8-bit Addition

Write a program to add 8 bit variables A and B together, and storing the sum into 8 bit variable C. For this programming problem you may assume that the sum is less than 255 if A and B are unsigned and between -128 and 127 if signed.

$$
C=A+B
$$

Simulation of the problem $C=170+39$, where the answer C should equal 209 ($0 x D 1$), or the signed problem $C=-86+39$, where the answer should equal -47 ($0 x$ D1). Neither solution results in a carry (unsigned) overflow (signed) condition.

:CSEG		Watch						
		Name	Value		Type		Location	
		A	0xAA	'2'	SRAM	Locat:	0x0100	[SRAM]
		B	0x27	'''	SRAM	Locat:	0x0101	[SRAM]
		C	0x00		SRAM	Locat:	0×0102	[SRAM]
	rjmp Adder88							

Figure 1 Start of 8 -bit Addition program with variable A initialized to 0xAA (170 ${ }_{10}$ unsigned or -86_{10} signed) and B initialized to 0×27 (39_{10} signed or unsigned).

Figure 2 End of Addition program with variable C containing $0 \times D 1\left(209_{10}\right.$ unsigned or $\left.-47_{10}\right)$

