California State University, Long Beach

EE 444 — Microprocessor Based System Design

Lab 2 — Shaft encoders, rover, Matlab and fun!

Student: Walter Heth, Paul Zelaya

Professor: Gary Hill

2/27/2013

Table of Contents

1 Overview/Objective (Walter)
2 Reference Material (Paul)
3 Mission Checklist (Paul)
4 How it Works (Walter)
5 Instructions
5.1 Software Downloads (Paul)
5.2 Shaft Encoder Demo (Paul)
5.3 Installing shaft encoders on Rover (Walter)
5.4 Traveling a set distance (Walter)
5.5 Using Matlab (Paul)
6 Make the Rover Go StraighfWalter)
8 Code (Walter)
8.1 Calibration Code
8.2 Go1Foot
8.3 Matlab Script

1 Overview/Objective

The purpose of incorporating a shaft encoder is to have an accurate way of measuring how far
the rover has traveled. In previous semesters the rovers were told to go forward for a certain
amount of time, now we are able to tell it to go a certain number of inches.

N =N

Reference Material

Arduino IDE for Arduino UNO - Lin
Adafruit Motor Shield library - Link
Alps EC11B15202AA rotary encoder cut sheet - Link

Link

Mission Checklist

Connect LED’s to the shaft encoder on a breadboard. The LED’s should visually show
the type of output shaft encoder produces.

Install the shaft encoder on the rover.

Use shaft encoder to have rover travel a pre-determined distance. Monitor rover
movement on Matlab.

http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FGuide%2FWindows&sa=D&sntz=1&usg=AFQjCNFizDOD6ZMYBQghWfy4CFsy1eiEqA
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FGuide%2FWindows&sa=D&sntz=1&usg=AFQjCNFizDOD6ZMYBQghWfy4CFsy1eiEqA
http://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fadafruit%2FAdafruit-Motor-Shield-library&sa=D&sntz=1&usg=AFQjCNHbMcoUr6Ye668h0ydJWi-EECbTmg
http://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fadafruit%2FAdafruit-Motor-Shield-library&sa=D&sntz=1&usg=AFQjCNHbMcoUr6Ye668h0ydJWi-EECbTmg
http://www.google.com/url?q=http%3A%2F%2Fwww.alps.com%2Fproducts%2FWebObjects%2Fcatalog.woa%2FE%2FHTML%2FEncoder%2FIncremental%2FEC11%2FEC11B15202AA.html&sa=D&sntz=1&usg=AFQjCNFFE_frzu4LNQ9Gr_jiPLdV_uU_UQ
http://www.google.com/url?q=http%3A%2F%2Fwww.alps.com%2Fproducts%2FWebObjects%2Fcatalog.woa%2FE%2FHTML%2FEncoder%2FIncremental%2FEC11%2FEC11B15202AA.html&sa=D&sntz=1&usg=AFQjCNFFE_frzu4LNQ9Gr_jiPLdV_uU_UQ

4 How it Works

If you’ve ever seen the inside of a roller ball mouse you may have noticed the optical shaft
encoder. The ball of the mouse would roll against the rim of the shaft encoder, causing it to turn.
The computer would read how many pulses occurred and the mouse would move on the screen
accordingly.

Figure 5.1
Our encoder behaves similarly. The input channels are configured with pull up resistors and by
default have a logic of 1 or HIGH. When channel A hits its first “click” it will essentially close a
switch between A and C. C is connected to ground causing our input to be read as logic 0 or
LOW. The next click for channel A will open the switch and we will have our HIGH value again.
The optical encoder only represents one of the channels of our shaft encoder, so why do we
have two?

