Maximum Value

Given variables A and B, each holding an 8 -bit signed 2 's complement number. Write a program to find the maximum value and put into variable C. Example if $A>B$ then $C=A$.
$\mathrm{C}=\operatorname{Max}(\mathrm{A}, \mathrm{B})$
Option B: Basic implementation of if-then-else statement. Structure modified to immediately store result.
Simulation of the unsigned problem $C=\operatorname{Max}(27,07)$, where the answer should equal $27(0 \times 1 B)$.

	reset:	Watch			\times
	; Initialize SRM Variables	Name	Value	Type	Location
	clr r16	A	$27^{\prime+1}$	SRAM Location	0x0100 [SR
	sts A, r16	B	0 ''	SRAM Location	0x0101 [SR
	sts C, r16	C	0 ''	SRAM Location	0x0102 [SR
loop:					
		14 4 Watch 1 Watch 2/Watch 3/Watch 4			

Figure 1: Start of Maximum program with variable A initialized to $0 \times 1 \mathrm{~B}\left(27_{10}\right)$

Figure 2: variable B is initialized to $0 \times 07\left(07_{10}\right)$

Figure 3: End of Maximum program with variable C containing 0x1B (27 ${ }_{10}$)

