Unsigned 8-bit Average of 3 numbers

Given variables A, B, and C; each holding an 8 -bit unsigned number. Write a program to find the average of A to C, placing the result into variable D.

D = A + B + C / 3
Allow for a 16-bit interim sum and result.

Figure 1 Start of unsigned 8-bit Average program with variable A initialized to 0×34 (52 ${ }_{10}$), B initialized to $0 \times 78\left(120_{10}\right)$ and C initialized to $0 \times B C\left(188_{10}\right)$.

\Rightarrow	$\begin{aligned} & \text { ldi r16,3 } \\ & \text { mov r3,r16 } \\ & \text { rcall Div8 } \\ & \text { sts D,r4 } \\ & \text { rjmp AvgABC } \end{aligned}$	Name		Value	Type		Location	
			A	0x34 '4'	SRAM	Locat	0x0100	[SRAM]
			B	0×78 'x'	SRAM	Locat	0x0101	[SRAM]
			C	$0 \times B C$ '3'	SRAM	Locat	0x0102	[SRAM]
			D	0×78 ' x '	SRAM	Locat	0×0103	[SRAM
		Memory						
	* Q = N/D Divide		Data	- 8/1	abc.	Address: 0×100		
	$\mathrm{N}=$ Numerato:			BC 78	000	0000000000		000

Figure 2 End of unsigned 8-bit Average program with variable D containing 0×78 (120_{10}).