If we only use one channel and rotate the shaft clockwise we would see
1010101010101....
If we use one channel and rotate the shaft counter clockwise we would see
101010101010....
With two channels we can count from O to 3 and tell if we are moving
clockwise: 10,11,01,00,10,11.... (2,3,1,0,2,3....)
counterCW: 01,11,10,00,01,11... (1,3,2,0,1,3...)
However we do not need to use the sensor to find this information as we will be telling the rover
weather we are going forwards or backwards. The only use for the shaft encoder is to
accurately record how far we have gone. Therefore we will only need one channel

OUTPUT WAVEFORM

—-) -— Q" AR"PHASE ERROR

. A 0 LOGIC
DUTF'UT ‘I LEII"IIIEL
B 0

COUNTERCLOCK\WISE ———

. —CLOCKWISE ROTATION

5 Instructions

5.1 Software downloads

Download the Arduino IDE - Link
The IDE can be launched from the downloaded folder, no need to run an installation routine.
Make sure to preserve the folder structure.

Download the Adafruit Motor Shield Library - Link
Download the zip file as shown below:

adafrutt / Adafruit-Motor-Shield<ibrary * St o Fork M

Code Network Pull Requests 1 Isspes 4 Graphs

Adafruit Maotor shield firrware with basic Microstepping suppon. Warks with all Arduinos and the Mega — Read mone —

hitpaiiweww ladyada net!make/mshield

22 Clone In Windows <> DIP HTTP Y S$SH Git Read-Only hotpe://github.com/sdafruic/hdelfuit-Moror=5Shiel E__."'. Read-Only access

P bra master ~ Files Commits nches Tags
Adafruit-Motor-Shield-library / @ Download Zip file © 16 commits
Merge pull request #8 from EmbeddedMan/master
n ladyada ’ smiv dbdllesdla [
M examples 2 years ago Fooed to use buslt in Sanvo library [ladyada)
oe.Cpp 6 months ago Added support for cipkIT/MPIDE (PIC32 architecture) boards. Please se... [Embeddedian]
vio & months ago Added support for ciptIT/IMPIDE (PIC32 architecture) boards. Please se .. [Embeddedian)
& months ago Added suppor for ciptIT/MPIDE (PIC2 architecture) boards. Please se... [Embeddedian]
3 years ago The latest versson [ladyada]

Inside the zip file there will be a header file and a c++ source file. Both these files must be in
the same folder as the sketch included at the end of this lab.

http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FGuide%2FWindows&sa=D&sntz=1&usg=AFQjCNFizDOD6ZMYBQghWfy4CFsy1eiEqA
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FGuide%2FWindows&sa=D&sntz=1&usg=AFQjCNFizDOD6ZMYBQghWfy4CFsy1eiEqA
http://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fadafruit%2FAdafruit-Motor-Shield-library&sa=D&sntz=1&usg=AFQjCNHbMcoUr6Ye668h0ydJWi-EECbTmg
http://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fadafruit%2FAdafruit-Motor-Shield-library&sa=D&sntz=1&usg=AFQjCNHbMcoUr6Ye668h0ydJWi-EECbTmg

5.2 Shaft Encoder Demo

The rotary encoder used in this lab is a quadrature encoder. Refer to the encoder
documentation. The encoder has a ground pin (pin C) and two signal pins (pins A and B). The
pins not only give the number of revolutions the encoder has turned through, but the pins can
also determine which way the encoder has turned. LEDs will be used in order to demonstrate
this point. Wire a Arduino / breadboard as shown in Figure 1.

FE R R EEE R R BEEEE EEEEE B R -.I' " eEeEEE AR EEE BEEEE EE R Ew
FERRE SRR AR EE dheeg wRew - I R
R e | 1 e e I
I A I I) R I I R I
iiiiiiiiiiiiiiiiiiiiiJ R EEEEEE N R E R E R E R E Y
R R R I I I I EEEREE] R R R R I S

L O I O D L e L O I e L I O
FAER AR R R R R R R R FEEE AR AR AR
FAEAR R AR R R R Y EE BB A AR RS RSB SRR EEREEE
FAER AR R R R R T R R T
FAER AR R R R R R T EEE FAEB A A ARSI S BB T BB R RSB EEREEEEE
- .. - . L B e L L - . L B B L - .. - .
L - e L e L L - . L B e L O L - e

Figure 1. How to wire the shaft encoder to LED’s (Image developed using Fritzing)

As the encoder turns, it will establish a ground that will turn the LEDs on or off. When the
encoder is turned the LEDs light off in a pattern that is indicative of the direction the encoder is
turning.

