
1 | P a g e  
 

 

  



2 | P a g e  
 

Serial Communications - SPI 

READING 
 
The AVR Microcontroller and Embedded Systems using Assembly and C)  
by Muhammad Ali Mazidi, Sarmad Naimi, and Sepehr Naimi 

Chapter 5: Arithmetic, Logic Instructions, and Programs 

Section 5.4: Rotate and Shift Instructions and Data Serialization 

Chapter 7: AVR Programming in C 

Section 7.5 Data Serialization in C 

Chapter 11: AVR Serial Port Programming in Assembly and C 

Section 11.1 Basics of Serial Communications only (You are not responsible for Sections 11.2 
to 11.5) 

Chapter 17: SPI Protocol and MAX7221 Display Interfacing 

Section 17.1 SPI Bus Protocol 

Additional Resource Material 

• Fairchild Semiconductor MM74HC595 “8-Bit Shift Register with Output Latches” document MM74HC595.pdf 

• Arduino Wire Library http://www.arduino.cc/en/Reference/Wire 

• Arduino Interfacing with Hardware http://www.arduino.cc/playground/Main/InterfacingWithHardware 

Location of Arduino Wire Library  C: \Program Files (x86)\ arduino-0017\ hardware\ libraries 

Location of #include files stdlib.h, string.h, inttypes.h  C: \Program Files (x86)\arduino-0017\ hardware\tools\avr\avr\include 

Location of #include file twi.h (1 of 3) C: \Program Files (x86)\arduino-0017\ hardware\tools\avr\avr\include\compat 

http://www.pearson.ch/HigherEducation/ElectricalEngineering/MicroprocessorSystemsand/1471/9780138003319/AVR-Microcontroller-and-Embedded.aspx
http://www.arduino.cc/en/Reference/Wire
http://www.arduino.cc/playground/Main/InterfacingWithHardware


3 | P a g e  
 

TABLE OF CONTENTS 
 

ATmega328P Block Diagram ................................................................................................................................................................................................................. 4 

ATmega SPI – Serial Peripheral Interface ............................................................................................................................................................................................. 5 

What is a Flip-Flop and a Shift Register ................................................................................................................................................................................................ 6 

Nine Questions that need answers before you can design a Serial Peripheral Interface..................................................................................................................... 8 

SPI Overview – Serial Communication .................................................................................................................................................................................................. 9 

SPI Overview – The Registers.............................................................................................................................................................................................................. 10 

SPI Design Example – Arduino Proto-Shield ....................................................................................................................................................................................... 11 

Overview of the 74HC595 ................................................................................................................................................................................................................... 12 

How to Configure the SPI Subsystem ................................................................................................................................................................................................. 13 

How to Operate the SPI Subsystem – Polling – .................................................................................................................................................................................. 17 

SPI Code Example ............................................................................................................................................................................................................................... 19 

Appendix A Detail Description of the 74HC595 ........................................................................................................................................................................... 21 

Tri-State Output Buffers ................................................................................................................................................................................................................. 21 

74HC595 Storage Registers (D-Flip Flops) ...................................................................................................................................................................................... 22 

74HC595 Shift Registers (D-Flip Flops) ........................................................................................................................................................................................... 23 

 

  



4 | P a g e  
 

ATMEGA328P BLOCK DIAGRAM1 

 

 

                                                                 
1 Source: ATmega328P Data Sheet http://www.atmel.com/dyn/resources/prod_documents/8161S.pdf page 5  

http://www.atmel.com/dyn/resources/prod_documents/8161S.pdf%20page%205


5 | P a g e  
 

ATMEGA SPI – SERIAL PERIPHERAL INTERFACE 
 

 Full-duplex, Three-wire Synchronous Data Transfer 

 Master or Slave Operation 

 LSB First or MSB First Data Transfer 

 Seven Programmable Bit Rates 

 End of Transmission Interrupt Flag 

 Write Collision Flag Protection 

 Wake-up from Idle Mode 

 Double Speed (CK/2) Master SPI Mode. 

  



6 | P a g e  
 

WHAT IS A FLIP-FLOP AND A SHIFT REGISTER 
You can think of a D flip-flop as a one-bit memory. The something to remember on the D input of flip-flop is 
remembered on the positive edge of the clock input.  

