Analog-to-Digital Conversion

tha avr
microcontraller
and embedded

Systems
i assembly and ¢

Chapter 13 ADC, DAC, and Sensor Interfacing

ATMEL 8-bit AVR Microcontroller with 4/8/16/32K Bytes In-System Programmable Flash
http://www.atmel.com/dyn/resources/prod_documents/doc8161.pdfasd
Chapter 23 “Analog-to-Digital Converter”

http://www.atmel.com/dyn/resources/prod_documents/doc8161.pdfasd

Table of Contents

References

ATmega328P ADC Subsystem Features

How It Works
What is a Successive Approximation ADC?
Using the Built-in ADC in AVR
Voltage Reference (VREF)
Changing the Reference Voltage

How to make an Analog to Digital conversion within the Arduino IDE
A Simple Analog to Digital Conversion
The registers of the ADC
ADC Multiplexer Selection Register Initialization
ADC Control and Status Register A Initialization
How to select an operating mode

Single Conversion Mode

Free-Running Mode

How to specify resolution/conversion speed (Sample Frequency)
How to verify conversion complete (polling the ADSC bit)

DIDRO — Digital Input Disable Register O

Concluding Remarks

References

1. 8-bit AVR Microcontroller with 4/8/16/32K Bytes In-System Programmable Flash -
ATmega328P, Chapter 23 "Analog-to-Digital Converter", ATMEL document doc8161

2. AVR Freaks Design Note #021 "Using the Built-in ADC in AVR"

3. Successive Approximation ADC, Georgia State University, Department of Physics and
Astronomy

4. Successive approximation ADC, Wikipedia

http://www.atmel.com/dyn/resources/prod_documents/doc8161.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc8161.pdf
http://www.avrfreaks.net/modules/FreaksFiles/files/383/DN_021.pdf
http://hyperphysics.phy-astr.gsu.edu/hbase/electronic/adc.html#c3
http://en.wikipedia.org/wiki/Successive_approximation_ADC

ATmega328P ADC Subsystem Features

The ATmega48PA/88PA/168PA/328P features a 10-bit successive approximation ADC.
0.5 LSB Integral Non-linearity

+ 2 LSB Absolute Accuracy

15 k samples per second (kSPS) at Maximum Resolution and up to 76.9 kSPS (13 us
Conversion Time)

6 Multiplexed Single Ended Input Channels

Temperature Sensor Input Channel

Free Running or Single Conversion Mode

Interrupt on ADC Conversion Complete

How It Works

What is a Successive Approximation ADC?

Illustrations from Tocci, Ronald J., Digital Systems. 5th Ed, Prentice-Hall, 1991.

A successive approximation ADC is a type of analog-to-digital converter that converts a
continuous analog waveform into a discrete digital representation via a binary search through all
possible guantization levels before finally converging upon a digital output for each conversion.

The successive approximation Analog to digital converter circuit typically consists of four chief
subcircuits. Figure 1 is an example 4-bit ADC and will be used to illuminate how these four
subcircuits work together to convert an analog value into a digital number.

1.

4.

A sample & hold comparator circuit acquires the analog input voltage (Vs) and
compares it to the output of an internal DAC with input reference voltage (Vref). To keep
the illustration as simple as possible, this reference voltage is not shown and may be
assumed to be equal to 15 v. In our example 4-bit DAC the analog input voltage (Vs) is
set to 7.2 volts.

The result of the comparison is sent to a successive approximation register (SAR).
Identified as control logic and bits D3 to DO in our simplified 4-bit DAC block diagram.
The internal DAC supplies the comparator with an analog voltage equivalent of the
digital code output of the SAR for comparison with Vs.

The SAR subcircuit, a finite state machine, implements the algorithm defined in Figure 2.