5.3 Installing shaft encoders on Rover
1. Solder 6-8 inch wires on each of the 3 pins or preferably crimp together a female connector
that will go over the 3 pins. These pins break off easily, try to minimize any bending. Do not
panic if one of the outside pins break off as you will only need one of them. If the middle pin or
both the outside pins break off then get a new encoder.

2. Remove track and back wheels from the rover.

3. Remove the original shaft that comes with the chassis kit.

4. Insert shaft encoder in place of the original shaft, make sure pins are pointing towards the
arduino. Figure 4.1 has the pins facing the wrong way.

5. Slide the nut over the shaft and tighten it down so that the side with pins can not rotate. The
shaft should still be able to rotate. Check Figure 4.1.

6. Re-installing the wheels we can see that they stick out a bit more due to the shaft encoder.
You can see this in Figure 4.2. Try flipping the wheels around and installing them the opposite
direction. This should put them back in line.

7. Now for the fun part, the wheel needs to turn the shaft encoder. The best method would be to
drill a hole in the wheel that would allow a small bolt to come in facing the flat side of the shaft
and pinch it in place. It is well advised not to glue the wheel to the shaft encoder. If the pins of
your shaft encoder break off you will need to replace it.

8. Run the wires through the large hole visible in Figure 4.2

9. For the sake of making things simple, connect channel A or B of the shaft encoders to 1/0 pin
2 and Analog pin 0. Connect both C pins to ground. Check Figure 4.3.

Figure 4.1 Figure 4.2

11.7

75max.,

Figure 4.3

5.4 Traveling a set distance

Read through the code at the end of this lab named Go1Foot. It has very detailed comments
that explain exactly what is going on. For a general understanding, the code tells each motor to
go forward until one of the motors reaches a certain number of pulses. Once one of the
encoders reaches this number both motors will turn off so that the rover will not turn when it
reaches its destination. It is important to make sure the rover has both motors going at the
same speed. You can set both motors to 200 and manually increase the speed of the slower
motor until they both reach the same speed. You can also check out section 6 on the Calibration
code if you feel like having the arduino try to do this for you. Once you have it going straight you
should be able to tell the rover the exact distance to travel using the conversion of (80
pulses/1foot). We reached this number by telling the arduino to go 50 clicks which caused the
arduino to go 7.5 inches. If we wanted 12 inches that would be 12in*(50 click/7.5in)=80 clicks
per foot. Try getting your rover to go 5 feet to see how accurate this is.

5.5 Using MATLAB to track rover movement

Matlab can be used to graph out rover displacement. The program reads a serial output from the
Arduino and displays the data on a plot. In order to start the program, a serial object has to be
created in Matlab. This object contains all the parameters used to establish communication.

The rover uses one encoder channel to determine movement. The encoder has 30 transitions
per revolution. As discussed before, the encoder is the center of the rover rear wheel. Rover
displacement per transition can be given by the following expression:

r = Distance from wheel center to track contact
5 = Rover displacement
N = transition or dent
2mrN

=30

Upload the Matlab Code into the Arduino. This code outputs the number of times the encoder
has changed states. This data is then outputted through the serial pins. A matlab script takes

this data and manipulates it in order to get distance traveled and velocity. The matlab script can
be run at any time. Once rover is moving, run the script. A graph should appear that shows
displacement and velocity plotted on the same graph. Refer to the Matlab Script at the end of this
report.