 
Dt   Qt+1  
0 0 
1 1 
X Qt   

 
 

 

A data string is presented at 'Data In', and is shifted right one stage on each positive 'Clock' transition. At each 
shift, the bit on the far left (i.e. 'Data In') is shifted into the first flip-flop's output (i.e., ‘Q’).2 

 

                                                                 
2 Source: http://en.wikipedia.org/wiki/File:4-Bit_SIPO_Shift_Register.png 

http://en.wikipedia.org/wiki/Flip-flop_%28electronics%29
http://en.wikipedia.org/wiki/File:4-Bit_SIPO_Shift_Register.png


7 | P a g e  
 

WHAT IS A SERIAL SHIFT REGISTER WITH PARALLEL LOAD 
 

 

 

 

 

 



8 | P a g e  
 

NINE QUESTIONS THAT NEED ANSWERS BEFORE YOU CAN DESIGN A SERIAL PERIPHERAL INTERFACE 
CONFIGURATION AND CONTROL 

1. Mstr: Master/Slave Select Who is the Master and who is the Slave? Specifically, which subsystem contains the clock? 

2. SPI Clock Rate Select At what clock frequency (divisor) is the data transmitted/received by the Master? 

3. Data Order In what order is the data transmitted (msb or lsb first)? 

4. Clock Polarity & Phase How is the data transmitted relative to the clock (data setup and data sampled) 

5. SPI Enable How do you enable the clock on and off? 

6. SPI Interrupt Enable How do you enable/disable the interrupt flag? 

SEND/RECEIVE DATA 

7. SPDR Write How do you write data to the SPI Data Register? 

8. SPDR Read How do you read data to the SPI Data Register? 

MONITORING AND STATUS QUESTIONS 

9. SPI Interrupt Flag How do you know when a data transfer operation is done? 

10. Write Collision Flag How do you detect if a byte of data was written to the shift register during a data transfer 
operation.  

 

 

 



9 | P a g e  
 

SPI OVERVIEW – SERIAL COMMUNICATION 

 

 SPI Control Register – You configure the SPI subsystem by writing to the SPI Control Register (SPCR) and the SPI2X bit of register 

SPSR. The ATmega328P SPI subsystem may be configured as a master a slave or both. Setting bit SPE bit enables the SPI 

subsystem. 

 SPI Data Register – Once enabled (SPE = 1), writing to the SPI Data Register (SPDR) begins SPI transfer.  

 SPI Status Register – The SPSR register contains the SPIF flag. The flag is set when 8 data bits have been transferred from the 

master to the slave. The WCOL flag is set if the SPI Data Register (SPDR) is written during the data transfer process. 

 



10 | P a g e  
 

SPI OVERVIEW – THE REGISTERS 

 

 SPI Control Register – You configure the SPI subsystem by writing to the SPI Control Register (SPCR) and the SPI2X bit of register 

SPSR. The ATmega328P SPI subsystem may be configured as a master a slave or both. Setting bit SPE bit enables the SPI 

subsystem. 

 SPI Data Register – Once enabled (SPE = 1), writing to the SPI Data Register (SPDR) begins SPI transfer.  

 SPI Status Register – The SPSR register contains the SPIF flag. The flag is set when 8 data bits have been transferred from the 

master to the slave. The WCOL flag is set if the SPI Data Register (SPDR) is written during the data transfer process. 

 



11 | P a g e  
 

SPI DESIGN EXAMPLE – ARDUINO PROTO-SHIELD 

 



12 | P a g e  
 

OVERVIEW OF THE 74HC595 
 

 

 

• The 74HC595 “8-bit Shift Register with Output 
Latches” contains an eight-bit serial-in (SER), parallel-
out (QH to QA), shift register that feeds an eight-bit D-
type storage register.  

• The storage register has eight 3-state outputs, 
controlled by input line G. 

• Separate positive-edge triggered clocks are provided 
for both the shift register (SCK) and the storage 
register (RCK) 

• The shift register has a direct overriding clear (SCLR), 
serial input, and serial output (standard) pins for 
cascading (Q’H). 



13 | P a g e  
 

HOW TO CONFIGURE THE SPI SUBSYSTEM 

 

SPI Interrupt Enable = 0 

This bit causes the SPI interrupt to be executed if the SPIF bit in the SPSR Register is set and if the Global Interrupt 
Enable bit in SREG is set. For our design example we will be polling the SPIF bit. Consequently, we will leave the 
SPIE bit in its default (SPIE = 0) state. 