http://hyperphysics.phy-astr.gsu.edu/hbase/electric/eleref.html
http://hyperphysics.phy-astr.gsu.edu/hbase/electric/eleref.html
http://en.wikipedia.org/wiki/Analog-to-digital_converter
http://en.wikipedia.org/wiki/Analog-to-digital_converter
http://en.wikipedia.org/wiki/Analog_signal
http://en.wikipedia.org/wiki/Analog_signal
http://en.wikipedia.org/wiki/Digital
http://en.wikipedia.org/wiki/Digital
http://en.wikipedia.org/wiki/Binary_search
http://en.wikipedia.org/wiki/Binary_search
http://en.wikipedia.org/wiki/Quantization_%28signal_processing%29
http://en.wikipedia.org/wiki/Quantization_%28signal_processing%29
http://en.wikipedia.org/wiki/Analog_to_digital_converter
http://en.wikipedia.org/wiki/Analog_to_digital_converter
http://en.wikipedia.org/wiki/Voltage
http://en.wikipedia.org/wiki/Voltage
http://en.wikipedia.org/wiki/Digital-to-analog_converter
http://en.wikipedia.org/wiki/Digital-to-analog_converter
http://en.wikipedia.org/wiki/Processor_register
http://en.wikipedia.org/wiki/Processor_register
http://en.wikipedia.org/wiki/Comparator
http://en.wikipedia.org/wiki/Comparator

To control

M3E is set, but
it overshoots We

Conversion is
finizhed when
process has
cycled thraugh

Comparator
MsE6
Ds Digital
igita
From Dof—a _to-
control Amal
logic —= Dy— ANa0d
Caonverter
= Dy —
The control Togic increments

bits, starting with the M3E.

Figure 1 Simplified Block Diagram of a 4-bit ADC

Clear all bits

Start at MSB

Go to next
Tower bit

|5 DAC output
e 7

and iz reset.
G | — all bits.
7 |
3]
4 L%
Mext bits are set
insuccession and
held if they don't
exceed W
Clear bit
back to 0

Hawe all bits
been checked

Conversion
finished, number
in register.

Figure 2 SAR Algorithm

after Tocci,
Digital Systems

Using the Built-in ADC in AVR

The Atmel ATmega328P datasheet provides everything you need to know to use the ADC
subsystem of our AVR microcontroller. In the following sections | am going to focus on those
topics which | consider to be most relevant when wanting to use the ADC:

How to connect the pins related to the ADC (Voltage Reference).

How to make an Analog to Digital conversion within the Arduino IDE.

A Simple Analog to Digital Conversion (analogRead)

The registers of the ADC (ADMUX, ADCSRA, and ADCH:ADCL). ADC registers
ADCSRB and DIDRO are left at default values and considered outside the scope of this
introductory lesson.

How to select an operating mode (Single Conversion and Free-Running)

How to specify resolution/conversion speed (Sample Frequency).

How to verify conversion complete (polling the ADSC bit).

| have tried to weave these topics into a single story centered around the Arduino Uno and the
analogRead function. Consequently, section headings are more for future reference and for
the most part can be ignored if you are reading the material from beginning to end.

Any good story must start with the big picture and ours is no exception. In Figure 3 we have the
block diagram of the ADC subsystem of the AVR microcontroller.

ADC CONVERSION
COMPLETE IRQ

a

8-BIT DATA BUS

L.
-« wlw B -
2| < 15]
ADC MULTIPLEXER ADC CTRL_ & STATUS ADC DATA REGISTER
SELECT (ADMUX) REGISTER (ADCSRA) {(ADCHFADCL)
= = k. Fy o =
ABREEEEEE g gTelS o a2 A
-1 | 2|3 = 2 2|5(g g g8 =
o
g
9 h A h

| MUX DECODER I Y ¥ ¥
I PRESCALER |
3 ¥ Y

CONVERSION LOGIC

Avccl | 4

INTERMAL 1.1V
REFEREMNCE

CHANMNEL SELECTION

SAMPLE & HOLD
COMFARATOR

AF'EFl I 10-BIT DAC _
4 +
TEMPERATURE Er'-m
SENSOR

Y

BAMDGAP ||
REFERENCE
ADC?Di
R ADC MULTIPLEXER
ADCE" I MU » ouUTPUT

ADCS Di
ADC4 Di
ADC3 I:Ii
ADC2 Di
ADCH I:Ii
ADCD I:Ii i e

Figure 3 AVR Analog to Digital Converter Block Schematic Operation

Note: ADCSRA ADATE signal mislabeled as ADFR in Figure 3.

Voltage Reference (VREF)

While most of our story centers around how to work with the registers of the ADC. In this section
| am going to talk about how the Arduino hardware handles the reference voltage for the 10-bit
DAC (AVCC to VREF), how you can improve the noise immunity of your design, and finally how
you can change the reference voltage (AVCC to Vref). If you choose to do the latter, make sure
you read the warning (or have a spare ATmega328P on hand).

