

Figure 1.Variable A is initialized to $0 \mathrm{xC0}$ (or -64) and variable B initialized to 0 x 0 A (or 10). These 8 -bit variables are converted to 16 -bit variables by extending the sign bit. As seen in the code above, initially the high byte is cleared. If the low byte is positive then no additional action is taken. If on the other hand the low byte is negative (bit $7=1$) then the 8 most significant bits to 1 . The numbers are added, and the carry from the least significant bits is added to the most significant bits.

Figure 2. Since C = A + B, the least significant byte of variable C is $0 x C A$, because the answer is $0 x F F C A$ (or -54).

Figure 3. The answer is negative, so the most significant byte of C is stored with all ones. The byte ordering is little endian.

