\”r\
o

A St Do
« How do 1 go to and return from a subroutine?
P

reall label

i 7*(L

ret.

AVR Call Addressing Modes
Relative The relative address is encoded in the madhing instruction using 12 bits. Assuming that the
Program Counter (PC) is pointing at the next Jastruction to be executed, a relative call can jump
within a range of -2 to 2" ~ 1 program words, in other words -2K s PC < 2K - 1
n =12 bits, K = 2** = 1024, and a program word s 16-bits.

Long full 16 K word (32K byte) address space
Indirect full 16 K word (32K byte) address space

* Why Subroutines?

My Little Subroutine Dictionary

Assembly Subroutine Template

How to Send Information to and/or from the Calling Program

Rules for Working with Subroutines

Airage

MY LITTLE SUBROUTINE DICTIONARY

'SUBROUTINE VERSUS FUNCTION*
. R use code

« Functions are very similar to subroutines; their syntax is nearly identical, and they can both perform the same actions.
However, Functions return a value to the code that called it
« For this course the terms Subroutine, Procedure and Method may describe a Subroutine or Function based on context.
PARAMETER VERSUS ARGUMENT?

o Ineveryday usage, “parameter” and “argument” are used s that you use
methods or functions

+ Often this interchangeabilty doesn't cause ambiguity. It should be noted, though, that conventionally, they refer o diferent
hings.
o Aparameter”is the thing used to define a method or function while an “argument” i the thing you use to coll a mathod o
function.
Parameter:
void mysubroutine (uinto_t N)(.) € N is a paramoter

mysubroutine(x) € X is an argument

o Ultimately, it say. from the context

e o o Ot Mot
Prot ety

Glrace
HOW TO SEND INFORMATION TO AND/OR FROM THE CALLING PROGRAM
There are many way to send information to and from a subroutine or function. Here are a few.
o In Register(s) or Register Pair(s) agreed upon between the calling program and Procedure or Function.
« By setting or learing one of the bits in SREG {,,T, 1,5, ¥, 1. Z.),
« Inan SRAM variable, this method is not recommended.
o As part of a Stack Frame, this method is acourse. butis
srase

RULES FOR WORKING WITH SUBROUTINES

Here are a few rules to remember when writing your main program and subroutines.

= Always disable interrupts and initialize the stack pointer at the beginning of your program.

rupts and configure stack pointer for 328F

195 16 Low(RANEND) // RIMEND sddzess 0x09ES
out seL, Stack Pointer Low SPL at i/o address 0x3d
1di ch,mqh(mM[ND)

out ack Pointer High sPH at i/o address Ox3e

Always initialize vaisbies and raglmrs at the beginning of your program. Do not re-initialize 1/0
registers used to configure the GPIO ports or other subsystems within a loop or a subroutine. For
example, you only need to configure the port pins assigned to the switches as inputs with pull-up
resistors once.

= Push (zush +7) any registers modified by the subroutine at the beginning of the subroutine and pop
(pop v7) in reverse order the registers at the end of the subroutine. This rule does not apply if you are
using one of the registers or SREG flags to return a value to the calling program. Comments should
clearly identify which registers are modified by the subroutine.

= You Status k. Instead, first push one of the 32
vegisters on the stack and then save SREG in this register. Reverse the sequence at the end of the
subroutine.

push

s
15, SREG

out sREG, T15
BN

wirage

BASIC STRUCTURE OF A SUBROUTINE — A REVIEW

1. Load argument{s) into input registers (parameters) as specified in the header of the
subroutine (typically r24, r22).
2. Call the Subroutine

3. Save an image of the calling programs CPU state by pushing all registers modified by the

subroutine, including saving SREG to a register.

. Do something with the return value(s) stored in the output register(s) specified in the header

IS

of the subroutine (typically r24, r22).

w

Restore image of the calling programs CPU state by popping all registers modified by the

subroutine, including loading SREG from a register.

Return

2i0s

WHY SUBROUTINES?

* Divide and Conquer — Allow you to focus on one small “chunk” of the problem at a time.
o

* Code Organization - Gives the code organization and structure. A small step into the world of

~—object-oriented programming.
+ Modular and irarchical Design - Moves inforatian 35U Bhe program at the appropriate

level of detail

* Code Readability — Allows others to read derw\he

instead of all at once. Higher level subroutin€% with many lower level subcgutine calls,

the appearance of a high level language.
« Encapsulation ~ Insulates the rest of the program from changes made within a procedure.
>_Encapsulation -
o Team ~ Helps multiple to work on the program in parallel; a first
—wp T control. Allows a to continue writing his code, independent

of other team members by introducing “stub” subroutines. A stub subroutine may be as simple
as the subroutine label followed by a return instruction.

ASSEMBLY SUBROUTINE TEMPLATE

i =--- My Subroutine

i Called trom Somewhere

: Kegiatars, suan vartables, or 1/0 regitars

i uLis 25:624 registes pair Lor a © Lunclion

; um/v ‘are modified by this subroutine

Hy:
us) // push any flags or registers modified by the procedure
push

sembly code

endMySubroutine

s for C++ call (optional

1r /7 zero-extended to 16-bi
pop 5 /7 pop any flags or registers placed on the stack
out SREG, 115

ool 5

ret

HOW TO SEND INFORMATION TO AND/OR FROM YOUR C PROGRAM
When working in a Mixed C and Assembly programming environment, our subroutines and functions communicate using Register
Paics.
+ Mixed Cand Assembly parameter passing Regiter Pairs
n your C rogram.

pssembly xcermal pectarations

S e (vines_t parasl, uin a2, vintic s parad)s
In your Assembly Program.
+ iefine assemaly sirectives
lrr | pamis

.s inta_t ded to 16.bits in £25: 24 by called function.

arace

Rules for Working with Subroutines — Continued —

= Never jump into a subroutine. Use a call instruction (rcall, call)to start executing code at the
beginning of a subroutine.

Never jump out of a subroutine. Your subroutine should contain a single return (ret) instruction as the
last instruction (ret = last instruction).

* You do not need an ..orG assembly directive. As long as the previous code segment ends correctly
(rjmp, ret, reti)your subroutine can start at the next address.

You do not need to clear a register or any variable for that matter before you write to i
olr—x16 ; this line is not required
lds rls, A
Allblocks of code within the subroutine or Interrupt Service Routine (ISR) should exit the subroutine
through the oo instructions and the return (zet, et i)

It is a good programming practice to include only one return instruction (ret, reti)located at the end
of the subroutine.

= Once again, never jump into or out of a subroutine from the main program, an interrupt service routine,
or any other subroutine. However, subroutines or ISRs may call (rea11) other subroutines.

nirage

