Unsigned 16-bit Multiply 8-bit result in 24-bit number

Write a program to multiply a 16-bit unsigned number in the r25:r24 register pair by an 8-bit number in r26.return the answer in r4:r3:r2
r4:r3:32 = r25:r24 x r26
Simulation of the multiplication problem 10,000×250. The answer should equal 2,500,000 (0x2625A0).

	.INCLUDE <m328pdef.inc>	Watch					\times
		Name	Valu		Type		
	muls 16×8 _24_test:	R25	0×27	'''	Register	R25	-
	ldi r25,HIGH(10000)	R24	0x00	''	Register	R24	
\Rightarrow	ldi r24,Low (10000)	R26	0x00	''	Register	R26	=
	di r26.250	R4	0x00	''	Register	R4	
	call mulsi6x8_24	R3	0x00	''	Register	R3	
	rjmp muls16x8_24_test	R2	0x00		Register	R2	-

Figure 1: Start of program with r25 initialized to 0×27

Figure 2: variable r24 is initialized to 0×10. Now r25:r24 is $0 \times 2710\left(10,000_{10}\right)$

. INCLUDE <m328pdef.inc>	Watch					\times
	Name	Valu		Type	Lo	
muls 16x8_24_test :	R25	0x27	"'	Register	R25	-
ldi r25,HIGH(10000)	R24	0×10	't'	Register	R24	
1di r24,LOW(10000)	R26	0xFA	'ú'	Register	R26	=
r26,250	R4	0x00	''	Register	R4	
rcall muls16x8_24;	R3	0x00		Register	R3	
mp muls16x	R2	0x00		Register	R2	-

Figure 3: variable r26 is initialized to 0xFA $\left(250_{10}\right)$

. INCLUDE <m328pdef.inc>	Watch				\times
	Name	Value	Type	Loc	
muls16x8_24_test:	R25	0x27 '''	Register	R25	-
ldi r25,HIGH(10000)	R24	0x10 '†'	Register	R24	
ldi r24,Low (10000)	R26	0xFA 'ú'	Register	R26	三
ldi r26,250	R4	0x26 'ょ'	Register	R4	
rcall muls 16×8 - 24	R3	0x25 'f8'	Register	R3	
rjmp muls16x8_24_te	R2	0xA0 '	Register	R2	-

Figure 4: End of program with the result is $0 \times 2625 \mathrm{AO}\left(2,500,000_{10}\right)$ containing in $\mathrm{r} 4: \mathrm{r} 3: \mathrm{r} 2$ registers

