
1 | P a g e

2 | P a g e

CONTENTS
Instruction Set Architecture (Review) ... 3

Instruction Set (Review) .. 4

SREG – AVR Status Register (Review) ... 5

Control Transfer (Branch) Instructions ... 6

Conditional Branch Summary ... 7

Control Transfer (Branch) Examples ... 8

Example #1 Lab 4 – Direction Finder and Testing SREG Bits ... 8

Example #2 Lab 5 – WhichWay and Testing SREG Bit T... 10

Example #3 Lab 5 – InForest and Compare Immediate Instruction ... 12

Example #3 Lab 5 – InForest and Compare Immediate Instruction – Continued – .. 13

Example #4 Lab 6 – Test HitWall and tst Instruction ... 14

Example #5 Lab 7 – Test Paws ... 15

Appendix A – ATmega328P Instruction Set .. 16

Appendix B – Arduino Proto-Shield Schematic ... 19

3 | P a g e

INSTRUCTION SET ARCHITECTURE (REVIEW)
The Instruction Set Architecture (ISA) of a microprocessor includes all the registers that are accessible to the programmer. In other words, registers that can be
modified by the instruction set of the processor. With respect to the AVR CPU illustrated in Figure 2-2, these ISA registers include the 32 x 8-bit general purpose
resisters, status resister (SREG), the stack pointer (SP), and the program counter (PC).

Data Transfer instructions are used to load and store data to the General Purpose Registers, also known as the Register File. Exceptions are the push and pop
instructions which modify the Stack Pointer. By definition these instructions do not modify the status register (SREG).

Arithmetic and Logic Instructions plus Bit and Bit-Test Instructions use the ALU to operate on the data contained in the general purpose registers. Flags contained
in the status register (SREG) provide important information concerning the results of these operations. For example, if you are adding two signed numbers
together, you will want to know if the answer is correct. The state of the overflow flag (OV) bit within SREG gives you the answer to this question (1 = error, 0 no
error).

As the AVR processor fetches and executes instructions it automatically increments the program counter (PC) so it always points at the next instruction to be
executed. Control Transfer Instructions allow you to change the contents of the PC either conditionally or unconditionally. Continuing our example if an error

results from adding two signed numbers together we may want to conditionally (OV = 1) branch to an error handling routine.

Figure 1-5 AVR Central Processing Unit ISA Registers

1

1
 Source: ATmega16 Data Sheet http://www.atmel.com/dyn/resources/prod_documents/2466s.pdf page 3

http://www.atmel.com/dyn/resources/prod_documents/2466s.pdf%20page%203

4 | P a g e

INSTRUCTION SET (REVIEW)

The Instruction Set of our AVR processor can be functionally divided (or classified) into the following parts:

 Data Transfer Instructions

 Arithmetic and Logic Instructions

 Bit and Bit-Test Instructions

 Control Transfer (Branch) Instructions

 MCU Control Instructions

5 | P a g e

SREG – AVR STATUS REGISTER
2
 (REVIEW)

Non ALU

• Bit 7 – I: Global Interrupt Enable
The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual interrupt enable control is then performed in separate control

registers. The I-bit is cleared by hardware after an interrupt has occurred, and is set by the reti instruction. The I-bit can also be set and cleared by the

application with the sei and cli instructions.
• Bit 6 – T: Bit Copy Storage

The Bit Copy instructions bld (Bit LoaD) and bst (Bit STore) use the T-bit as source or destination. A bit from a register can be copied into T (Rb T) by

the bst instruction, and a bit in T can be copied into a bit in a register (T  Rb) by the bld instruction.

ALU

Signed two’s complement arithmetic

• Bit 4 – S: Sign Bit, S = N V

Bit set if answer is negative with no errors or if both numbers were negative and error occurred, zero otherwise.
• Bit 3 – V: Two’s Complement Overflow Flag

Bit set if error occurred as the result of an arithmetic operation, zero otherwise.
• Bit 2 – N: Negative Flag

Bit set if result is negative, zero otherwise.

