Factorial: $C=A!$

Calculate the factorial of the number held in variable A. The number in variable A must be greater than 0 and less than or equal to $6!=720$ (note: $5!=120$). Store factorial of A into 16 bit variable C.

Byte ordering is little endian. $\mathrm{C}=\mathrm{A}$!
$\mathrm{C} 1: \mathrm{CO}=\mathrm{A}$!

Simulation of the factorial problem 3! = 6

Figure 1: First initialize A to 0×0003 (3 decimal). Set variable A to " 3 " in the Watch window.

```
    * C = A!
    . INCLUDE <m328pdef.inc>
    .DSEG
ll
    .CSEG
Fact1_6
    lds r16, A
    clr r0
Minc ro romernerm
fact1_6a: r0, r16
        mul r0, r16
    brne fact1_6a
        sts C, r0 ra least significant byte (little end)
    sts C+1, r1 ; most significant byte (big end)
rjmp Fact1_6
```


Figure 2: Loop 1 performs the first part of the calculation of A ! by doing 3×1 with command "mul r0, $\mathrm{r} 16^{\prime \prime}$. The product 0×0003 is stored in the $\mathrm{r} 1: \mathrm{r} 0$ register pair.

```
    * C = A!
.INCLUDE〈m328pdef.inc>
DSEG
i,
CSEG
Fact16: 6: r16, A
        lds r16,
        lll
    inc r0
    fact1_6a:
        Mm\mp@code{rof}
& bec r16
    sts C.r0
    sts C+1, r1
rjmp Fact1_6
: r0 = 1
```

Watch													
Name	Value		Type				Location						
A	3	' ${ }^{\prime}$	SRAM Location					0x0100		[SRAM]			
c	0	''	SRAM Location				0x0101			[SRAM]			
ro	6	'-'	Register				R0						
r1	0		Register				R1						
14, Watch 1 Watch 2 Watch 3 Watch 4													
Memory													\times
Data		\checkmark				Address:	0×100				Cols:		
000100	03	0000	00	0000	0000	00000	00	0000	00				
00010 C	00	0000	00	0000	000	00000	00	0000					
000118	00	0000	00	0000	000	0000	00	0000					
000124	00	0000	00	0000	0000	0000	00	0000	00	\ldots			
000130	00	0000	00	0000	0000	00000	00	0000					
00013 C	00	0000	00	0000	0000	00000	00	0000					
000148	00	0000	00	0000	000	0000	00	000					
000154	00	0000	00	0000	0000	0000	00	0000	00				
000160		0000		0000	000	0000		000					

Figure 3: Loop 2 performs the second part of calculation of A ! by multiplying 2×3 with the product $0 x 0006$ now in the r1:r0 register pair.

```
* C = A!
INCLUDE<m328pdef.inc>
DSEG
M:
.CSEG
Fact1_6
    lds r16, A
    clr}r
inc r0 ; r0 = 1
fact1_6a: r0, r16
    dec r16
    brne fact1_6a
    sts C, r0 ; least significant byte (little end)
    sts C+1, r1 ; most significant byte (big end)
#irjmp Fact1_6
```


Figure 4: In the $3^{\text {rd }}$ and final loop the result 0×0006 in register pair $r 1: r 0$ is saved in 2 byte variable C. Byte ordering is little endian.

Simulation of the factorial problem 5! $=120$

Figure 1: First initialize A to 0×0005 (5 decimal). Set variable A to " 5 " in the Watch window.

```
    * C = A!
    .INCLUDE <m328pdef.inc>
    .DSEG
linSEG ll
    .CSEG
Fact1_6
    lds r16, A
        clr r0
    factinc ro ; r0 = 1
    fact1_6a: mul
        mul r0, r16
        brne fact1_6a
        sts C. r0 ; least significant byte (little end)
        sts C+1, r1 ; most significant byte (big end)
rjmp Fact1_6
```


Figure 2: Loop 1 performs the first part of the calculation of A! by doing 5×1 with command "mul r0, r16". The product 0x0005 is stored in the r1:r0 register pair.

Figure 3: In the loop 2, perform the second part of calculation of A! by doing 4×5 with command "mul
$\mathrm{r} 0, \mathrm{r} 16^{\prime \prime}$. The result 20 which is stored in register pair $\mathrm{r} 1: \mathrm{r} 0$.

Figure 4: In the $5^{\text {th }}$ and final loop the result 102_{10} in register pair $\mathrm{r} 1: \mathrm{rO}$ is saved in 2 byte variable C . The most significant byte, equal to 0 , will be saved next. Byte ordering is little endian.