EI:I I I I I I 1 1

displacement
mﬁ| i “i | LTI T [— = —=velocity
i TN AN T
A T R A LR R R R R Y
R R R T YT AR T R R AR RO AT A
12y g R -
I S I e T g
I I g AN ol RRIRRAEY
et e e T R G
R A A T A R R
L 8 000t B R RRAL AL R e i L
! R i i e
1N T T HHHEEE I
B e | diin
NN e TR T T AT T
IR N [AT | TR
[l R Tty |
4l ||HI”| W g |:|:|H: ;]
e ey
ahy 1 R T L R H] .
gt i
1] || | lllll!l!l!l llll!l llll!n!u!n!!l!llllllll I|I|I||| |
0 0.2 0.4 06 0.8 1 g 1.4 16

Figure 5.5

6 Make the Rover Go Straight

There is a high possibility that your rover will not go straight. You can try to guess the two motor
speeds that will get your rover to go straight. You can also try the calibration code given at the
end of this lab. It tells both motors to go forward and counts 200 steps or clicks on each shaft
encoder. If one motor reaches the 200 steps first it will speed up the other motor and run
through the calibration again. There is a small error margin that is acceptable, and if it falls into
that margin 5 times in a row it will give you the new motor speed values that you should use in
your code. Try it out, start at motor speed 200 and when you get your values program your rover
to go forward next to a wall and do some fine tuning.

Calibration Code

#include <AFMotor.h>

AF DCMotor motorl(l, MOTOR12 64KHZ); // create motor #1,
AF DCMotor motor2 (2, MOTOR12 64KHZ); // create motor #2,
const int pin2 = 2;

const int pinAQ = AO0;

int turnEncoderl = 0;

int turnEncoder2 = 0;

boolean lastStateAl;

boolean lastStateA2;

int NumbPulse=200;

int Mlspeed=200; //222,248

int M2speed=200;

int counter= 0;

int x=0;

void setup ()
{
Serial.begin(115200) ;

Serial.println ("Motor setup");

pinMode (pin2, INPUT); //Define this pin as a input
digitalWrite (pin2, HIGH); //Get this pull up resistor

64KHz pwm
64KHz pwm

fired up

pinMode (pinAO, INPUT) ; //Define this pin as a input

digitalWrite (pinAO, HIGH); //Get this pull up resistor

motorl.setSpeed (Mlspeed) ; // set the speed to 200/2
motor2.setSpeed (M2speed) ;

void loop ()
{

turnEncoderl=0;

turnEncoder2=0;

motorl.setSpeed (Mlspeed) ; // set new speed
motor2.setSpeed (M2speed) ;

motorl.run (FORWARD) ; // turn it on going forward
motor2.run (FORWARD) ;

while (turnEncoderl<NumbPulse || turnEncoder2<NumbPulse)

{
boolean stateAl = digitalRead(pin2);
boolean stateA2 = digitalRead (pinA0);

if ((stateAl==lastStateAl) && (stateA2==lastStateA2))

{
Serial.println ("No Change");

fired up

55

if (stateAl != lastStateAl)

lastStateAl = stateAl;
turnEncoderl++;
}
if (stateA2 != lastStateA2) //((stateA2 == HIGH && lastStateA2 == LOW) || (stateA2 ==
LOW && lastStateA2 == HIGH))
{
lastStateA2 = stateA2;

turnEncoder2++;

Serial.print ("Left:");
Serial.print (turnEncoderl) ;
Serial.print ("steps, Right:");
Serial.print (turnEncoder?) ;

Serial.println("steps");

motorl.run (RELEASE) ; // stopped
motor2.run (RELEASE) ;

Serial.println ("Both motors stopped");
delay (1000) ;

x=0;

if (turnEncoderl>turnEncoder?)
{
x=turnEncoderl-turnEncoder?2;
if (x>2 && x<5)
{
M2speed++;
}
if (x>4)
{
M2speed += 2;

if (turnEncoder2>turnEncoderl)

x=turnEncoder2-turnEncoderl;
if (x>2 && x<5)
{
Mlspeed++;
}
if (x>4)
{
Mlspeed += 2;

if (x<3)

counter++;

if
{

(counter== 5)

Serial.println ("**‘k‘k‘k‘k‘k‘k**‘k*‘k**********************") ;

Serial.print ("set M1 speed to ");

Serial.println (Mlspeed) ;

