
1 | P a g e

2 | P a g e

ATmega Interrupts

Reading

The AVR Microcontroller and Embedded Systems using Assembly and C)
by Muhammad Ali Mazidi, Sarmad Naimi, and Sepehr Naimi

Chapter 10: AVR Interrupt Programming in Assembly and C

Section 10.1: AVR Interrupts

Section 10.4: Interrupt Priority in the AVR

http://www.pearson.ch/HigherEducation/ElectricalEngineering/MicroprocessorSystemsand/1471/9780138003319/AVR-Microcontroller-and-Embedded.aspx

3 | P a g e

TABLE OF CONTENTS
Interrupt Basics ... 4

The Main Reasons You Might Use Interrupts ... 5

ATmega328P Interrupt Vector Table .. 6

ATmega328P Interrupt Processing ... 8

ATmega328P Interrupt Processing – Type 1 – .. 9

ATmega328P Interrupt Processing – Type 2 – .. 10

When Writing an Interrupt Service Routine (ISR) ... 11

Program Initialization and the Interrupt Vector Table (IVT) ... 12

The Interrupt Service Routine (ISR) .. 13

Predefined Arduino IDE Interrupts ... 14

Programming the Arduino to Handle External Interrupts .. 15

4 | P a g e

INTERRUPT BASICS

 A microcontroller normally executes instructions in an orderly fetch-

execute sequence as dictated by a user-written program.

 However, a microcontroller must also be ready to handle unscheduled,

events that might occur inside or outside the microcontroller.

 The interrupt system onboard a microcontroller allows it to respond to

these internally and externally generated events. By definition we do

not know when these events will occur.

 When an interrupt event occurs, the microcontroller will normally complete the instruction it is currently

executing and then transition program control to an Interrupt Service Routine (ISR). These ISR, which

handles the interrupt.

 Once the ISR is complete, the microcontroller will resume processing where it left off before the interrupt

event occurred.

5 | P a g e

THE MAIN REASONS YOU MIGHT USE INTERRUPTS
1

 To detect pin changes (eg. rotary encoders, button presses)

 Watchdog timer (eg. if nothing happens after 8 seconds, interrupt me)

 Timer interrupts - used for comparing/overflowing timers

 SPI data transfers

 I2C data transfers

 USART data transfers

 ADC conversions (analog to digital)

 EEPROM ready for use

 Flash memory ready

1 Source: Gammon Software Solutions forum – What are interrupts?

http://www.gammon.com.au/forum/?id=11488

6 | P a g e

ATMEGA328P INTERRUPT VECTOR TABLE

 The ATmega328P provides support for 25 different interrupt sources. These interrupts and

the separate Reset Vector each have a separate program vector located at the lowest

addresses in the Flash program memory space.

 The complete list of vectors is shown in Table 11-6 “Reset and Interrupt Vectors in

ATMega328P. Each Interrupt Vector occupies two instruction words.

 The list also determines the priority levels of the different interrupts. The lower the address

the higher is the priority level. RESET has the highest priority, and next is INT0 – the External

Interrupt Request 0.

7 | P a g e

ATmega328P Interrupt Vector Table

Vector
No

Program
Address

Source Interrupt Definition Arduino/C++ ISR() Macro
Vector Name

1 0x0000 RESET Reset

2 0x0002 INT0 External Interrupt Request 0 (pin D2) (INT0_vect)

3 0x0004 INT1 External Interrupt Request 1 (pin D3) (INT1_vect)

4 0x0006 PCINT0 Pin Change Interrupt Request 0 (pins D8 to D13) (PCINT0_vect)

5 0x0008 PCINT1 Pin Change Interrupt Request 1 (pins A0 to A5) (PCINT1_vect)

6 0x000A PCINT2 Pin Change Interrupt Request 2 (pins D0 to D7) (PCINT2_vect)

7 0x000C WDT Watchdog Time-out Interrupt (WDT_vect)

8 0x000E TIMER2 COMPA Timer/Counter2 Compare Match A (TIMER2_COMPA_vect)

9 0x0010 TIMER2 COMPB Timer/Counter2 Compare Match B (TIMER2_COMPB_vect)

10 0x0012 TIMER2 OVF Timer/Counter2 Overflow (TIMER2_OVF_vect)

11 0x0014 TIMER1 CAPT Timer/Counter1 Capture Event (TIMER1_CAPT_vect)

