AVR

8-bit Microcontrollers

AVR32

32-bit Microcontrollers and Application Processors

7 Working with Bits and Bytes
February 2009 ‘ I“El‘E

1|Page

Logic Instructions and Programs

READING

The AVR Microcontroller and Embedded Systems using Assembly and C)
by Muhammad Ali Mazidi, Sarmad Naimi, and Sepehr Naimi

the avr
microcentroller
Chapter 5: Arithmetic, Logic Instructions, and Programs? and embedded

systems
using assembly and ¢

Section 5.3: Logic and Compare Instructions
Section 5.4: Rotate and Shift Instructions and Data Serialization

Section 5.5: BCD and ASCII Conversion

1Sections 5.1 and 5.2 covered in AVR ALU and SREG Lecture

2|Page

http://www.pearson.ch/HigherEducation/ElectricalEngineering/MicroprocessorSystemsand/1471/9780138003319/AVR-Microcontroller-and-Embedded.aspx

Contents

[T=E T [T T SO OO TP U PP OPPTUPPTOPPTOPPPINS 2
L 1T =P 4
Y= Taa] o1 TSl AN o o1 o T oY Rl (a1 T =4 o T 1T SRS 5
Y= Taa] o1 TSN T o1 o T oY Rl = 1a¥ 7 [T N = o X SRS 6
(61 T Ta T Ta Te BTl a [T = 11 AT TP O OO U PP PP PP PRPRPP 6
Clearing and Setting @ Bit iN the AVR STatUS REGISTEN ...ttt et s e e et e e s a bt e e st e e s ab e e su bt e sabeeeateesabeeeabeesabeeeaseesabeeeabeesabeeeabeesabeesabeesabeenaseesn 9
I AL g =41 > 1 AP TP O PP PPRT PPN 10
TOBEIING BIS...eeuteiitieetit ettt ettt ettt ettt ettt ettt ettt ettt e bt e e bt e e s bt e e bt e e sbee e bt e e bt e e bt e e bt e e beeeeh e e e bt e e b e e e R et e Sh R e e Rt e e SRR e e Rt e e SR E e e Rt e e Sab e e eRteeSa b e e ea R e e S aE e e ea b e e s b e e eabeesabeeeabee s beeeaneesabeeearee s 11
[20eY =Nl o =g Yo Yo IR a3 ATVl - 11 PSR 12
Clearing and Setting a Bit in ONE OF the firSt 32 1/0 MEEISTEIS ...iiiiiiieii ettt et ettt st ee et e ste e et e e s beeetbeesbeeetaeesabeeesseeassaeasssesabeeesbeessseeasseesaseeasbeessseensseesaseensseessseesrs 13
Y=L g T T2 Lo == 1= o T U PP PP 14
L0 LU=y o o PP PRPROP 15
WY oY oY= oo [A T o A 24T [T G @ 1 1 74 =T SRR 16
FaVoT oY= a o [a2 B QT F=d o\ ol 2o LY Yo Lo [=Xy [o N U Lo T =Tt oSSR 17

3|Page

OVERVIEW
Clearing and Setting a Bit In ...

Where Instruction Alternative Notes
/0 (0-31) cbi, sbi Use with 1/O Ports
SREG cl{i,t,h,s,v,n,z,c} bclr
se{i,t,h,s,v,n,z,c} bset

Working with General Purpose Register Bits

Clearing and Setting a Byte clr, ser

Clearing Bits and, cbr andi

Testing Bits and Also consider using sbrc, sbrs, sbic,
sbis (see Control Transfer Lecture)

Testing a Bit bst ®brts, brtc

Testing a Byte tst W breq, brne

Setting Bits or, sbr ori

Inserting a Bit Pattern cbr ® sbr and ® or

Complementing (Toggling) Bits eor

Rotating Bits rol, ror
Shifting Bits 1sl, 1lsr, asr
Swapping Nibbles swap

4|Page

SAMPLE APPLICATION — KNIGHT RIDER

KnightRider:

See page 5 and 6 - Clearing and Setting Bits

clr rl6 // start with r9 bit 6 set - LED 6

sbr rle, 0b10000000

Ql: How could we have done this using 1 instruction?
1di rl7, (1<<SREG T) // equivalent to 0b01000000

See page 7 - Clearing and Setting a Bit in the AVR

Status Register

.
14

clt // initialize T = 0, scan right

See page 8 - Testing Bits

loop:

.
14

1di r19, 0b100000001
and rl9,rle // test if LED hit is at an edge
breq contScan // continue scan if z = 0

See page 9 - Toggling Bits

in rl6,SREG // toggle T bit
eor rle, rl1l7
out SREG, rl6

See page 10 - Rotating and Shifting Bits

contScan:

brts scanLeft // rotate right or left
lsr rlé

rjmp cont
scanLeft:

1sl rl6
cont:

mov spilEDS, rlé6

call WriteDisplay
rcall Delay
rjmp loop

135 MG H S

RESER L IEE at]

DAL T4
T3k -

oanv Ill NRSSELnGry

7llllb7]T mﬂm

5|Page

SAMPLE APPLICATION — BICYCLE LIGHT

A bicycle light has 5 LEDs.