Serial.print ("set M2 speed to ");

Serial.println (M2speed) ;

Serial.println ("**‘k‘k‘k‘k‘k‘k**‘k*‘k**********************") ;

delay (20000) ;

}

else

counter=0;

}
Serial
Serial
Serial
Serial
Serial

Serial

.print ("counter=");
.println (counter) ;
.print ("Mlspeed=") ;
.println (Mlspeed) ;
.print ("M2speed=") ;
.println (M2speed) ;

delay (5000) ;

Go1Foot

#include <AFMotor.h>

AF DCMotor motorl

MOTOR12 64KHZ); // create motor #1, 64KHz pwm

(1,
AF DCMotor motor2 (2, MOTOR12 64KHZ); // create motor #2, 64KHz pwm
2;

const int pin2 =

// Reads shaft encoder 1

const int pinA0 = AO; // Reads shaft encoder 2

int turnEncoderl = 0; // use these variables to keep track how many steps

int turnEncoder2 = 0; // the rover has taken

boolean lastStateAl; // Channel A of shaft encoder 1

boolean lastStateA2; // Channel A of shaft encoder 2

int NumbPulse=80; //12in (lclick/0.15in)=80 clicks 2ft=160clicks etc

int x=0;

int y=0;

int z=0;
int Mlspeed=222; //Left motor 222,239
int M2speed=248; //right motor

void setup ()

{

Serial.begin(115200) ; // set up Serial library at 115200 bps
pinMode (pin2, INPUT); //Define this pin as a input

digitalWrite (pin2, HIGH); //Get this pull up resistor fired up
pinMode (pinAO, INPUT) ; //Define this pin as a input

digitalWrite (pinAO, HIGH); //Get this pull up resistor fired up

motorl.setSpeed (Mlspeed) ; // set the speed to 200/255
motor2.setSpeed (M2speed) ;

Serial.println ("Motor setup complete");

void loop ()

{

turnEncoderl=0; //Reset counters if making another travel

turnEncoder2=0;

motorl.setSpeed (Mlspeed) ; // set Motorl speed (Left)

motor2.setSpeed (M2speed) ; // set Motor2 speed (Right)

x=NumbPulse; // Tell left motor how many steps it needs to take
y=NumbPulse; // Tell right motor to take the same amount of steps
z=0;

motorl.run (FORWARD) ; // turn it on going forward

motor2.run (FORWARD) ;

// while neither motor has reached their last step, continue to run forward
// and keep track of what step you are on

while (turnEncoderl<NumbPulse && turnEncoder2<NumbPulse)

{

boolean stateAl = digitalRead(pin2); //Read shaft encoders and see if it has

boolean stateA2 = digitalRead (pinA0); //changed from low to high or vice versa

//If both states are the same then there is no change
if ((stateAl==lastStateAl) && (stateA2==lastStateA2))
{
Serial.println ("No Change");
z++;

//1if Shaft encoder 1 has changed then decrement x
if (stateAl != lastStateAl)
{
lastStateAl = stateAl;
turnEncoderl++;

==

//1if Shaft encoder 2 has changed then decrement y
if (stateA2 != lastStateA2)
{
lastStateA2 = stateA2;

turnEncoder2++;

Y——7

}
//While walking, tell us how many steps you have left to take
Serial.print (y);
Serial.print ("Left:");
Serial.print (turnEncoderl) ;
Serial.print ("steps, Right:");
Serial.print (turnEncoder?) ;

Serial.println("steps");

// One of the motors have reached the final step
// Stop both motors

motorl.run (RELEASE) ; // stopped

motor2.run (RELEASE) ;

Serial.println ("Both motors stopped");

// How many steps does each motor have remaining?
// How many times do we have no change read?