12 0x0016 TIMER1 COMPA Timer/Counter1 Compare Match A (TIMER1_COMPA_vect)

13 0x0018 TIMER1 COMPB Timer/Counter1 Compare Match B (TIMER1_COMPB_vect)

14 0x001A TIMER1 OVF Timer/Counter1 Overflow (TIMER1_OVF_vect)

15 0x001C TIMER0 COMPA Timer/Counter0 Compare Match A (TIMER0_COMPA_vect)

16 0x001E TIMER0 COMPB Timer/Counter0 Compare Match B (TIMER0_COMPB_vect)

17 0x0020 TIMER0 OVF Timer/Counter0 Overflow (TIMER0_OVF_vect)

18 0x0022 SPI, STC SPI Serial Transfer Complete (SPI_STC_vect)

19 0x0024 USART, RX USART Rx Complete (USART_RX_vect)

20 0x0026 USART, UDRE USART, Data Register Empty (USART_UDRE_vect)

21 0x0028 USART, TX USART, Tx Complete (USART_TX_vect)

22 0x002A ADC ADC Conversion Complete (ADC_vect)

23 0x002C EE READY EEPROM Ready (EE_READY_vect)

24 0x002E ANALOG COMP Analog Comparator (ANALOG_COMP_vect)

25 0x0030 TWI 2-wire Serial Interface (I2C) (TWI_vect)

26 0x0032 SPM READY Store Program Memory Ready (SPM_READY_vect)

8 | P a g e

ATMEGA328P INTERRUPT PROCESSING

 When an interrupt occurs, the microcontroller completes the current instruction and stores the address of the next

instruction on the stack

 It also turns off the interrupt system to prevent further interrupts while one is in progress. This is done by clearing

the SREG Global Interrupt Enable I-bit.

 The Interrupt flag bit is cleared for Type 1 Interrupts only (see the next page for Type definitions).

 The execution of the ISR is performed by loading the beginning address of the ISR specific for that interrupt into the

program counter. The AVR processor starts running the ISR.

 Execution of the ISR continues until the return from interrupt instruction (reti) is encountered. The SREG I-bit is

automatically set when the reti instruction is executed (i.e., Interrupts enabled).

 When the AVR exits from an interrupt, it will always return to the interrupted program and execute one more

instruction before any pending interrupt is served.

 The Status Register is not automatically stored when entering an interrupt routine, nor restored when returning

from an interrupt routine. This must be handled by software.

 push reg_F

 in reg_F,SREG

 :

 out SREG,reg_F

 pop reg_F

9 | P a g e

ATMEGA328P INTERRUPT PROCESSING – TYPE 1 –

 The user software can write logic one to the I-bit to enable nested interrupts. All enabled interrupts can

then interrupt the current interrupt routine.

o The SREG I-bit is automatically set to logic one when a Return from Interrupt instruction – RETI – is

executed.

 There are basically two types of interrupts…

o The first type (Type 1) is triggered by an event that sets the Interrupt Flag. For these interrupts, the

Program Counter is vectored to the actual Interrupt Vector in order to execute the interrupt handling

routine, and hardware clears the corresponding Interrupt Flag.

 If the same interrupt condition occurs while the corresponding interrupt enable bit is cleared,

the Interrupt Flag will be set and remembered until the interrupt is enabled, or the flag is

cleared by software (interrupt cancelled).

 Interrupt Flag can be cleared by writing a logic one to the flag bit position(s) to be cleared.

o If one or more interrupt conditions occur while the Global Interrupt Enable (SREG I) bit is cleared, the

corresponding Interrupt Flag(s) will be set and remembered until the Global Interrupt Enable bit is

set on return (reti), and will then be executed by order of priority.

10 | P a g e

ATMEGA328P INTERRUPT PROCESSING – TYPE 2 –

o The second type (Type 2) of interrupts will trigger as long as the interrupt condition is present. These

interrupts do not necessarily have Interrupt Flags. If the interrupt condition disappears before the

interrupt is enabled, the interrupt will not be triggered.

11 | P a g e

WHEN WRITING AN INTERRUPT SERVICE ROUTINE (ISR)2

 As a general rule get in and out of ISRs as quickly as possible. For example do not include

timing loops inside of an ISR.

 If you are writing an Arduino program

o Don't add delay loops or use function delay()

o Don't use function Serial.print(val)

o Make variables shared with the main code volatile

o Variables shared with main code may need to be protected by "critical sections" (see

below)

o Toggling interrupts off and on is not recommended. The default in the Arduino is for

interrupts to be enabled. Don’t disable them for long periods or things like timers won't

work properly.

