Absolute Value

Given variable A holds an 8-bit signed 2's complement number. Write a program to find the absolute value A. Save result back into variable A.
$A=|A|$

Simulation of the problem $A=\left|-113_{10}\right|$

$\begin{aligned} & \text {.CSEG } \\ & \text { Absolute: } \end{aligned}$		Watch				
		Name	Value	Type	Location	
\Rightarrow	lds r16, A	A	0x8F ''	SRAM Locat:	0x0100	[SRAM]
	tst r16					
	brpl endabs neg r16					
	endabs:					
	sts A, r16					
	rjmp Absolute					
		14 W Watch 1 Watch 2 Watch 3 Watch 4				

Figure 1 Start of Absolute program with variable A initialized to $-71_{16}\left(-113_{10}\right)$

		Watch				
	CSEG	Name	Value	Type	Location	
	lds r16, A	A	0x71 'q'	SRAM	0x0100	[SRAM]
	tst r16					
	brpl endabs neg r16					
	endAbs:					
	sts A, r16					
$>$	rjmp Absolute					
		141	1 Watch	Watch	tch 4	

Figure 2 End of Absolute program with variable A containing $+71_{16}\left(+113_{10}\right)$