The minimum value of the 10-bit output of the ADC register (0x000) represents AGND and the
maximum value (0x3FF) represents the voltage on the VREF line, within 1 LSB. You can think
of VREF as normalizing the input voltage as defined by the following equation.

V.- 1024
ADC = I 777

Veper

If you want to get into the details, | would recommend...
An ADC and DAC Least Significant Bit (LSB)
by Adrian S. Nastase

As shown in Figure 3, the reference voltage to the 10-bit DAC (VREF) can be sourced from
AREF, AVCC, or an internal 1.1V reference voltage. We are using the Arduino and so are
limited by how they have wired these pins. Comparing this schematic with Figure 23-9 "ADC
Power Connections" in the Reference Data Sheet of the ATmega328P, we see that this is not
the optimal wiring solution. As one example, the Arduino circuit is missing 10 yH inductor
between AVCC and VCC. Two more examples are provided on the next page.

AREF 21 AREF
Y =2 Aucc
AGND
I
Vels
Cl 8 GNO
1 8@
GMO

Figure 4 How the Arduino wires the ADC reference voltage pins

The source of the reference voltage is set by bits REFS1 and REFSO0 in the ADC Multiplexer
Select (ADMUX) register as defined in Table 1.

Bit 7 & 5 4 3 2 1 0
(0x7C) IREFS'! REFS0 | ADLAR - MUX3 MUX2 MUX1 MUX0 I ADMUX
Read/Write RW RW RW R RW RIW RW RW
Initial Value 0 0 0 0 0 0 0 0

The default setting for an analogRead call within the Arduino IDE sets these bits to REFS1 = 0,
REFSO0 = 1. Looking at Table 1 and Arduino schematic (Figure 4), we see that VREF = AVCC =
5v. For voltage reference mode 01, and 11, (Table 1) ATMEL recommends an external
capacitor be connected to the AREF pin to improve noise immunity, without specifying the
capacitor to be used. As seen in the Arduino schematic, the Arduino does not come with this

http://masteringelectronicsdesign.com/an-adc-and-dac-least-significant-bit-lsb/
http://masteringelectronicsdesign.com/an-adc-and-dac-least-significant-bit-lsb/

AREF capacitor. From a quick search of the web it appears that a capacitor value between
10nF to 100nF (.01 uF to 0.1 uF) is typically used. The only ATMEL source | could find
recommends a "typical value" of 10 nF.

Table 1 Voltage Reference Selections for ADC

REFS1 REFS0 | Voltage Reference Selection
0 0 AREF., Internal V, turned off
0 1 AV - with external capacitor at AREF pin
1 0 Reserved
1 1 Internal 1.1V Voltage Reference with external capacitor at AREF pin

Changing the Reference Voltage

The Arduino provides a function named analogReference (uint8_t mode) which allows
you to change the DEFAULT value of voltage reference source (REFS = 01,).

void analogReference (uint8 t mode)

{
// can't actually set the register here because the default setting
// will connect AVCC and the AREF pin, which would cause a short if
// there's something connected to AREF.
analog reference = mode;

}

Also included in the wiring.h header file are the three available values defined as constants
(compare names below to Table 1).

#define EXTERNAL 0
#define DEFAULT 1
#define INTERNAL 3

For example, if you want to reference an external voltage wired to the AREF pin you would add
the following code to the setup section of your Arduino sketch. In this example, AREF is wired to
the 3.3 V output provided by the Arduino.

analogReference (EXTERNAL) ; // where Vref is 3.3V

WARNING: If you wire a voltage directly to AREF, when the Arduino changes the ATmega328P
default setting of 00, to the Arduino's default value of 01,, a short will exist between AVCC and
AREEF lines as shown in Figure 3. Even though your setup script will switch it back to its original
safe 00, value the damage will already have been done to the ATmega328P (i.e., time to buy a
new microcontroller). To protect the ATmega328P during this short period of time, add a 1K
ohm resistor between your reference voltage source and the AREF pin. During normal
operation the voltage drop across this resistor should be negligible.

http://support.atmel.no/knowledgebase/avrstudiohelp/mergedProjects/STK600/stk600_hardware_aref.html
http://support.atmel.no/knowledgebase/avrstudiohelp/mergedProjects/STK600/stk600_hardware_aref.html

How to make an Analog to Digital conversion within
the Arduino IDE

Converting an Analog signal into its digital equivalent is accomplished within the Arduino IDE
using the analogRead (pins) function. The analogRead function takes a single argument
"pin", identifying one out of the six Analog pins of the Arduino Uno to be read.