SPI Enable = 1 

When the SPE bit is one, the SPI is enabled. This bit must be set to enable any SPI operations. 

Data Order = 0 

When the DORD bit is one (DORD = 1), the LSB of the data word is transmitted first, otherwise the MSB of the 
data word is transmitted first. For the Arduino Proto-shield, we want to transfer the most significant bit (MSB) bit 
first. Consequently, we will leave the DORD bit in its default (DORD = 0) state. 

MSTR: Master/Slave Select = 1 

This bit selects Master SPI mode when set to one, and Slave SPI mode when cleared. For our design example, the 
ATmega328P is the master and the74HC595 “8-bit Shift Register with Output Latches” is the slave. Consequently, 
we need to set the DORD bit to logic 1 (MSTR = 1). Note: I am only telling you part of the story. If you want to 
configure the ATmega328 to operate as a slave or master/slave please see the datasheet. 

 



14 | P a g e  
 

HOW TO CONFIGURE THE SPI SUBSYSTEM – CONTINUED – 

 

Clock Polarity = 0 and Clock Phase = 0 
The Clock Polarity (CPOL) and Clock Phase (CPHA) bits define how serial data is transferred between the master and the slave. These 
SPI Data Transfer Formats are defined in Table 18-2. 

 

For our design example, we want data to be clocked into the 74HC595 on the Rising clock edge (the D-flip-flops of the 74HC595 are 
positive edge triggered), as shown in the Figure below. Consequently, we want the ATmega328P to Setup the data on the serial data 
out line (SER) on the Trailing clock edge. Looking at Table 18-2 we see that this corresponds to SPI Mode = 0. 

 



15 | P a g e  
 

HOW TO CONFIGURE THE SPI SUBSYSTEM – CONTINUED – 

 

 

SPI Clock Rate Select Bits SPI2X , SPR1, SPR0 = 0012 
These three bits control the SCK rate of the Master. In our design example, the ATmega328P is the Master. These bits have no effect 
on the Slave. The relationship between SCK and the Oscillator Clock frequency fosc is shown in the following table. For our design 
example we will be dividing the system clock by 16.  

 

  



16 | P a g e  
 

HOW TO CONFIGURE THE SPI SUBSYSTEM – CONTINUED – 
Reviewing the last three pages, to configure the SPI subsystem for the EE346 Protoshield we need to… 

 
 0 1 0 1 0 0 0 1 

• We will be polling the SPI Interrupt flag (SPIE) 

• Enable the SPI Subsystem (SPE) 

• Set Data Order to transmit the MSB first (DORD) 

• Define ATmega328P as the Master (MSTR) 

• Configure the SPI to clock data (sample) on the rising edge and change data (setup) on the falling edge. 

• Set prescalar to divide system clock by 16 
C Code Example 
/* Configure SPI Control Register */ 
SPCR = (1<<SPE)|(1<<MSTR)|(1<<SPRO); 

Assembly Code Example 
ldi r16, 0x51 
out  SPCR, r16 

Test Your Knowledge 
1. The above code assumes that the SPI status register (SPSR) can be left at its default values (SPI2X = 0). How would you 

explicitly clear this register in C++ and/or Assembly? 
2. The above code does not include the instructions to initialize the Data Direction registers for DD_MOSI (Port B bit 3), the SPI 

clock DD_SCK (Port B bit 5), or our SS signal PB2 (Port B bit 2). How would you write the code in C++ and/or Assembly to 
initialize the SPI data direction register DDR_SPI (Port B DDR) so these pins were outputs? 



17 | P a g e  
 

HOW TO OPERATE THE SPI SUBSYSTEM – POLLING – 

The interconnection between Master and Slave consists of two shift Registers, and a Master clock generator. For 
our labs the ATmega’s SPI subsystem is the Master and the 74HC595 “8-Bit Shift Register with Output Latches” is 
the slave. 

 
1. Writing a byte to the SPI Data Register (SPDR) starts the SPI clock generator, and the hardware shifts the 

eight bits into the Slave (74HC595). The Master generates the required clock pulses on the SCK line to 
interchange data. 

