
1 | P a g e

2 | P a g e

Atmel ATmega32U4 Timing Subsystems

Reading

The AVR Microcontroller and Embedded Systems using Assembly and C)
by Muhammad Ali Mazidi, Sarmad Naimi, and Sepehr Naimi

Chapter 9: Programming Timers 0, 1, and 2

9.1 Programming Timers 0, 1, and 2

9.2 Counter Programming

9.3 Programming Timers in C

http://www.pearson.ch/HigherEducation/ElectricalEngineering/MicroprocessorSystemsand/1471/9780138003319/AVR-Microcontroller-and-Embedded.aspx

3 | P a g e

CONTENTS
ATmega32U4 Timing Subsystem .. 4

What is a Flip-Flop and a Counter .. 5

Timing Terminology .. 6

Timer 1 Modes of Operation .. 7

Normal Mode ... 8

Timer/Counter 1 Normal Mode – Design Example... 9

How to Calculate Timer Load Value .. 10

Steps to Calculate Timer Load Value (Normal Mode) .. 11

Steps to Calculate Clock Divisor (Normal Mode) .. 12

Polling Example – Assembly Version .. 13

Polling Example – C Version ... 14

More Looping Examples ... 15

4 | P a g e

ATMEGA32U4 TIMING SUBSYSTEM1

The ATmega32U4 is equipped with one 8-bit, two 16-bit and one 10-bit timer/counter. These timer/counters
let you…

1. Turn on or turn off an external device at a programmed time.

2. Generate a precision output signal (period, duty cycle, frequency). For example, generate a complex
digital waveform with varying pulse width to control the speed of a DC motor

3. Measure the characteristics (period, duty cycle, frequency) of an incoming digital signal

4. Count external events

1 Source: ATmega328P Data Sheet http://www.atmel.com/dyn/resources/prod_documents/8161S.pdf page 5

http://www.atmel.com/dyn/resources/prod_documents/8161S.pdf%20page%205

5 | P a g e

WHAT IS A FLIP-FLOP AND A COUNTER

 You can think of a D flip-flop as a one-bit memory. The something to remember on the D input of flip-flop is

remembered on the positive edge of the clock input2.

Dt Qt+1

0 0

1 1

X Qt

 The counter part of an ATmega32U4 Timer/Counter peripheral subsystem is an example of an asynchronous

(ripple) counter, which is a collection of flip-flops with the clock input of stage n connected to the output of

stage n -1

 When compared with a synchronous counter, an asynchronous “ripple” counter: generates less noise and is

less expensive. On the negative side, an asynchronous “ripple” counter is slower than a synchronous counter.

2 Source: http://sandbox.mc.edu/~bennet/cs314/slides/ch5me-4.pdf

http://sandbox.mc.edu/~bennet/cs314/slides/ch5me-4.pdf

6 | P a g e

TIMING TERMINOLOGY

Frequency

The number of times a particular event repeats within a 1-s period. The unit of frequency is Hertz, or cycles per second. For example,

a sinusoidal signal with a 60-Hz frequency means that a full cycle of a sinusoid signal repeats itself 60 times each second, or every

16.67 ms. For the digital waveform shown, the frequency is 2 Hz.

Period

The flip side of a frequency is a period. If an event occurs with a rate of 1 Hz, the period of that event is 1000 ms. To find a period,

given a frequency, or vice versa, we simply need to remember their inverse relationship, TF /1 where F and T represent a frequency

and the corresponding period, respectively.

Duty Cycle

In many applications, periodic pulses are used as control signals. A good example is the use of a periodic pulse to control a servo motor.

To control the direction and sometimes the speed of a motor, a periodic pulse signal with a changing duty cycle over time is used.

Duty cycle is defined as the percentage of one period a signal is ON. The periodic pulse signal shown in the Figure is ON for 50% of the

signal period and off for the rest of the period. Therefore, we call the signal in a periodic pulse signal with a 50% duty cycle. This special

case is also called a square wave.

500 ms

F = 1 Hz

T = 1/F = 1 second

OFF

ON

7 | P a g e

TIMER 1 MODES OF OPERATION

8 | P a g e

NORMAL MODE3
 The simplest AVR Timer mode of operation is the Normal mode. Waveform Generation Mode for Timer/Counter 1 (WGM1) bits 3:0 = 0 – Highlighted in

GREEN. These bits are located in Timer/Counter Control Registers A/B (TCCR1A and TCCR1B). In this mode the Timer/Counter 1 Register
(TCNT1H:TCNT1L) counts up (incrementing), and no counter clear is performed. The counter simply overruns when it passes its maximum 16-bit value
0xFFFF and then restarts 0x0000. There are no special cases to consider in the Normal mode, a new counter value can be written anytime.

 In normal operation the Timer/Counter Overflow Flag (TOV1) bit – Highlighted in LIGHT BLUE. located in the Timer/Counter1 Interrupt Flag Register
(T1FR1) will be set in the same timer clock cycle as the Timer/Counter 1 Register (TCNT1H:TCNT1L) becomes zero. The TOV1 Flag in this case behaves like
a 17th bit, except that it is only set, not cleared.

 The clock input to Timer/Counter 1 (TCNT1) can be pre-scaled (divided down) by 5 preset values (1, 8, 64, 256, and 1024). Clock Select Counter/Timer 1
(CS1) bits 2:0 – Highlighted in YELLOW are located in Timer/Counter Control Registers B.

3 ATmega32U4_doc7766.pdf Table 14-5 Waveform Generation Mode Bit Description

9 | P a g e

TIMER/COUNTER 1 NORMAL MODE – DESIGN EXAMPLE

500 ms

OFF

ON

 In this design example, we want to write a 500 msec delay routine assuming a system clock frequency of

8.000 MHz and a prescale divisor of 64.

 The first step is to discover if our 16-bit Timer/Counter 1 can generate a 500 ms delay.