BicycleLightl: A repeating pattern starts with the center LED turned ON. The center LED
is then turned OFF, and the LEDs to the left and right of the center LED are turned ON.
Each LED continues its scan to the left or right. Once the LEDs reach the end the pattern
repeats itself. Using the CSULB shield, write a program to simulate this bicycle light.

BicycleLight2: Same as Bicyclel except when LEDs reach the edge, they scan back to the

center.
BicycleLightl:
clr r7 // turn off 7 segment
begin: 1di rle, 0x04 // scan register rl6 = 4
mov rl7, rlé // scan register rl7 = 4
scan: mov r8, rl6 // do not modify rlo
cbr rl7, 0x20 // rl7 bit 5 = 1 at end of cycle
or r8, rl7 // combine scan registers
rcall Delay
call WriteDisplay
lsr rl6 // scan rl6 right
1sl rl7 // scan rl7 left, rl7 = 0 at end of cycle
brne scan // if rl7 <> 0 then continue scan
rjmp begin // else start next cycle
BicycleLight2: // |
1di rle, 0x08 // 00010 1000 start just in from edges
1di rl7, 0x02 // 00010 _0010
scan: clr r8 // combine scan registers
or r8, rl6
or r8, rl7
rcall Delay
call WriteDisplay
1sl rl7 // scan rl7 left
lsr rle // scan rl6 right
brcc scan
rijmp BicycleLight2

6|Page

CLEARING AND SETTING BITS

To clear a bit set the corresponding mask bit to 0

&Q
2)
and source/dest register, mask register $, \bQ’
Q
Problem: Convert numeric ASCIl value (‘0’ — ‘9’) to its X §)
binary coded decimal (BCD) equivalent (0 —9). &‘Zr QO

e What we have: ‘0’ to ‘9’ which equals 3016 to 3916
e What we want: 0 to 9 which equals 0016 to 0916

A A-B
Solution: Mask out high-order nibble 9 9 clear
lds rle, ascii value

1di rl7, OxOF don’t

and rlé, rl7 // or simply andi change

sts bcd value, rl6

An alternative to the and instruction is the Clear Bits in Register cbr instruction.
cbr source/dest register, mask bits

The cbr instruction clears the specified bits in the source/Destination Register (Rd). It performs the logical AND between the
contents of register Rd and the complement of the constant mask (K). The result will be placed in register Rd.

Rd € Rd - (OXFF — K), here is how the previous problem would be solved using the cbr instruction.
1lds rle, ascii value
cbr rle, O0xFO

sts bcd value, rl6

7|Page

Clearing and Setting Bits S
S &
$ S
To set a bit set the corresponding mask bit to 0 & S

or source/dest register, control register

Example: Set to one (1) bits 4 and 2 in some port.

A/ B|A+B
in rlé, some port don't
: change
1di rl7, 0b00010100

or rle, rl7 // or simply ori

out some port, rlé6 set

An alternative to the or instruction is the Set Bits in Register sbr instruction.

sbr source/dest register, mask bits

The sbr instruction sets the specified bits in the source/Destination Register (Rd). It performs the logical ORI between the
contents of register Rd and the constant control (K). The result will be placed in register Rd.

Rd € Rd + K
Here is how the previous problem would be solved using the cbr instruction.

in rl6e, some port
sbr rle, 0b00010100

out some_port, rl6

8|Page

CLEARING AND SETTING A BIT IN THE AVR STATUS REGISTER?

Bit 7 6 5 4 3 2

0
0x3F (0x5F) | T H S " N Z C SREG
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

AVR Instructions for Clearing and Setting SREG bits

cl{i,t,h,s,v,n,z,c} or bclr SREG {I,T,H,S,V,N,Z,C}
se{i,t,h,s,v,n,z,c} or bset SREG {I,T,H,S,V,N,Z,C}
Examples:

Disable all Interrupts

cli

Set T bit

set

2 source: ATmega328P Data Sheet http://www.atmel.com/dyn/resources/prod documents/8161S.pdf Section 6.3 Status Register

// defined in m328Pdef.inc
// defined in m328Pdef.inc

9|Page

http://www.atmel.com/dyn/resources/prod_documents/8161S.pdf

TESTING BITS

Use the andi instruction to test if more than one bit is set &
Q
andi source/dest register, mask bits \Q‘\\' Q\)b
x O
Example 1: Branch if bit 7 or bit 0 is set Q(,” 0$
// 7654 3210 S o

1ds rl6, some bits // 1000 0000 € example
andi rlé6, 0b10000001 // 1000 0001

A
brbc SREG 7, bit set // 1000 0000 (alt. brne)

Example 2: Branch if bit 4 and bit 2 are clear
// 7654 3210

don’t

lds rl6, some bits // 1101 1001 € example change

andi rl6, 0b00010100 // 0001 0100
brbs SREG 7, bits zero // 0001 0000 (alt. breq)

A-B
9 clear

Consider using one of the “Skip if Bit” instructions if you only need to test one bit.