C Code Example 

/* Start Transmission */ 
SPDR = LEDS;            // LEDS is an 8-bit variable in SRAM 

Assembly Code Example 

out  SPDR, spiLEDS      // spiLEDS is register r9 

2. Data is always shifted from Master-to-Slave on the Master Out Slave In (MOSI) line, and from Slave-to-
Master on the Master In Slave Out (MISO) line.  

 



18 | P a g e  
 

How to Operate the SPI Subsystem – Polling – 

3. After shifting one byte, the SPI clock generator stops, setting the end of Transmission Flag (SPIF bit in the 
SPSR register). If the SPI Interrupt Enable bit (SPIE) in the SPCR Register is set, an interrupt is requested. 
The Master may continue to shift the next byte by writing it into SPDR3. In our lab we used polling to 
monitor the status of the SPIF flag. 

C Code Example 
/* Wait for transmission complete */ 
while(!(SPSR & (1<<SPIF))); 

Assembly Code Example 
wait: in    r16,SPSR 
      bst   r16,SPIF 
      brtc  wait 
      ret  

4. After the last data packet is transmitted, the Master will transfer the data to the eight-bit D-type storage 
register of the slave by strobing the slave select (SS) line. When configured as a Master, the SPI interface 
has no automatic control of the SS line. This must be handled by your software. Note: We are using the SS 
line in a non-standard fashion. If you want to configure the ATmega328P to operate as a master, slave, or 
master/slave using the Atmel convention, please see the datasheet. 

C Code Example 
/* Pulse SS line */ 
PORTB |= (1 << (PB2)); 
PORTB &= ~(1 << (PB2)); 

Assembly Code Example 
sbi PORTB,PB2 
cbi PORTB,PB2 
 

                                                                 
3 ATmega328P Datasheet Figure 18-2 SPI Master-slave Interconnection 



19 | P a g e  
 

SPI CODE EXAMPLE 
C++ 

void SPI_MasterInit(void) 
{ 
  /* Set MOSI, SCK, and SS output, all others input */ 
  DDR_SPI = (1<<DD_MOSI)|(1<<DD_SCK)|(1<<DD_SS); 
 
  /* Enable SPI, Master, set clock rate fck/16 */ 
  SPCR = (1<<SPE)|(1<<MSTR)|(1<<SPR0); 
} 
 
void SPI_MasterTransmit(char cData) 
{ 
  /* SS Line Low */ 
  PORTB &= ~(1 << (PB2)); 
 
  /* Start transmission */ 
  SPDR = cData; 
 
  /* Wait for transmission complete */ 
  while(!(SPSR & (1<<SPIF))); 
 
  /* SS line High */ 
  PORTB |= (1 << (PB2)); 
} 



20 | P a g e  
 

SPI CODE EXAMPLE – ASSEMBLY 
; SPI interface registers 
.DEF spiLEDS=r9 
.DEF spi7SEG=r8 
 
; Switches 
.DEF switch=r7 
 
InitShield: 
 code to initialize protoshield GPIO ports is not included in this SPI code example 
; Initialize SPI Port 
 in r16,DDRB // Input from Port B Data Direction Register (DDRB) at i/o address 0x04 
 sbr r16,0b00101111 // Set PB5, PB3, PB2 (SCK, MOSI, SS) and PB1, PB0 (TEST LEDs) as outputs 
 out DDRB,r16 // Output to Port B Data Direction Register (DDRB) at i/o address 0x04 
; Set SPCR Enable (SPE) bit 6, Master (MSTR) bit 4, clock rate fck/16 (SPR1 = 0,SPR0 = 1) 
 ldi r16,0b01010001 
 out SPCR,r16 // Output to SPI Control Register (SPCR) at i/o address 0x2c 
 cbi PORTB,2 // Clear I/O Port B bit 2 (SS) at i/o address 0x05 
 ret 
 
WriteDisplay: 
 push r16 
; Start transmission of data (r16) 
 cbi PORTB,PB2    // ss line active low 
 out  SPDR,spiLEDS 
 rcall SpiTxWait 
 out SPDR,spi7SEG 
 rcall spiTxWait 
 sbi PORTB,PB2 // ss line high  
 pop r16 
 ret 
 
SpiTxWait: 
; Wait for transmission complete 
 in r16,SPSR 
 bst r16,SPIF 
 brtc  spiTxWait 
 ret  



21 | P a g e  
 

APPENDIX A DETAIL DESCRIPTION OF THE 74HC595 
Let’s look at the components that make up the 74HC595 shift register.4 

TRI-STATE OUTPUT BUFFERS  
The eight parallel-out pins of this shift register are driven by tri-state 
buffers. A tri-state buffer is a device commonly used on shift 
registers, memory, and many other kinds of integrated circuits. 

