Design Example

In this design example we are going to design a Slot Machine
Assume Port D is wired as shown in the table below.

		Direction	DDRD bit(s)	Type / Initialization	PORTD
PD bits 3-0	switches	Input	000	Passive Input	1
PD bit 4	Win light	Output	1	Initially Off	0
PD bit 5	new Account button	Input	0	Active output of a DFF	0
PD bit 6	add Account button	Input	0	Active output of a DFF	0
PD bit 7	Lose light	Output	1	Initially Off	0

We begin by defining SRAM variable account and initializing Port D as defined in the table.

```
account .BYTE 1
ldi r16, 0b10010000
out DDRD, r16
ldi r16, 0b00001111
out PORTD,r16
```

Now let's generate a clock to the two D flip-flops so we can read our new and add account button.
Given clock is 20 Mhz . I want to clock the DFF at a Frequency is 20 Khz .
Alternative wording: I want to cycle and test if the button is pressed every 50 microseconds.
If I want to use timer 2 , what divide frequency will I need to do that? What would you need to load into Timer 2 to generate this delay?

Calculate Max delay given the following information. You are using Timer 2, a clock frequency of $f_{c l k}=20 \mathrm{MHz}$, and a clock divider of $\div 8$. Timer 2 is an 8 -bit timer so the maximum number of tics is $2^{8}=$ 256 tics. To convert to time we need to equate tics to time.
$f_{1 / 0}=f_{\text {clk }} / 8=2.5 \mathrm{MHz} \quad t_{1 / 0}=1 / f_{1 / 0}=0.4 \mu \mathrm{sec} / \mathrm{tic}$
$t_{\text {max }}=0.4 \mu \mathrm{sec} /$ tic $\times 256$ tics $=102.4 \mu \mathrm{sec}$
So our timer with given conditions can generate a 25 microseconds delay, now let's look at what we need to preload our counter with to get a delay of 25 microseconds.

$25 \mu \mathrm{sec} \div 0.4 \mu \mathrm{sec} / \mathrm{tics}=62.5$ tics (Rounding down we leave it at 62). So we would need to preload timer 2 with a value of $256-62=194_{10}=0 x C 2$

We can now use polling or an interrupt service routine to generate our clock.
Now let's generate the subroutines to be called when the user sets a dollar amount into 4 -switches and presses the new account or add account button.

```
New_account:
    ; When the button is pressed show the new amount
    in r16, PIND
    ldi r16, 0xF0
    and r8, r16
    sts account, r8
    call WriteDisplay //r8 output to 7-seg
    ret
Add_account:
    ; Most Likely this is what would be tested on
    in r16, PIND
    cbr r16, 0xF0
    lds r17, Account
    add r17, r16
    sts account, r17
    mov r8, r17
    call Write Display
```

The Slot Machine Wheel
The strange characters to be generated by our slot machine are shown at left. In the table are the segments to be turned on/off to create the strange symbols.

db	g	f	e	d	c	b	a
$=$	1	0	0	0	1	1	1
0	1	0	1	0	1	1	0

Converting this table into bytes to be saved in Flash.