55
¢AOCHIPCS gg | | EC}
C(AOCHPCY =22 | 3{1“1-
(ROCIPCI —= | 2{‘_}
(ADC2PC2 22 | 1:“_“:-
(AOCLPCL =2 | O
(AOCAIPCAY =

Using the analogRead function is demonstrated by the Analoglnput sketch (Open - Analog -
Analoglnput)

/*
Analog Input

Demonstrates analog input by reading an analog sensor on analog pin 0 and
turning on and off a light emitting diode (LED) connected to digital pin 13.
The amount of time the LED will be on and off depends on

the value obtained by analogRead() .

The circuit:

Potentiometer attached to analog input O

center pin of the potentiometer to the analog pin
one side pin (either one) to ground

the other side pin to +5V

LED anode (long leg) attached to digital output 13
LED cathode (short leg) attached to ground

% X % ok X

* Note: because most Arduinos have a built-in LED attached
to pin 13 on the board, the LED is optional.

Created by David Cuartielles
Modified 16 Jun 2009
By Tom Igoe

http://arduino.cc/en/Tutorial/AnalogInput

*/
int sensorPin = 0; // select the input pin for the potentiometer
int ledPin = 13; // select the pin for the LED

int sensorValue = 0; // variable to store the value coming from the sensor

void setup () {
// set pin(s) to input and output
pinMode (sensorPin + AQO, INPUT);
// declare the ledPin as an OUTPUT:
pinMode (1ledPin, OUTPUT) ;

void loop () {
// read the value from the sensor:
sensorValue = analogRead (sensorPin);
// turn the ledPin on
digitalWrite (ledPin, HIGH);
// stop the program for <sensorValue> milliseconds:
delay (sensorValue) ;
// turn the ledPin off:
digitalWrite (ledPin, LOW) ;
// stop the program for for <sensorValue> milliseconds:
delay (sensorValue) ;

}

In the next section we will look at how the analogRead function works. Our story is about to
become a lot darker.

A Simple Analog to Digital Conversion

Before we get into the details of how the Arduino analogRead function works let me give you a
thumbnail sketch of the process. If you find yourself getting lost in the forest, you may want to
reread the following paragraph. Figure 5 "ADC Registers" is provided here to help you through
the mnemonic soup (ADSC, ADCSRA, etc.) contained in this summary paragraph.

The Arduino analogRead function performs a simple analog conversion, where the ADC is
triggered manually by setting the ADSC bit to logic one in the ADCSRA register. The ADSC
bit will read as logic one as long as a conversion is in progress. When the conversion is
complete, it returns to zero. The analogRead function polls this bit and returns the 10-bit
result in the ADCH:ADCL register pair when conversion is complete.

Address Name BIt7 Bit6 BIt5 Blt 4 Bit3 Bit 2 Bit 1 BIt 0 Page
(0x7E} DIDARO - - ADCsD ADCaD ADC3D ADC2D ADC1D ADCoD 268
(0x7D) Reserved - - - - - - - -

(0x7C) ADMUX REFS1 REFS0 ADLAR = MUX3 MUX2 MUX1 MUXo 262
(0x7B} ADCSRB - ACME - - - ADTS2 ADTS1 ADTSo 265
(0x7A) ADCSBA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 263
(0x73) ADCH ADC Data Register High byte 265
(0x78) ADCL ADC Data Register Low byte 265

Figure 5 ADC Registers

Now, let's take a look under-the-hood at the analogRead function. | am assuming the use of
the Arduino Uno. Consequently, to simplify the explanation of this function | have removed a

10

macro expansion required by the Arduino MEGA.

int analogRead (uint8 t pin)
{
uint8 t low, high;

// set the analog reference (high two bits of ADMUX) and select the

// channel (low 4 bits). this also sets ADLAR (left-adjust result)
// to 0 (the default).
ADMUX = (analog reference << 6) | (pin & 0x0f);

// without a delay, we seem to read from the wrong channel
//delay (1) ;

// start the conversion
sbi (ADCSRA, ADSC):;

// ADSC is cleared when the conversion finishes
while (bit is set (ADCSRA, ADSC));

// we read ADCL first; doing so locks both ADCL

// and ADCH until ADCH is read. reading ADCL second would
// cause the results of each conversion to be discarded,
// as ADCL and ADCH would be locked when it completed.

low = ADCL;

high = ADCH;

// combine the two bytes
return (high << 8) | low;
}

Exercise 1: The C++ sbi instruction is now deprecated. Write one line of C++ code to replace

this instruction.

