
1 

Timer/Counter with PWM 

 
The AVR Microcontroller and Embedded Systems using Assembly and C)  

by Muhammad Ali Mazidi, Sarmad Naimi, and Sepehr Naimi  

 
ATMEL 8-bit AVR Microcontroller with 4/8/16/32K Bytes In-System Programmable Flash  

http://www.atmel.com/dyn/resources/prod_documents/doc8161.pdf Chapter 17 “8-bit 

Timer/Counter 2 with PWM and Asynchronous Operation” 

Table of Contents 

ATmega328P Timing Subsystem 

Design Example 

8-bit Timer/Counter 2 Subsystem 

Clock Source 

Timing Terminology 

Waveform Generation Modes 

Normal Mode 

PWM Waveform Generation Modes 

PWM Types 

ATmega328P 8-bit PWM Modes 

Timer Modes 3 and 1 

Timer Modes 7 and 5 

Registers 

Timer/Counter Control Register A (TCCR2A) 

Timer/Counter Control Register B (TCCR2B) 

http://www.google.com/url?q=http%3A%2F%2Fwww.atmel.com%2Fdyn%2Fresources%2Fprod_documents%2Fdoc8161.pdf&sa=D&sntz=1&usg=AFQjCNHfNKmGKwLLAjJWeibidCzw8ipN-A


2 

ATmega328P Timing Subsystem 
Most microcontrollers provide at least one port that has timer sub-circuitry capable of generating 

PWM signals on a port pin. Typically, one just needs to configure the square-wave frequency 

and desired duty cycle via a couple of registers. When enabled, the port pin will output a PWM 

signal that can be demodulated in order to provide an approximation to an analog signal. In the 

case of the ATmega328P, there are two 8-bit timers and one 16-bit timer, all of which are 

capable of generating PWM outputs. 

 



3 

Design Example 
To provide some specificity to my explanation of the timing subsystem, I will assume the use 

of 8-bit Timer 2. In most design examples, I will further assume 8-bit Timer 2 operating in one of 

its four (4) PWM modes, with the output coming  from compare register B (see Figure 1).  

For example, when calculating the output frequency of one of our 6 PWM pins; in place of using 

the more general form  fOCnxPWM where: 

f = frequency 

OC = output compare pin 

n = timer/counter number 0, 1, and 2 

x = output from output compare register  A or B 

PWM = Pulse Width Modulation mode 

I will say  fOC2B. For 8-bit timers 0 and 2, this specific design example directly translates 

to the more general case. This is not always true for our 16-bit Timer 1.  

8-bit Timer/Counter 2 Subsystem 

 
Figure 1 8-bit Timer/Counter 2 Subsystem Block Diagram 



4 

Clock Source 
All our design examples will assume operation of the ATmega328P within the context of 

the the Arduino system. Specifically, our system clock source is a crystal input 

XTAL1/TOSC1 and XTAL2/TOSC2. 

 

Figure 2 Arduino/ATmega328P System Clock 

For this design implementation the following will always be true (The interested student 

is invited to read Section 17.3 “Timer/Counter Clock Sources” in the ATmega328P 

datasheet for why this is true). 

clkSYS = clkI/O  eq. 1 

and therefore... 

fCLK = fI/O = 16 MHz eq. 2 

Timing Terminology 

Frequency 

The number of times an event repeats within a 1-second period. The unit of frequency is 

Hertz, or cycles per second. For example, a sinusoidal signal with a 60 Hz frequency 

means that a full cycle of a sinusoid signal repeats itself 60 times each second. 

Period 

The flip side of a frequency is a period. If an event occurs with a rate of 60 Hz, the 

period of that event is 16.67 ms. 

Duty Cycle 

Duty cycle is defined as the percentage of one period a signal is ON.  

Pulse Width Modulation 

Several modulation methods have been developed for applications that require a digital 

representation of an analog signal. One popular and relevant scheme is pulse width 



5 

modulation (PWM) in which the instantaneous amplitude of an analog signal is 

represented by the width of periodic square wave. For example, consider the signals 

depicted in Fig. 3. Notice, the PWM version of the signal has a fixed frequency defining 

the point when a pulse begins. During the period of an individual pulse, the signal 

remains high for an amount of time proportional to the amplitude of the analog signal. 