// We want a high # of no change to know that we are checking for
// changes faster than we are changing.
Serial.print (x);

Serial.println (" steps left on the left motor");
Serial.print (y);

Serial.println (" steps left on the right motor");
Serial.print(z);

Serial.println("x No Changes");

delay (5000) ;

Matlab Code

#include <AFMotor.h>

AF DCMotor motorl

MOTOR12 64KHZ); // create motor #1, 64KHz pwm

(1,
AF DCMotor motor2 (2, MOTOR12 64KHZ); // create motor #2, 64KHz pwm
2;

//
const int pinAO = AO0; //
//
int turnEncoder2 = //
boolean lastStateAl; //
boolean lastStateA2; //

const int pin2 =

int turnEncoderl = 0;
0;

Reads shaft encoder 1

Reads shaft encoder 2

use these variables to keep track how many steps
the rover has taken

Channel A of shaft encoder 1

Channel A of shaft encoder 2

int NumbPulse=400; //12in (1lclick/0.15in)=80 clicks 2ft=160clicks etc

int AvgStep=0;
int Mlspeed=222; //Left

motor 222,239

int M2speed=248; //right motor

void setup ()
{
Serial.begin (9600) ;

pinMode (pin2, INPUT) ;
digitalWrite (pin2, HIGH)
pinMode (pinAQO, INPUT) ;

// set up Serial library at 9600 bps

//Define this pin as a input
; //Get this pull up resistor fired up
//Define this pin as a input

digitalWrite (pinAO, HIGH); //Get this pull up resistor fired up

motorl.setSpeed (Mlspeed)
motor2.setSpeed (M2speed)

void loop ()

{
turnEncoderl=0;
turnEncoder2=0;
AvgStep=0;

motorl.setSpeed (Mlspeed)
motor2.setSpeed (M2speed)

motorl.run (FORWARD) ;
motor2.run (FORWARD) ;

; // set the speed to 200/255

’

//Reset counters if making another travel

7 // set Motorl speed (Left)
; // set Motor2 speed (Right)

// turn it on going forward

// while neither motor has reached their last step, continue to run forward

// and keep track of what step you are on

while (turnEncoderl<NumbPulse && turnEncoder2<NumbPulse)

{

boolean stateAl = digitalRead(pin2); //Read shaft encoders and see if it has

boolean stateA2 = digitalRead (pinA0); //changed from low to high or vice versa

//if Shaft encoder 1 has changed then decrement x
if (stateAl != lastStateAl)

{

lastStateAl = stateAl;

turnEncoderl++;

//1if Shaft encoder 2 has changed then decrement y
if (stateA2 != lastStateA2)
{
lastStateA2 = stateA2;

turnEncoder2++;

//Find the average step taken between both shafts and send to MATLAB
AvgStep= ((turnEncoderl+turnEncoder2) /2) ;

Serial.println (AvgStep, DEC);

delay (10);

// One of the motors have reached the final step
// Stop both motors

motorl.run (RELEASE) ; // stopped

motor2.run (RELEASE) ;

delay (5000) ;

Matlab Script

%Clear all the variables and clear command window

clear all
clc

$Define Serial object
s = serial ('COM7', 'BaudRate', 9600)

fopen (s) L ————— enable serial communication

interv = 100; $Defines the number of samples we want

pass = 1; %Simple counter

t =1; %Column vector counter

x = 0; $Array that holds transition data

dis = 0; $Displacement

delay = 50; $Delay defined in Arduino sketch

r =17/8; $Distance from wheel center to table surface
treal(1l,1) = 0;

tstep = delay/1000; %in seconds

while (t<interv)

b = fscanf (s, '%d'); %Reads what is outputed from Arduino

if (t==1) %have to perform this if,else loop to ensure treal can be used in plot
treal(t,1) = 0;

else
treal(t,1l) = treal(t-1,1)+tstep;

end

x(t,1) = b;

dis(t,1) = (2*pi*r*b)/(30);

if(t>2)
v(t,1) = (dis(t,1)-dis(t-1,1))/(treal(t,1l)-treal(t-1,1));
plot(treal,dis);
hold on
plot(treal,v,'-=-");
legend('displacement', 'velocity');
end

%axis([-10,interv,-50,1050]) ;
t = t+pass;
drawnow

end

fclose (s)