The registers of the ADC

Although the ADC subsystem of the ATmega328P microcontroller contains six (6) registers (see
Figure 5), only ADMUX, ADCSRA, ADCH, are ADCL are used to the configure the ADC as used

by the Arduino analogRead function. We will look at ADCSRB and DIDRO shortly.

ADC Multiplexer Selection Register Initialization

Assuming the unsigned 8-bit argument pin in the analogRead(pin) function call is zero (00,),
the C++ line...

ADMUX = (analog reference << 6) | (pin & 0x0f);

...at the beginning when the Arduino bootstrap loader initializes the Analog subsystem of the
ATmega328P microcontroller, the ADC ADMUX register is set to 0100_0000,.

11

Bit 7 6 5 4 3 2 1 0

(0x7C) I REFS1 REFS0 ADLAR - MUX3 MUX2 MUX1 MUX0 I ADMUX
ReadWrite RwW RW RAV R RW RW RW RW
Initial Value 0 1 0 0 0 0 0 0

Figure 6 ADC Multiplexer Selection Register Control
Let's take a closer look at each of these bits and what part they play in our story.

As originally covered in the "Voltage Reference" section of our lesson and summarized in Table
1 "Voltage Reference Selections for ADC", setting REFS1 = 0 and REFSO = 1 means that
our reference voltage VREF is equal to VCC, which we will assume is 5v.

The ADC generates a 10-bit result which is stored in the ADC Data Registers, ADCH and
ADCL. By default, the result is presented right adjusted (ADLAR = 0), but can optionally be
presented left adjusted by setting the ADLAR bit in ADMUX to logic one. For the analogRead
function the result of the conversion process is right adjusted (DEFAULT value).

Exercise 2: Add unsigned 8 bit integer parameter 1eft adjust to the analogread function (i.e,
analogRead (uint8 t pin, uint8 t left adjust). Use left_adjust to set or clear the ADLAR
bit in ADMUX. Your function should insure all undefined bits (bits 7 to 1) are set to zero.

Using Different Channels as seen from the Figure 3 schematics, the ADC can access multiple
analog channels through the MUX. The ADMUX Register controls the MUX and the different
input pins which can be directed to the sample-hold circuit. The sample-hold circuit keeps the
sampled voltage level stable while the conversion is made, using successive approximation.
The analogRead functions pin parameter allows the calling program to define which pin is to be
read. The Arduino Uno uses the ATmega328P processor packaged in a PDIP (See Figure 1-1
"Pinout ATmega48PA/88PA/168PA/328P" in the data sheet). This limits us to 6 analog inputs
(ADCS5 to ADCO). For my example, the analog signal is read on pin ADCO. Consequently, the
input to the MUX is setto 0 (MUX3 = 0, MUX2 = 0, MUX1 = 0, MUX0 = 0).

ADC Control and Status Register A Initialization

During initialization (see init () subroutine in main (void)), the Arduino sets ADCSRA to
1000_0111,.

Bit 7 B 5 4 3 2 1 0
(0x7A) [ADEN | ADSC | ADATE | ADIF | ADIE | ADPS2 | ADPS1 | ADPSO | ADCSRA
Read/Write RW RW RW RW RW RW RW R/W
Initial Value 1 0 0 0 0 1 1 1

Figure 7 How the ADC Control and Status Register A, is initialized by the init ()
subroutine

The bits of the ADCSRA register are used to set the operating mode and sample frequency of
12

the ADC. We will look at the "single conversion" and "free-running" modes of operation. These
are the two most common operating modes, although there are others. For example you can
program the ADC to sample an analog line at a fixed interval of time.

How to select an operating mode

Single Conversion Mode

Before starting a conversion the ADC must be enabled. This is done by setting the bit ADEN =
1 in the ADCSRA Register. As illustrated in Figure 7 this is taken care of by Arduino init ()
subroutine.