Unsigned arithmetic

• Bit 5 – H: Half Carry Flag
Carry from least significant nibble to most significant nibble. Half Carry is useful in BCD arithmetic.

• Bit 0 – C: Carry Flag
The Carry Flag C indicates a carry in an arithmetic operation. Bit set if error occurred as the result of an unsigned arithmetic operation, zero otherwise.

Arithmetic and Logical

• Bit 1 – Z: Zero Flag
The Zero Flag Z indicates a zero result in an arithmetic or logic operation.

2
 Source: ATmega328P Data Sheet http://www.atmel.com/dyn/resources/prod_documents/8161S.pdf Section 6.3 Status Register

http://www.atmel.com/dyn/resources/prod_documents/8161S.pdf

6 | P a g e

CONTROL TRANSFER (BRANCH) INSTRUCTIONS

Compare and Test cp, cpc, cpi, tst, bst

Unconditional

o Relative (1) rjmp, rcall

o Direct jmp, call

o Indirect ijmp, icall

o Subr. & Inter. Return ret, reti

Conditional

o Branch if (2) …

– SREG Flag bit is clear (brFlagc) or set (brFlags) by name (I, T, H, S, V, N, Z, C) or bit (brbc, brbs).

– These SREG flag bits (I, T, H, S, V, N, Z, C) use more descriptive mnemonics.

 Branch if equal (breq) or not equal (brne) test the Z flag.

 Unsigned arithmetic branch if plus (brpl) or minus (brmi) test the N flag, while branch if same or higher (brsh) or

lower (brlo), test the C flag and are equivalent to brcc and brcs respectively.

 Signed 2’s complement arithmetic branch if number is less than zero (brlt) or greater than or equal to zero (brge)

test the S flag

o Skip if …

– Bit (b) in a register is clear (sbrc) or set (sbrs).

– Bit (b) in I/O register is clear (sbic) or set (sbis). Limited to I/O addresses 0-31

Note:

1. Branch relative to PC + (– 2k-1  2k-1- 1, where k = 12) + 1 PC-2047 to PC+2048, within 16 K word address space of

ATmega328P

2. All branch relative to PC + (– 2k-1  2k-1- 1, where k = 7) + 1 PC-64 to PC+63, within 16 K word address space of

ATmega328P

7 | P a g e

CONDITIONAL BRANCH SUMMARY

Source: http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf page 10
 http://apachepersonal.miun.se/~mathje/ET014G/Lectures/F3-AVR.pdf

http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf%20page%2010
http://apachepersonal.miun.se/~mathje/ET014G/Lectures/F3-AVR.pdf

8 | P a g e

CONTROL TRANSFER (BRANCH) EXAMPLES

EXAMPLE #1 LAB 4 – DIRECTION FINDER AND TESTING SREG BITS

Design a digital circuit with two (2) switches that will turn on one of the rooms 4 LED segments indicating the direction you want your bear to walk.

Table 4.5 Direction to Segment Conversion Table

Figure 5.2 Programmer's Reference Card

9 | P a g e

; --------------------------

; -- I Know the Way to Go --

; Called from main program

; Input: dir bits 1 and 0 Outputs: spi7SEG register bits seg_g, seg_f, seg_b, seg_a

; No other registers or status register flags are modified by this Subroutine

knowWay:

 push reg_F

 in reg_F,SREG

 push work0

 push reg_A

 push reg_B

 lds work0,dir // move direction bits into a working register

 // facing east (segment b)