Review “Control Transfer” lecture material for details.

Use the tst instructions to test if a register is Zero or Minus.

Tests if a register is zero or negative. Performs a logical AND between a register and itself. The register will remain
unchanged.

Example: Branch if bear is in the forest
rcall inForest // returns false(r24 = 0) if bear is not in the forest
tst r24

breg not in forest // branch if r24 = 0

10| Page

eor rle, rl7 // 1111 0001

§
TOGGLING BITS 8}' O
N
To toggle (complement) a bit set the corresponding mask bit to 1 (@(U{O)O
eor source/dest register, mask register
A|B|A®B
Example: Toggle bits 5 and 3 of 1/0-Port D.
// 7654 3210 don't
change
in rl6, PORTD // 1101 1001 € example
1di rl7, 0x28 // 0010 1000
toggle

out PORTD, rl6
When toggling an 1/O-Port bit, consider writing a one to the corresponding pin.

Review “AVR Peripherals” lecture material for details.
Example: Toggle bits 5 and 3 of I/O-Port D.
sbi PIND, PINDS // equivalent to sbi 0x09, 5

sbi PIND, PIND3
When toggling a byte (8 bits), use the Complement instruction.

Example: Write TurnAround code snip-it (i.e., toggle SRAM variable dir)
// 7654 3210

1ds rle, dir // 1101 1001 € facing East

com rl6 // 0010 0110 € facing West

cbr rle, OxFC // 1111 1100 clear unused bits (optional)
sts dir, rle // 0000 0010

Question: How could you have complemented dir without modifying the other 6 bits?

11 |Page

ROTATING AND SHIFTING BITS

Rotate Instructions allow us to rearrange bits without losing information and to sequentially test bit (brcc, brcs). Shift instructions allow us to quickly
multiply and/or divide signed and/or unsigned numbers by 2.

Rotate Left through Carry «
cl- T b0 |« C

rol Rd

Shifts all bits in Rd one place to the left. The C Flag is shifted into bit O of Rd. Bit 7 is shifted into the C Flag. This operation, combined with LSL, effectively
multiplies multi-byte signed and unsigned values by two.

Rotate Right through Carry -

ror Rd Cl] bTecrercrercemcmen= b0 —"I C

Shifts all bits in Rd one place to the right. The C Flag is shifted into bit 7 of Rd. Bit O is shifted into the C Flag. This operation, combined with ASR, effectively
divides multi-byte signed values by two. Combined with LSR it effectively divides multibyte unsigned values by two. The Carry Flag can be used to round the

result.

Logical Shift Left (Arithmetic Shift Left)
1sl Rd —

Cl*%s|] BT --ce=cmcccececm=n= b0 — 0

Shifts all bits in Rd one place to the left. Bit 0 is cleared. Bit 7 is loaded into the C Flag of the SREG. This operation effectively multiplies signed and unsigned
values by two.

Logical Shift Right -
0 =] BT ------meecmcm—m—a- bt |—*JC

lsr Rd

Shifts all bits in Rd one place to the right. Bit 7 is cleared. Bit O is loaded into the C Flag of the SREG. This operation effectively divides an unsigned value by two.

The C Flag can be used to round the result.

Arithmetic Shift Right E—

asr Rd E| i —b0 }=>[c]

Shifts all bits in Rd one place to the right. Bit 7 is held constant. Bit 0 is loaded into the C Flag of the SREG. This operation effectively divides a signed value by

two without changing its sign. The Carry Flag can be used to round the result.

12| Page

CLEARING AND SETTING A BIT IN ONE OF THE FIRST 32 |/O REGISTERS

Example: Pulse Clock input of Proto-Shield Debounce D Flip-flop (PORTDS5). Assume currently at logic O.

sbi PORTD, 5
cbi PORTD, 5
mmmmmmm

0x1F (0x3F) EECR EERE
0x1E (Ox3E) GPIORO General Purpose I/O Register 0 25
0x1D (0x3D) EIMSK - - - - — - INT1 INTO 72
0x1C (0x3C) EIFR - - - = - - INTF1 INTFO 72
0x1B (0x3B) PCIFR - - - - - PCIF2 PCIF1 PCIFO
0x1A (0x3A) Reserved - — - - - - - -

