
Atmel Studio 7 Part I
Advanced Developer Software

Deciding Development Software:

● Application Dependent:
○ Embedded Systems
○ Front end GUI
○ Databases
○ AI
○ PCB fabrication
○ Simulation

● Vendor Dependent:
○ ARM
○ Atmel
○ Etc.

Arduino IDE

● Pros:
○ Light Weight
○ Works “out of the box”
○ Comes with examples and samples to help get started
○ Easy to configure with Hardware
○ Open Source
○ Add-ons for additional hardware

■ Ada Fruit
■ Sparkfun
■ Etc

● Cons:
○ Not an engineer's tool
○ Anything more complex than a Hobbyist's breadboard device can be hard to manage

Atmel Studios 7

Pros:
● More professional level tools

○ Autocomplete
○ Project hierarchy
○ Simulator
○ In-System Programming and In-Circuit Emulator (ICE) support

Cons:
● Much more bulky

○ Built on top of a Microsoft Visual Studios Shell. (~3GB in size)

● Another software to learn and feel familiar with.

Importing Arduino Script

Process:

● Make an Arduino script or take a blank one
● Go to “file” -> ”New project” -> “import Arduino Script”

○ Pick the path of desired script and Arduino IDE install path.

● Select Board type and Device type
○ For our projects these will either be “Leonardo” or “Lillypad USB”

Arduino Import

Hierarchy

Hierarchy Cont.

For Arduino projects the Hierarchy is important for showing two different
things:

● Arduino Base Code
○ Looking into the base code is important for finding microcontroller specific defaults.

● Better Organize your project source files
○ Main Script
○ Headers/ Src.

Simulator

● Similar to AVR Studio 4’s simulator, used in EE346, the Atmel Studio 7
simulator provides a quick method of verifying your code.
○ Go to “tools” as seen in the toolbar the select “debugger” -> “simulator”
○ Same as other simulators, utilize the stepping tools as needed.
○ Warning: Delays are not modeled by the simulator and therefore will not reflect actual

timing within the target application.
■ Easier to set breakpoints than delays (comment out if possible).

○ Also Note: Serial.print commands inconsistent also (due to not having a port connection)

● Pin simulation
○ As opposed to software development, our simulators allow us to see IO register, General

Purpose Registers, as well as PIN states (HIGH, LOW)
○ This gives us more flexibility to debug specific sections of the program.

Simulator operation:

● Red: setting breakpoints on the left margin of line numbers
● Blue: Memory and register inspector windows

○ Left to right: Disassembly, registers, Memory 1, Processor Status (SREG), IO
○ For our purposes, IO will be the primary concern

● Green: Simulator control
○ Left to right:

■ Add watch: look at variable address and value
■ Step into: look “into” function and step through.
■ Step over: execute function in its entirety (or until breakpoint/ inf. loop)
■ Step out: Done to leave a “step in”

Live Debugging

Atmel ICE programmer:

● Provides: ISP (in-system programmer), fuse settings, .hex- uploading, and
bootloader configuration.
○ ISP enables a deeper level of simulator where the hardware is running while connected to

the PC.
○ Use this to further understand complex problems and pin-point if it requires hardware or

software changes.

Secondary Discussion: Bootstrap vs. Bootloader

● Bootloader:
○ Used on most (all) computers from embedded systems to desktop computers to ensure

successful power-up sequence.
○ Bootloaders are hardware specific as they operate at a C/ assembly level to configure IO

based on application
○ For example: Arduino uses a bootloader and on power-up it checks if the arduino IDE/ AVR

dude is uploading code via serial connection.
○ Resides in FLASH program memory at specific allocated locations.

● Bootstrapping:
○ Used in applications that require an operating system.
○ The bootstrap ensures the kernel (“OS”) is uncompressed and not corrupted before handing

the device over to the OS.
○ Stored in non-volotile memory (FLASH, ROM, EEPROM)