2 Source: Gammon Software Solutions forum – What are interrupts?

http://www.gammon.com.au/forum/?id=11488

12 | P a g e

PROGRAM INITIALIZATION AND THE INTERRUPT VECTOR TABLE (IVT)

 Start by jumping over the Interrupt Vector Table

RST_VECT:

 rjmp reset

 Add jumps in the IVT to your ISR routines

 .ORG INT0addr // 0x0002 External Interrupt 0

 jmp INT0_ISR

.ORG OVF1addr

 jmp TOVF1_ISR

 Initialize Variables, Configure I/O Registers, and Set Local Interrupt Flag Bits

reset:

 lds r16, EICRA // EICRA Memory Mapped Address 0x69

 sbr r16, 0b000000010

 cbr r16, 0b000000001

 sts EICRA, r16 // ISC0=[10] (falling edge)

 sbi EIMSK, INT0 // Enable INT0 interrupts

 Enable interrupts at the end of the initialization section of your code.

 sei // Global Interrupt Enable

loop:

13 | P a g e

THE INTERRUPT SERVICE ROUTINE (ISR)

; -- Interrupt Service Routine --

INT0_ISR:

 push reg_F

 in reg_F,SREG

 push r16

 ; Load

 ; Do Something

 ; Store

 pop r16

 out SREG,reg_F

 pop reg_F

 reti

; ---

14 | P a g e

PREDEFINED ARDUINO IDE INTERRUPTS

 When you push the reset button the ATmega328P automatically runs an Arduino Boot program located in a

separate Boot Flash section at the top of program memory. This Boot program configures and enables two

interrupts.

17 0x0020 TIMER0 OVF Timer/Counter0 Overflow (TIMER0_OVF_vect)

 The millis() and micros() function calls make use of the "timer overflow" feature utilize timer 0.

The ISR runs roughly 1000 times a second, and increments an internal counter which effectively becomes

the millis() counter (see On your own question).

19 0x0024 USART, RX USART Rx Complete (USART_RX_vect)

21 0x0028 USART, TX USART, Tx Complete (USART_TX_vect)

 The hardware serial library uses interrupts to handle incoming and outgoing serial data. Your program can

now be doing other things while data in an SRAM buffer is sent or received. You can check the status of the

buffer by calling the Serial.available() function.

 On your own. Given that you are using 8-bit Timer/Counter 0, you have set TCCR0B bits CS02:CS01:CS00 =

0b011 (clkI/O/64), and the system clock fclk = 16 MHz, what value would you preload into the Timer/Counter

Register TCNT0 to get a interrupt 1000 times a second.

Source: Gammon Software Solutions forum – this blog also covers how to work with all the interrupts in C++ and

the Arduino scripting language.

http://gammon.com.au/interrupts

15 | P a g e

PROGRAMMING THE ARDUINO TO HANDLE EXTERNAL INTERRUPTS
3

 Variables shared between ISRs and normal functions should be declared "volatile". This

tells the compiler that such variables might change at any time, and thus the compiler should

not “optimize” the code by placing a copy of the variable in one of the general purpose

processor registers (R31..R0). Specifically, the processor must reload the variable from SRAM

whenever it is referenced.

int pin = 13;

volatile int state = LOW;

 Add jumps in the IVT to ISR routine, configure External Interrupt Control Register A (EICRA),

and enable local and global Interrupt Flag Bits.

 void setup()

{

 pinMode(pin, OUTPUT);

 attachInterrupt(0, blink, CHANGE);

}

3 Read ATmega328P External Interrupts to learn more about this example.

16 | P a g e

PROGRAMMING THE ARDUINO TO HANDLE EXTERNAL INTERRUPTS - CONTINUED
4

 Write Interrupt Service Routine (ISR)

void blink()

{

 state = !state;

}

 To disable interrupts globally (clear the I bit in SREG) call the noInterrupts() function. To

once again enable interrupts (set the I bit in SREG) call the interrupts() function.

 Again – Toggling interrupts ON and OFF is not recommended. For a discussion of when you

may want to turn interrupts off, read Gammon Software Solutions forum – Why disable Interrupts?

4 Read ATmega328P External Interrupts to learn more about this example.

http://gammon.com.au/interrupts