 bst work0,0 // store r19 bit 0 into T

 bld reg_B,0 // load r16 bit 0 from T

 bst work0,1 // store r19 bit 1 into T

 bld reg_A,0 // load r17 bit 0 from T

 com reg_A // B = /A * B

 and reg_B,reg_A

 bst reg_B,0 // store r16 bit 0 into T

 bld spi7SEG,seg_b // load r8 bit 1 from T

 your direction code (circuit schematic) from this lab goes here

 pop reg_B

 pop reg_A

 pop work0

 out SREG,reg_F

 pop reg_F

 ret

10 | P a g e

EXAMPLE #2 LAB 5 – WHICHWAY AND TESTING SREG BIT T

Using switches 3 and 2, located on Port C pins 3 and 2 respectively, input an action you want the bear to take. The three possible actions are do

nothing, turnLeft, turnRight, and turnAround. Write a subroutine named WhichWay to take the correct action as defined by the following table.

Table 5.2 Truth Table of Turn Indicators

11 | P a g e

; --------------------------

; --- Which Way Do I Go? ---

; Called from main program

; Input: dir.1, dir.0 Outputs: dir.1, dir0

; No registers or flags are modified by this subroutine

whichWay:

 push reg_F

 in reg_F,SREG

 push switch

 in switch, PINC // input port C pins (0x06) into register r7

 bst switch, 3 // store switch bit 3 into T

 brts cond_1X // branch if T is set

 bst switch, 2 // store switch bit 2 into T

 brts cond_01 // branch if T is set

cond_00:

 rjmp whichEnd

cond_01:

 rcall turnRight

 rjmp whichEnd

cond_1X:

 // branch based on the state of switch bit 2

 :

cond_10:

 :

cond_11:

 :

whichEnd:

 pop switch

 out SREG, reg_F

 pop reg_F

 ret

12 | P a g e

EXAMPLE #3 LAB 5 – INFOREST AND COMPARE IMMEDIATE INSTRUCTION

In this part of the lab you will write the inForest routine and learn more about the AVR Studio Simulator/Debugger. The inForest

subroutine tells us if the bear is in the forest (i.e., has found his way out of the maze). The subroutine accomplishes this by checking the
row the bear is currently in. The rows and columns of the maze are numbered from 0 to 19 (13h) starting in the upper left hand corner.
When the bear has found his way out of the maze he is in row minus one (-1). The subroutine is to return true (r25:r24 != 0) if the bear is in
the forest and false (r25:r24 == 0) otherwise. The register pair r25:r24 is where C++ looks for return values for the BYTE data type.

row = -1

r25:r24 ≠ 0 r25:24 = 0

yes no

return

inForest

13 | P a g e

EXAMPLE #3 LAB 5 – INFOREST AND COMPARE IMMEDIATE INSTRUCTION – CONTINUED –

; --------------------------

; ------- In Forest --------

; Called from whichWay subroutine

; Input: row Outputs: C++ return register (r24)

; No others registers or flags are modified by this subroutine

inForest:

 push reg_F // push any flags or registers modified

 in reg_F,SREG

 push work0

 lds work0,row

 test if bear is in the forest

endForest:

 clr r25 // zero extend

 pop work0 // pop any flags or registers placed on the

stack

 out SREG,reg_F

 pop reg_F

 ret

14 | P a g e

EXAMPLE #4 LAB 6 – TEST HITWALL AND TST INSTRUCTION

To find out if pseudo-instruction hitwall works, write a subroutine named testHitWall. HitWall returns a non-zero value in register pair
r25:24 if the answer is no and zero if the answer is yes. Send the yes/no answer to the question to two of the discrete LEDs on the Arduino
Proto-Shield.

; --------------------------

; ------ Test hitWall ------

; Called from main program

; Input: none Outputs: spiLEDs bits 1 and 0

; No other registers or flags are modified by this subroutine

testHitWall:

 push reg_F

 in reg_F,SREG

 push work0

 rcall hitWall

 mov work0, spiLEDS

 tst cppReg

 breq noWall

 sbr work0,0b00000010 // immediate instructions must use r16 to r31

 cbr work0,0b00000001

 rjmp overTheWall

noWall:

 sbr work0,0b00000001

 cbr work0,0b00000010

overTheWall:

 mov spiLEDS,work0

 pop work0

 out SREG,reg_F

 pop reg_F

 ret

15 | P a g e

EXAMPLE #5 LAB 7 – TEST PAWS

Using the code from the previous example, write a new test code sequence in your whichWay subroutine to find out if pseudo-instructions
rightPaw and leftPaw work. These pseudo-instructions return a non-zero value in register pair r25:24 if the answer is no and zero if the
answer is yes. Send the yes/no answer to the question to two of the discrete LEDs on the Arduino Proto-Shield.