 

Figure 3 An example analog signal and a pulse width modulated representation. 

source: http://en.wikipedia.org/wiki/Pulse-width_modulation 

Bottom, Max Top 

 

 

  

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPulse-width_modulation&sa=D&sntz=1&usg=AFQjCNHEclhukBmHvSV-LUkNB9qHG6UXsw


6 

Waveform Generation Modes  
On the ATmega328P, three waveform generation bits exist within the two 

timer/counter control registers. Four of the eight possible waveform 

generation modes involve PWM waveform outputs, two of which are 

considered fast PWM while the remaining two are called phase-correct 

PWM.  

Table 1 Waveform Generation Mode Bit Description 

 

Notes: 

1. MAX = 0xFF 

2. BOTTOM = 0x00 

3. In normal operation the Timer/Counter Overflow Flag (TOV0) will be 

set in the same timer clock cycle as the TCNT0 becomes zero. 

4. Whenever TCNT0 equals OCR0A or OCR0B, the comparator signals 

a match. A match will set the Output Compare Flag (OCF0A or 

OCF0B) at the next timer clock cycle. 
 

  



7 

Normal Mode 

 

Figure 4 Normal Mode 

 

  



8 

PWM Waveform Generation Modes  

PWM Types  

 

 

Figure 5 Three types of PWM signals (blue): leading edge modulation (top), trailing edge 

modulation (middle) and centered pulses (both edges are modulated, bottom). The green lines 

are the sawtooth waveform (first and second cases) and a triangle waveform (third case) used 

to generate the PWM waveforms using the intersective method. 

Four types of pulse-width modulation (PWM) are possible: 

1. The tail edge can be fixed and the lead edge modulated. ATmega328P Fast PWM 

inverting modes 3 and 7.  

2. The lead edge can be fixed and the tail edge modulated. ATmega328P Fast PWM non-

inverting modes 3 and 7. This is the mode used by the Adafruit Motor Shield. 

3. The pulse center may be fixed in the center of the time window and both edges of the 

pulse moved to compress or expand the width. ATmega328P PWM Phase Correct 

modes 1 and 5. 

4. The frequency can be varied by the signal, and the pulse width can be constant. 

However, this method has a more-restricted range of average output than the other 

three. ATmega328P CTC mode 2 

Note: ATmega328P modes 4 and 6 are reserved (i.e., undefined) 

  



9 

ATmega328P 8-bit PWM Modes 
Shown in Fig. 6 and Fig. 7 are the four different output waveforms given the specified 

waveform configurations. 

Timer Modes 3 and 1 

 

Figure 6 Non-inverting Timer Modes 3 and 1 

In general, the PWM generation circuitry operates based on the 8-bit or 16-bit count 

register TCNT which updates its current value every time there is a clock pulse. As long 

as the TCNT value is below the value stored in the output compare register OCRnA or 

OCRnB, then the associated output pin OCnA or OCnB will remain in a specific state, 

for example, set high. Once the TCNT value becomes greater than the compare register 

value, the output pin will switch to the opposite state, for example clear low. This 

operation will continue until the timer is disabled. 

Mode 3 Fast PWM 

The first output mode shown in Fig. 6(a) represents the waveforms generated given a 

fast PWM setting where the TOP value is fixed at the maximum 8-bit value of 255. In 

this mode, two different output compare register values can be set independent of each 

other, each affecting a different output pin (OCnA, OCnB). For our design example, two 

separate PWM waveforms may be generated on pin 17 (PB3 MOSI/OC2A) and pin 5 

(PD3 OC2B/INT1). 



10 

From Figure 1 “8-bit Timer/Counter 2 Subsystem Block Diagram” and Figure 17-12 

“Prescaler for Timer/Counter2” it is seen that: 

fT2 = fI/O /N   eq. 3 

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024). This will 

be covered in more detail in the Register section of this document.  

Given that in this PWM setting (mode 3) that the TOP value is fixed at the maximum 8-

bit value of 255 and that the OC2B output is changed on the next clock cycle it can 

further be shown that: 

 fOC2B =  fT2 / 256  eq. 4 

Combining equations 1, 3, and 4 we see that the PWM frequency for the output can be 

calculated by the following equation: 

 fOC2B =  fCLK / N*256  eq. 5 

The general form given by the equation: 

 eq. 6  (Section 17.7.3 Fast PWM Mode) 

The Adafruit motor shield design example sets N = 1: 

fOC2B = fCLK / 256 = 16 MHz / 256 = 62.5 KHz   64 KHz  eq. 7 

AFMotor 

To get sidetracked for a moment. In the AFMotor header file (i.e., C:\Program 

Files\arduino-0022\libraries\AFMotor) you will find the following definitions: 

#define MOTOR12_64KHZ _BV(CS20)  // no prescale 

where CS20 is further defined as equal to zero, and therefore: 

MOTOR12_64KHZ = 0b00000001 

Here is the line of code that instantiates the Adafruit motor shield  

AF_DCMotor motor(2, MOTOR12_64KHZ); // create motor #2, 64KHz pwm 

The first parameter is used to set the static property motornum.  The second 

parameter (freq) is used to initialize Timer/Counter Configuration Register  TCCR2B.  



