Unsigned 8-bit Average

Given 8-bit variables A and B, each holding an 8-bit unsigned 2 's complement number, write a program to find the average of A and B and put the result into variable C.

Hint: Shifting (or rotating) a binary number to the left divides the number by 2.
Simulation of the unsigned problem $C=255+85$, where the answer should equal 170 (0xAA).

$\begin{aligned} & \text {.CSEG } \\ & \text { Avg : } \end{aligned}$			Watch				
		r16, A	Name	Value	Type	Location	
	lds	r17, B	A	OXFF 'Ÿ'	SRAM Locat:	0x0100	[SRAM]
	ror	$\begin{aligned} & \text { r16, } \\ & \text { r16 } \end{aligned}$	B	0x55 'U'	SRAM Locat:	0x0101	[SRAM]
	sts	C. r 16	C	0x00 ''	SRAM Locat:	0x0102	[SRAM]
	rjmp	Avg					

Figure 1 Start of unsigned 8-bit Average program with variable A initialized to 0xFF (255_{10}) and B initialized to $0 \times 55\left(85_{10}\right)$.

	Avg: 1 ds lds add ror sts	$\begin{array}{ll} \text { r16, } & \text { A } \\ \text { r17, } & B \\ \text { r16, } & \text { r17 } \\ \text { r16 } \\ C, r 16 \\ \text { Avg } \end{array}$	Watch				
			Name	Value	Type	Location	
			A	OXFF 'y'	SRAM Locat:	0x0100	[SRAM]
			B	0x55 'U'	SRAM Locat:	0x0101	[SRAM]
			C	$0 \times A A{ }^{\prime \prime}$	SRAM Locat:	0x0102	[SRAM]
\Rightarrow	rjmp						

Figure 2 End of unsigned 8-bit Average program with variable C containing 0xAA (170 ${ }_{10}$).