; - Test left & right paw --

; Lab 7

; Called from whichWay program

; Input: none Outputs: spiLEDs bits 5 and 4 (left), 3 and 2 (right)

; No other registers or flags are modified by this subroutine

; --------------------------

testPaws:

 push reg_F

 in reg_F,SREG

 push work0

 rcall leftPaw

 mov work0, spiLEDS

 tst cppReg // cppReg & cppReg

 breq noLeftWall

 sbr work0,0b00100000 // immediate instructions must use r16 to r31

 cbr work0,0b00010000

 rjmp overTheLeftWall

noLeftWall:

 sbr work0,0b00010000

 cbr work0,0b00100000

overTheLeftWall:

 rcall rightPaw

 tst cppReg // cppReg & cppReg

 breq noRightWall

 sbr work0,0b00001000 // immediate instructions must use r16 to r31

 cbr work0,0b00000100

 rjmp overTheRightWall

noRightWall:

 sbr work0,0b00000100

 cbr work0,0b00001000

overTheRightWall:

 mov spiLEDS,work0

 pop work0

 out SREG,reg_F

 pop reg_F

 ret

16 | P a g e

APPENDIX A – ATMEGA328P INSTRUCTION SET
3

3
 Source: ATmega328P Data Sheet http://www.atmel.com/dyn/resources/prod_documents/8161S.pdf Chapter 31 Instruction Set Summary

http://www.atmel.com/dyn/resources/prod_documents/8161S.pdf

17 | P a g e

18 | P a g e

19 | P a g e

APPENDIX B – ARDUINO PROTO-SHIELD SCHEMATIC

Arduino

Duemilanove

PINC0
down

up

g

d

a

b

ce

f

1 K

dp

a

b

c

d

e

f

g

dp

7-segment LED

PORTD3

PINC3

PINC2

PINC1

PINC5

PINC4

PIND2

10 K

PORTD5

Q

Q
SET

CLR

D

10 K

MISO

(PB4)

MOSI

(PB3)

SCK

(PB5)

SS

(PB2)

DigitalPin 11

DigitalPin 13

DigitalPin 10

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

74HC595

DS

SH_CP

ST_CP

OE

MR

spi7SEG0

spi7SEG1

spi7SEG2

spi7SEG3

spi7SEG4

spi7SEG5

spi7SEG6

spi7SEG7

74HC595
Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

DS

SH_CP

ST_CP

OE

MR Q7'

DigitalPin 3

AnalogPin 0

AnalogPin 1

AnalogPin 2

AnalogPin 3

AnalogPin 4

AnalogPin 5

DigitalPin 2

DigitalPin 5

PB0

PD4

PIND6

PIND7

DigitalPin 8

DigitalPin 4

DigitalPin 7

DigitalPin 6

DigitalPin 12

AREF AREF

Breadboard Area

SW.0

PB1
DigitalPin 9

SW.7

RESET

RESET

Q

Q
SET

CLR

D

+5v

+5v

270

RESET

10 K

Register 7

bit

7

6

5

4

3

2

1

0

Register 9

bit

0

1

2

3

4

5

6

7

Register 8

bit

0

1

2

3

4

5

6

7

1 K

+5v

0.01 mF0.1 mF10 mF

+5v

74LS74

680Ω

spiLED0

spiLED1

spiLED2

spiLED3

spiLED4

spiLED5

spiLED6

spiLED7

