11/7/13 Gmail - RE: EE346 Questions about Indirect Addressing

RE: EE346 Questions about Indirect Addressing

Gilbert Tse <tse.gilbert@gmail.com>
To: Gary Hill <hellogaryhill@gmail.com>

The ST instruction can be used to write a value to a location to which any
of the X, Y, and Z registers points. For example, the following program stores the
contents of R23 into location Ox 139F:

LD1 2L, 0=9F ;load OxSF into the low byte of 2
10T 7H, 0x13 ;lead Ox13 into the high byte of 2 (2=0x139F)
5T ¥, R23 ;stare the contents of locatien Ox13%F in RZ3

208

In the above question | am wondering why we are storing to X? Shouldn't it be Z if that
loading into Z?

Wed, Nov 6, 2013 at 6:52 PM

is the location we are

Example 6-9

at $130 to RAM locations starting at $60.

Solution:
LDI Rle, 1& (Bl = 16 {counter wvalus)
LDI KL, Ox30 ;the low byte of address
Loz XH, =01 ithe high byte of address
LTI ¥L, Uxal tthe low byte of address
LDI YH, Ox00 ithe high byte of address
Lls LD R20, X+ iread where ¥ points to
5T Y+, R20 ;store RZ0 where Y polnts to
DEC Rl& jdecrement counter
BRNE Ll ;locp untilil counter = zearo

Before we run the above program.
130 = ('H") 131 = {'E") 132 = (L") 133 = {'L"} 134 = ('D")

After the program is run, the addresses $60-864 have the same data as $130-$134.
130 = {*H") 131 = {('E'Y 132 = ('L") 133 = ('L') 134 = ("0")
60 = ('H') 61 = ('E') 62 = ('L'} 63 = ('L'}) &4 = ('0')

Write a program to copy a block of 5 bytes of data from data memory locations starting

In this example, | am confused as to why we set 16 as the counter value. | am pretty dumb when it comes to
conwersions, but how is it that we know the end address will be at 134? 5 bytes is 2.5 words...we can't have half

a word? so 3 words? then 130+3 = 133? I'm not sure.

https://mail.g oogle.comymail/u/0/?ui=2&ik=04821ea872&view=pt&search=inbox&th=1423079ddaSba786

13

11/7/13 Gmail - RE: EE346 Questions about Indirect Addressing

Figure 6-13b shows the value that should be loaded into the Z register in
order to address each byte of the program memory. For example, to address the
low byte of location $0002, we should load the Z register with S0005, as shown

below:

LDI ZH, Ox00 ;load EH with 0x0C {the high byte of addrc.)
LI 2L, Ox05 rlead 22 with Oxd5 (the low byte of addr.)
LM Rlé, 2 rlcad R16 with contents of location 2
Low High Address Low High Address
000G 0000 0000 0000 | 0000 0000 0000 0001 | 00CK 000D COGO GOC0 £0000 | 50001 | $0000
0000 0000 000D D010 | 0000 000D 0000 0041 | G000 BO00 DDOR BO0 soo02 | $0003 | $0O0O1
0000 0000 0000 0100 | 0000 000D 0000 0401 | DOOD COOG OO0 OO $0004 | FoO05 | $0002
0000 0000 0000 0110 | 0000 0000 G000 0111 | D000 0OOD DOOC D011 §0008 | $0007 | $0003
0000 0000 0000 1000 | 0000 G000 000G 1001 | QGO0 O0Q0 D000 D100 gonog | so00e | S0004
0000 0000 0000 1040 | 0000 0000 0000 1011 | 0000 0000 0000 0107 So00A | S000B | 30005
i

4141 1991 1111 1100 | 1194 41414 11111901 | 0111 1111 1111 1110 $FFFC | $FFFD | $7FFE
1191 1111 1111 1910 | 110 1191 1111 1441 | 0111 1111 11 111 $FFFE | SFFFF | $7FFF

Figure 6-13a. Values of Z (in Binary) Figure 6-13b, Values of Z

We can write the code using the HIGH and LOW directives as well:

L3I #H, HIGH[C=2O0OCH)
LDI 7L, LOW {O0xGOCS)
LFM RIf, Z

rload ZH with 0x00 (the high byte of addr.)
siopd ZL with 9x05 (the low byte of addc.)
tload R16 with contents of locaticn &

As vou see in Figure 6-13a, to read the low byte of each location we should
shift the address of that location one bit to the left. For instance, to access the low
byte of location 000000101, we should load Z with 0b000001010. To read the high
byte, we shift the address to the left and we set bit 0 to one.

We can shift the address using the << directive as well. For example, the fol-
lowing program reads the low byte of location 5100

LDI ZE, BIGH({5100=<1})
LOT ZL, LOW (Si00<<1)
LFM RlG, E

;load ZH with the high byte of addr.
rioad EZL with the low byte of addr,
;load R1G with contents of location 2

I'm also a little confused with this. | follow the directions under the Figure, because it makes sense to shift one
bit to left if we want the LOW byte. but abowe it says that they want to load the LOW byte of $0002. According to
the table the low byte is 0004, not 0005. So why did they load 00057

Gary Hill <hellogaryhill@gmail.com>
To: Gilbert Tse <tse.gilbert@gmail.com>

Thu, Nov 7, 2013 at 10:05 AM

The LD is working with SRAM whose word size is 8 bits (not 16 bits). Therefore 5 bytes.
[Quoted text hidden]

Gilbert Tse <tse.gilbert@gmail.com>

Thu, Nov 7, 2013 at 12:44 PM
To: Gary Hill <hellogaryhill@gmail.com>

https://mail.g oogle.comymail/u/0/?ui=2&ik=04821ea872&view=pt&search=inbox&th=1423079ddaSba786 2/3

11/7113 Gmail - RE: EE346 Questions about Indirect Addressing

Got it. What about for the first and last problems?

Thanks in advance.
[Quoted text hidden]

Gary Hill <hellogaryhill@gmail.com> Thu, Nov 7, 2013 at 12:52 PM

To: Gilbert Tse <tse.gilbert@gmail.com>
You are correct in both cases. As mentioned in class the authors have adopted a big endian convention and are
trying to apply it to a little endian architecture, which seems to confuse even them. This is unfortunate from the

student's perspective. You may want to remind me about this in class so | can explain what is happening
[Quoted text hidden]

https://mail.g oogle.comymail/u/0/?ui=2&ik=04821ea872&view=pt&search=inbox&th=1423079ddaSba786 3/3

