Unsigned 8-bit Multiply with 8-bit result in 16-bit

Given variables A and B, each holding an 8 -bit signed 2's complement number. Write a program to find the maximum value and put into variable C. Example if $A>B$ then $C=A$.
$C=A \times B$
Simulation of the unsigned problem $C=25 \times 50$, where the answer should equal 1250 ($0 \times 04 E 2$).

```
    reset:
        ;Initialize SRM Variables
        clr r16
        sts A, r16
        sts B, r16
        sts C, r16
        sts C+1, r16
    loop:
        ; Test Max1
        ldi r16, 0x19
        sts A, r16
& ldi r16, 0x32
        sts B, r16
        rcall Mul8x8_16
        rjmp loop
```

Watch													\times
Name			Value				Type			Location			
A			0x19 ' $'$ '				SRAM Location					0100	[SR
B			0x00 '				SRAM I		Location			0101	[SR
C			0x00 ''				SRAM Location					0102	
Memory													\times
Data				\checkmark		8/16	abc		Address:	0x1			
0001001	1900		00	00	00	000	0000					4
00010A 0	0000	0	00	00	00	00	0000	00					E
0001140	0000		00	00	00	00	0000	00				E
00011E 0	0000	0	00	00	00	00	0000						
0001280	0000	00	00	00	00	000	0000	00				\checkmark

Figure 1: Start of program with variable A initialized to 0×19 (2510)

```
    reset:
        ;Initialize SRM Variables
    clr r16
    sts A, r16
    sts B, r16
    sts C, r16
    sts C+1, r16
    loop:
        ; Test Max1
    ldi r16, 0x19
    sts A, r16
    ldi r16, 0x32
    sts B, r16
>> rcall Mul8x8_16
    rjmp loop
```

Watch													\times
Name			Value				Type			Location			
A			0x19 'r'				SRAM Location			0x0100 [SR			
B			0x32 '2'				SRAM Location					$x 0101$	[SR
C			0x00 ''				SRAM Location					$\times 0102$	[SR
Memory													\times
Data				\checkmark		8/16		abc.	Address:				
00010019	1932	00	00	00	000	0000	0000	0000	.2.....				-
00010A	0000	00	00	00	000	0000	000	0000					三
000114	0000	00	00	00	000	0000	000	0000				$=$
00011E 0	0000	00	00	00	000	0000	000	0000					
. 000128	0000	00	00	00	000	0000	000	0000				\checkmark

Figure 2: variable B is initialized to $0 \times 32\left(50_{10}\right)$

Figure 3: End of program with variable C containing 0x04E2 (32_{10}). Byte ordering is little endian.