0x19 (0x39) Reserved - - - - - - - -

0x18 (0x38) Reserved - - - - - - - -

0x17 (0x37) TIFR2 - - - - - OCF2B OCF2A TOV2 163
0x16 (0x36) TIFR1 - - ICF1 - - OCF1B OCF1A TOV1 139
0x15 (0x35) TIFRO - — - - - OCFoB OCFOA TOVO

0x14 (0x34) Reserved - - - - - - - -

0x13 (0x33) Reserved - - - - - - - -

0x12 (0x32) Reserved - - - - - - - -

0x11 (0x31) Reserved - - - - - - - -

0x10 (0x30) Reserved - - - - - - - -

0xOF (0x2F) Reserved - - - - - - - -
O0xOE (0x2E) Reserved — - - — — - - —
0x0D (0x2D) Reserved - - - - - - - -
0x0C (0x2C) Reserved — — — — - - — —
0x0B (0x2B) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTDO 93
O0x0A (0x2A) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDDO 93
0x09 (0x29) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PINDO 93
0x08 (0x28) PORTC — PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTCO 92
0x07 (0x27) DDRC - DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDCO 92
0x06 (0x26) PINC — PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINCO 92
0x05 (0x25) PORTB PORTB7 PORTB6 PORTBS5 PORTB4 PORTB3 PORTB2 PORTB1 PORTBO 92
0x04 (0x24) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDBO 92
0x03 (0x23) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINBO 92
0x02 (0x22) Reserved - - - - - - - -

0x01 (0x21) Reserved - - - - - - - -

0x0 (0x20) Reserved - - - - - - - -

13| Page

SETTING A BIT PATTERN

Use the Clear Bits in Register cbr or functionally equivalent andi instruction in combination with the Set Bits in Register sbr
to set a bit pattern in a register.

Problem: Convert a binary coded decimal (BCD) (0 — 9) number to its ASCIl equivalent value (‘0’ - ‘9’).
e What we have: 0 to 9 which equals X016 to X916
The X indicates that we do not know what is contained in this nibble.
e What we want: ‘0’ to ‘9’ which equals 3016 to 3916
Solution: Set high-order nibble to 316

lds rle, bcd value

andi rle6, O0xOF // clear most significant nibble
sbr rle, 0x30 // set bits 5 and 4
sts ascii value, rl6

What is Happening
bcd value 1000 0111 0x87 // BCD 7

andi 0000 1111
0000 0111
sbr 0011 0000

0011 0111 0x37 // ASCII ‘7'

14| Page

QUESTIONS

1. What instruction is used to divide a signed number by 2?
2. What instruction is used to multiply an unsigned number by 27?

3. What instruction(s) would be used to convert a word pointer into a byte pointer? A word pointer is a
register pair like Z containing the address of a 16-bit data (2 byte) word in an SRAM Table. A byte pointer is
a register pair like Z containing the address of an 8-bit data byte in a corresponding SRAM Table. Assuming
there is a one-to-one relationship between each word in the first table with a byte in the second table. And
remembering that SRAM is always addressed at the Byte level, how would convert a pointer defined for the
word table into a pointer defined for the byte table.

15| Page

APPENDIX A: KNIGHT RIDER OPTIMIZED

.INCLUDE <m328pdef.inc>

rjmp

reset

.INCLUDE "spi shield.inc"

reset:
call

InitShield

// initialize knight rider
1di rlé, 0b10000000 // start with r9 bit 7 set - LED 7
mov spilEDS, rlé6

// initialize roulette

1di
1di
1di
mov

loop:

rl9, 0xEQ
r20, 0x1F
rle, 0x01
Spi7SEG, rl6

// night rider routine

1di
and
breg
bst
contScan:
brts
lsr
rijmp
scanLeft:
1sl
cont:

rl6, 0b10000001

rl6e, spilEDS // test if LED hit is at an edge
contScan // continue scan if z = 0
spilEDS, 0 // if right LED ON, then T =1

scanleft // rotate right or left
spiLEDS

cont

spiLEDS

// roulette routine

add
and
rol

Spi7SEG, rl9
Sspi7SEG, r20
Spi7SEG

rcall WriteDisplay
rcall Delay

// display routine
rcall WriteDisplay
rcall Delay

rjmp

loop

16| Page

APPENDIX B: KNIGHT RIDER ADDRESSING INDIRECT

begin:
1di rl6e, 14 // loop 14 times
1di ZH, high(Table<<l) // set base address
1di ZzL, low(Table<<l)
scan:
lpm r9, 7+ // load constant to LED display register
rcall WriteDisplay // display routine
rcall Delay
dec rlé
brne scan // 1f rl7 <> 0 then continue scan
rjmp begin // else start next cycle
KnightRider: .DB 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02

.DB 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40

17| Page