11 

TCCR2B = freq & 0x7; 

Putting this all together we have the prescalar set to 1 (no prescalar) and a 

corresponding output frequency of approximatly 64 KHz. Please read the companion 

lecture “Adafruit Motor Shield - Part 2” for more information. 

 

The period of the PWM waveform is therefore TOC2B = 256/fCLK, which is a little more than 

half the period of the phase-correct version (i.e., it is faster) - which brings us to the next 

section. 

Mode 1 Phase Correct PWM 

The second output mode shown in Fig. 6(b) represents the waveforms generated given 

the phase-correct PWM setting where the TOP value is also fixed at the maximum 8-bit 

value of 255. As in the fast PWM case, two different output compare register values can 

be set independent of each other, each affecting their own output pin. As can be seen, 

this mode alters the TCNT register behavior in that once the counter reaches the TOP 

value of 255, it begins counting backwards toward 0. The benefit has to do with the 

phase of the modulated carrier. In particular, notice the narrower pulses of OCnB as 

compared to that of OCnA in both Fig. 6(a-b). In the fast PWM non-inverted case, the 

front edges line up, whereas in the phase-correct case, the center of the pulses line 

up; that is, the phase of the OCnA and OCnB waveforms are equivalent.  

The PWM frequency for the output can be calculated by the following equation: 

  Section 17.7.4 Phase Correct PWM Mode 

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024). This will 

be covered in more detail in the Register section of this document. For our design 

example we will set N = 1. 

fOC2B = fCLK / 510 = 16 MHz / 510 = 31.3725 MHz 

The period of the PWM waveform is therefore  TOC2B = 510/fCLK, and the period of the 

phase correct PWM waveform is nearly doubled from that of the fast PWM waveform. 

You may be asking why 510 and not 512 (2 x 256)? In the fast PWM case, the counter 

follows the sequence {0, 1, ..., 254, 255, 0}, which means there are 256 values in a 

single period. In the phase-correct case, the counter follows the sequence {0, 1, ..., 254, 

255, 254, ..., 1, 0}, which means there are (510 = 255 + 255) values in a single period. 



12 

Timer Modes 7 and 5 

The final two output modes shown in Fig. 7 represent the fast and phase-correct PWM 

waveforms when the TOP value is set to the 8-bit value stored in OCRnA. 

 

Figure 7 Non-inverting Timer Modes 7 and 5 

Both of these modes effectively disable the OCnA pin functionality at the benefit of 

increasing the PWM frequency dramatically. In both cases, the TCNT register will count 

up to the OCRnA value, and then either reset to 0 or start counting down toward 0. The 

only comparison that matters is that to OCRnB, which will affect the OCnB pin as in the 

previous cases. One significant impact is that for a value of X loaded into OCRnA, the 

total resolution of the duty cycle output is reduced from 256 to X + 1 for fast PWM and 

510 to 2X, where X is a 8-bit number. 

Exercise: Write the equation for fOC2B with prescale factor N (1, 8, 32, 64, 128, 256, or 

1024) for both Modes 7 and 5. 

  



13 

Registers 

 

Timer/Counter Control Register A (TCCR2A) 

Inverting versus Non-inverting Modes (COM2A1, COM2A0 and COM2B1, 

COM2A0) 

Compare Output Mode bits (COM2A1 and COM2A0 -- Timer/Counter 2 Output Compare 

Register A used as an example) define if the mode is non-inverting (COM2A1 = 1, 

COM2A0 = 0) or inverting (COM2A1 = 1, COM2A0 = 1). 

 

  



14 

Timer/Counter Control Register B (TCCR2B) 

Timer/Counter Prescaler (CS22, CS21, CS20) 

 
Figure 17-12   Prescaler for Timer/Counter2 

Table 17-9 Clock Select Bit Description 

 
 

Force Output Compare A (FOC2A and FOC2B) 

The FOC2A and FOCB bits are only active when the WGM bits specify a non-PWM 

mode. 

 