The ADC can be run in two modes: Single Conversion mode or Free-running mode. In Single
Conversion mode the conversion is initiated manually, by setting the ADSC bit in the ADCSR
Register. Arduino's analogRead function uses the single conversion mode as shown in the
following inline assembly instruction.

// start the conversion
sbi (ADCSRA, ADSC);

Free-Running Mode

One of the disadvantages of the Arduino IDE is that we trade flexibility for simplicity. To run the
ADC in Free-Running mode it may be best to make your own custom version of analogRead
or to write your own ADC C++ within a more powerful IDE like Eclipse, AVR Studio, or ATMEL
Studio.

Bit 7 8 5 4 3 2 1 0
(0x7B) Il - [Acme | - | - | - | ADTS2 | ADTS1 | ADTS0O | ADCSRB
Read/Write R AW R R R AW RW AW
Initial Value 0 0 0 0 0 0 0 0

Figure 8 ADC Control and Status Register A

Note: The Analog Comparator Multiplexer Enable ACME bit is not used by the ADC circuit and
should be kept at its default value of 0.

In Free-Running mode the ADC is setup to start a new conversion immediately after the
previous conversion is complete. To enable this feature, the ADC Auto Trigger Enable ADATE
bit in ADCSRB (Figure 6) is set to one and ADC Auto Trigger Source ADTS[2:0] bits in
ADCSRB (Figure 8) are set to zero. This selects the ADC interrupt flag ADIF as the trigger
source. The ADC now operates in Free Running mode, constantly sampling and updating the
ADC Data Registers.

13

The first conversion is started by writing a logical one to the ADSC bit in ADCSRA. If you use

this mode, | would recommend enabling the I-bit in SREG and ADC Interrupt (ADIE = 1) bit in
ADCSRA. Now your Interrupt Service Routine (ISR) can take action each time a conversion is
complete (no more polling).

How to specify resolution/conversion speed (Sample Frequency)

The sample frequency of the AVR ADC is a function of the operating mode (single conversion or
free-running), the ATmega328 system clock frequency (CK = 16 MHz), and the prescale setting
(ADCSRA bits ADPS2 to ADPSO0).

From when a single conversion is initiated to the result is in the ADCH:ADCL Registers 13 ADC
cycles will pass as defined in Table 2.

Table 2 ADC Conversion Time

Sample & Hold Conversion Time
Condition (Cycles from Start of Conversion) (Cycles)
First conversion 135 25
Mormal conversions, single ended 1.5 13
Auto Triggered conversions 2 135

The "First conversion" line refers to when the ADEN bit in ADCSRA register is set. This
additional time is required to initialize the analog circuitry including the 7-bit ADC prescaler (see
Figure 9 "ADC Prescalar"). The Arduino sets the ADEN bit in the init () subroutine.

= e
ese
SRS 7-BIT ADC PRESCALER

CK—»
oo
ol o of © 8 & N
2l 2 2 2 2 2w
Ol O] O] G| O O] O
Yy v Y Y
ADPSO

ADPS1 ;
ADPS2 \

ADC CLOCK SOURCE
Figure 9 ADC Prescaler

14

Table 3 ADC Prescaler Selections

ADPS2 ADPS1 ADPSO0 Division Factor
0 0 0 2
0 0 1 2
0 1 0 4
0 1 1 8
1 0 0 16
1 0 1 32
1 1 0 64
1 1 1 128

By default, the successive approximation circuitry requires an input clock frequency between 50
kHz and 200 kHz to get maximum resolution. If a lower resolution than 10 bits is acceptable, the
input clock frequency to the ADC can be higher than 200 kHz to get a higher sample rate. The
Arduino init () routine sets prescaler bits ADPS2 to ADPSO in the ADCSRA Register to all
ones (see Figure 7). Which means that:

Sfipc = Jexd128 = 16 MHz/128 = 125 kHz

Consequently, the ADC prescaler of the Arduino generates an ADC clock frequency of 125 kHz
(less than 200 kHz), giving us a maximum resolution of 10 bits at a sample frequency of:

Ssampie = Fapc! 13 = 9.615 ksps (104 pus Conversion Time)

What would happen if we set our prescaler to divide the system clock by 64? An ADC clock at
250 kHz violates the limit in ADC clocking for full 10 bit resolution (ADC clock 200 kHz for 10-bit
resolution). Considering the Table 28-7 regarding “ADC Characteristics” Section 28.8 in the data
sheet, the absolute accuracy would probably be 2 - 3 LSB. This means that the ADC can be
considered to be a 9-bit ADC since the LSB is not reliable. This could be a reasonable trade in
exchange for a sample frequency of 19.231 ksps (52 us Conversion Time). Once again if you
are thinking of pushing the limits, it may be best to write your own ADC C++ program in a more
powerful IDE like Eclipse, AVR Studio, or ATMEL Studio.