The tri-state buffer shown above has two inputs, data (X) and control 
(E), which control the state of the output (Y). Just as the name 
implies, there are three output states: high, low and high impedance. 
When the pin labeled "E" is high, the output is equal to the input (Y=X).  

Not very interesting right? Well, when the pin labeled "E" is low, the output is in high impedance mode. In high impedance mode, 
the output is virtually disconnected from the input, neither high nor low. The basic operation of a tri-state buffer can also be easily 
understood if compared to a switch. When the "E" pin is high, the switch is closed, and when the "E" pin is low, the switch is open. In 
the context of our shift register, the output pins will either contain our data or will be in high impedance mode. 

 

For more information regarding tri-state buffers, click here. 
National Semiconductor - Tri-State Buffer IC 

                                                                 
4 The following Detail Description of the 74HC595 was written by Bryan Everett. 

http://www.cs.umd.edu/class/sum2003/cmsc311/Notes/CompOrg/tristate.html
http://www.national.com/ds/DM/DM54125.pdf#page=1


22 | P a g e  
 

74HC595 STORAGE REGISTERS (D-FLIP FLOPS) 
 Looking further into our shift register we see the storage registers. These registers 

are made up of D-type flip flops. The D-type flip flop is capable of storing one bit 

of memory. The D-flip flop's function is to place on the output whatever data is on 

it's input when the flip flop detects a rising edge signal (input buffer inverts clock 

before input of FF shown) on the clock port. works by placing the data to be 

stored (1 or 0) on the D pin. Once the data is on the D line, the clock pin must be 

pulsed high. On the rising edge of the pulse the data on the D pin will appear on 

the Q pin.  

 In context to our shift register, when the data appears on D pins of the storage registers and is ready to be displayed, the clock 

pin is pulsed and the data is sent to the tri-state buffers. 

For more information regarding D-type flip flops, click here. 
Fairchild Semiconductors - D-Flip Flop 

http://www.hobbyprojects.com/flip_flop/clocked_D_type_flip-flop.html
http://www.fairchildsemi.com/ds/74/74AC174.pdf


23 | P a g e  
 

74HC595 SHIFT REGISTERS (D-FLIP FLOPS) 
 The shift registers are final stage and are made up of D-Flip flops as well. These are the heart of 

our 74HC595 shift register. Here is a simplified version of what makes our shift registers work. 

What we have there is two D-type shift registers. The output of the first D flip flop is connected 

to the input of the second D flip flop. The clock pins are connected together on all D flip flops.  

 To understand how this shift register works, we will look at a two bit shift register:  

 Suppose we want to set Q2 high and Q1 low: 

1. The D pin is set high.  

2. The clock pin is pulsed high once. (This makes the output Q1 high. Q1 is connected to the input of the second D flip flop)  

3. The D pin is brought low.  

4. The clock is pulsed once again. 

5. The result is Q1 = 0 and Q2 = 1. 

 

 The above example only covers a two bit shift register. See original logic diagram of our 74HC595 for an 8-bit shift register 

example. 

This image cannot currently be displayed.


	ATmega328P Block Diagram0F
	ATmega SPI – Serial Peripheral Interface
	What is a Flip-Flop and a Shift Register
	What is a Serial Shift Register with Parallel Load
	Nine Questions that need answers before you can design a Serial Peripheral Interface
	SPI Overview – Serial Communication
	SPI Overview – The Registers
	SPI Design Example – Arduino Proto-Shield
	Overview of the 74HC595
	How to Configure the SPI Subsystem
	How to Operate the SPI Subsystem – Polling –
	SPI Code Example
	Appendix A Detail Description of the 74HC595
	Tri-State Output Buffers
	74HC595 Storage Registers (D-Flip Flops)
	74HC595 Shift Registers (D-Flip Flops)


