mvp/id/126

https://create.arduino.cc/projecthub/TheGadgetBoy/ds18b20-digital-temperature-sensor-and-arduino-9cc806

https://www.hacktronics.com/Tutorials/arduino-1-wire-address-finder.html

https://en.wikipedia.org/wiki/Cyclic_redundancy_check

https://www.maximintegrated.com/en/app-notes/index.mvp/id/27

https://www.maximintegrated.com/en/products/1-wire/flash/overview/

https://en.wikipedia.org/wiki/1-Wire
http://www.atmel.com/images/Atmel-2579-Dallas-1Wire-Master-on-tinyAVR-and-megaAVR_ApplicationNote_AVR318.pdf
https://www.maximintegrated.com/en/app-notes/index.mvp/id/126
https://forum.pjrc.com/threads/23939-Strange-behavior-on-the-Onewireslave-library?p=33608&viewfull=1#post33608
https://create.arduino.cc/projecthub/TheGadgetBoy/ds18b20-digital-temperature-sensor-and-arduino-9cc806
https://www.hacktronics.com/Tutorials/arduino-1-wire-address-finder.html
https://en.wikipedia.org/wiki/Cyclic_redundancy_check
https://www.maximintegrated.com/en/app-notes/index.mvp/id/27

Questions

O 00N A WDNPRE

=
o

How long are the time divisions of each bit level command?
What is the Idle state of the bus line?

What are the types of implementations of one wire?

Which implementation requires external hardware?

How does the master know there is a slave device connected?
Where are the 64 bit IDs of connected devices stored?

Which signal takes more than 1 time slot to transmit?

What device is needed for one wire UART?

What is the waveform of the write 1 signal?

Can data be both transmitted and received simultaneously by the one wire
protocol?

Answers

=
o

W ONOoUh DR

60 microseconds

HIGH

Polled, UART(interrupt driven)
UART

Presence signal

ROM

Reset/Presence Signal
Tri-state buffer

Draw

No