How to verify conversion complete (polling the ADSC bit)

When we last left our Arduino analogRead routine, it had started the analog to digital
conversion process by setting the ADEN bit in the ADCSRA Register to logic one.

// start the conversion
sbi (ADCSRA, ADSC) ;

The analogRead routine now polls the ADSC bit in the ADCSRA register whithin a C++ while

15

loop.

// ADSC 1s cleared when the conversion finishes
while (bit is set (ADCSRA, ADSC));

Once the conversion is complete, the ADC hardware subsystem of the ATmega328P clears the
ADSC bit and stores the result in the ADCH:ADCL register pair.

Bit 15 14 13 12 11 10 g 8
(0x79) - - - - - - ADCo ADCB ADCH
(0x78) ADC7 ADCo ADCS ADC4 ADC3 ADC2 ADCA ADCO ADCL
7 6 5 4 3 2 1 0
Read/Write R R R R R R R R
R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Figure 10 ADC Data Registers ADCH and ADCL

It is important to read ADCL first to ensure that valid data is read. By reading ADCL first, the
ADCL and the ADCH Registers are “locked” and cannot be updated by the ADC until the ADCH
has been read.

low = ADCL;
high = ADCH;

Our story is finally over, when the high order byte is shifted 8 places to the left and or'd with the
low order byte. The 10 bit answer (zero extended to 16 bits) is now returned as a positive
integer (16-bit signed).

// combine the two bytes
return (high << 8) | low;

DIDRO - Digital Input Disable Register 0

Although it does not play a part in the Arduino IDE, your own design should initialize the DIDRO
register, as defined here. The 3DoT software does work with this register.

Bit 7 6 5 4 3 2 1 0
(0XTE) [-] - | ADCsD | ADCaD | ADC3D | ADC2D | ADCID | ADCOD | DIDRO
Read/Write A A RW RW RAW AW RAW RW
Initial Value 0 0 0 0 0 0 0 0

Figure 11 Digital Input Disable Register 0

When an analog signal is applied to the digital input buffer of a GPIO port pin, the buffer can
consume an unnecessarily high rate of current as the input signal voltage stays within the
undefined region between logic one and zero (see slew rate).

16

To solve this problem, the GPIO digital input buffer shared with the analog input buffer should
be disabled by setting the corresponding bit in the Digital Input Disable Register 0 DIDRO
register.

If you are wondering, ADC pins ADC7 and ADCG6 do not have digital input buffers, and therefore
do not require Digital Input Disable bits (i.e., ATmega328 only has 28 pins).

Exercise 3: What GPIO Port pin is shared with ADC input A4. Write C++ code to disable this
digital input buffer.

Concluding Remarks

As we have seen the Arduino analogRead function provides a simple way for converting an
analog signal into its digital equivalent. In EE470 “Digital Control” the experimentally measured
conversion time the analog wire spi.ino scriptis 125 usec (sample frequency = 8 ksps).
From our discussion, we know that the conversion time of our Arduino script is 104 usec. One
thing we can take away from this finding is that over 83% of the time the script is waiting for the
ADC subsystem.

Exercise 3: If you replaced the Arduino analogRead function in the analog wire spi
script, with an interrupt driven routine and placed the ADC in Free-Running mode, what
conversion time and sample frequency would you expect to achieve? Hint: see Table 2 “ADC
Conversion Time.”

During our journey | hope you have also gained some insights into how we might turbo-charge
the little Arduino. For example:

e Switch from Single Conversion to Free-Running mode and moving to an Interrupt driven
solution, freeing the processor to do other tasks without sacrificing performance.

e Change your system clock frequency such that the ADC clock frequency can be set to
200 KHz. This will allow you to reach a sample rate of approximately 15 Kbps.

e Overclock the ADC clock to 250 kHz yielding a sample frequency of 19.231 ksps (52 us
Conversion Time).

17