Variable Definitions

tclk_T1 : period of clock input to Timer/Counter1
fclk : AVR system clock frequency
fTclk_I/O : AVR Timer clock input frequency to Timer/Counter Waveform Generator

How to Calculate Maximum Delay (Normal Mode)

 The largest time delay possible is achieved by setting both TCNT1H and TCNT1L to zero, which results in the

overflow flag TOV1 flag being set after 216 = 65,536 tics of the Timer/Counter1 clock.

fT1 = fTclk_I/O/64, given fTclk_I/O = fclk then fT1 = 8.000 MHz / 64 = 125 KHz

and therefore T1max = 65,536 tics / 125 KHz = 524.288 msec

 Clearly, Timer 1 can generate a delay of 500 msec

 Our next step is to calculate the TCNT1 load value needed to generate a 500 ms delay.

10 | P a g e

HOW TO CALCULATE TIMER LOAD VALUE

0000 0000 0000 0000

0000 1011 1101 1100

0000 0000 0000 0001

1 tic8 µs

.

.

.

24.288 ms

500 ms 62,500 tics

3,036 tics
Convert to Hex

0x0BDC
TCNT1H = 0x0B
TCNT1L = 0xDC

500 ms / (8 µs / tic)

1111 1111 1111 1111

0000 0000 0000 0000

Tmax = 2n· tT1 = 524.288 ms

Time Tics

65,536 – 62,500

65,535 tics

TH=500 ms

1

TOV1
65,356 tics 2n

2n-1

tT1= 8 µs / tic

.

.

.

.

.

.

.

.

.

.

1

2

3

11 | P a g e

STEPS TO CALCULATE TIMER LOAD VALUE (NORMAL MODE)

Problem

500 ms

OFF

ON

Generate a 500 msec delay assuming a clock frequency of 8 MHz and a prescale divisor of 64.

Solution

1. Divide desired time delay by tclkT1 where tclkT1 = 64/fclkI/O = 64 / 8.000 MHz = 8 µsec/tic

500msec / 8 µs/tic = 62,500 tics

short-cut: TCNT1H = high(-62,500) and TCNT1L = low(-62,500)

2. Subtract 65,536 – step 1

65,536 – 62,500 = 3,036

3. Convert step 2 to hexadecimal.

3,036 = 0x0BDC

For our example TCNT1H = 0x0B and TCNT1L = 0xDC

4. Check Answer

3,036 tics x 8 µs/tic = 24.288 msec

524.288 msec – 500 msec = 24.288 msec √

12 | P a g e

STEPS TO CALCULATE CLOCK DIVISOR (NORMAL MODE)

 In the previous example we assumed a divisor of 64, and then by calculating the maximum delay TMAX verified

that this assumption was correct. After that we simply followed the steps defined in the previous slide to

calculate the value to be loaded into 16-bit timer/counter TCNT1.

𝑇𝑀𝐴𝑋 =
2𝑛∙𝑁

𝑓𝑐𝑙𝑘
 eq1.

Where: TMAX = maximum delay

N = divisor

n = number of flip-flops making-up the timer

fclk = system clock frequency

 But what if we are not given N and need to find TCNT1 for a given delay T. In this case we know that T ≤ TMAX

and applying a little algebra can find an equation for N.

𝑁 ≥
𝑇∙𝑓𝑐𝑙𝑘

2𝑛 eq2.

 Let’s take a second look at our 500 msec delay problem. This time we will not assume a divisor of 64. Applying

equation 2 we have:

N ≥ (500 msec x 8 MHz) / 216 = 61.035…

 From Table 13.5 “Clock Select Bit Description” on page 10, we see that the possible clock divisors are 1, 8,

64, 256, and 1024. From this list we want to select the divisor that is the closest value, yet greater than or

equal to N. For our example, not surprisingly the answer is again 64.

13 | P a g e

POLLING EXAMPLE – ASSEMBLY VERSION

; --------------------------

; ------ Delay 500ms ------

; Called from main program

; Input: none Output: none

; no registers are modified by this subroutine

Delay:

 push r15

 in r15, SREG

 push r16

wait:

 sbis TIFR1, TOV1

 rjmp wait

 sbi TIFR1, TOV1 // clear flag bit by writing a one (1)

 ldi r16,0x0B // load value high byte 0x0B

 sts TCNT1H,r16

 ldi r16,0xDC // load value low byte 0xDC

 sts TCNT1L,r16

 pop r16

 out SREG, r15

 pop r15

 ret

14 | P a g e

POLLING EXAMPLE – C VERSION

; --------------------------

; ------ Delay 500ms ------

; Called from main program

; Input: none Output: none

void T1Delay()

{

 while (!(TIFR & (1<<TOV1))) // eq. to Ex: 9-42 expression

 TIFR = 1<<TOV1; // clear timer overflow flag

 TCNT1H = 0x0B;

 TCNT1L = 0xDC;

}

15 | P a g e

MORE LOOPING EXAMPLES

Here are six (6) other ways of implementing the looping part of the Polling Example written in assembly. See if you

can come up with a few more.

wait:

 sbis TIFR1, TOV1 // targets a specific

bit

 rjmp wait

wait:

in r16, TIFR1

sbrs r16, TOV1

rjmp wait

wait:

in r16, TIFR1

bst r16, TOV1

brtc wait

wait:

 in r16, TIFR1

 andi r16, 0x01 // bitwise operation

 breq wait

wait:

 in r16, TIFR1

 cbr r16, 0xFE

 breq wait

wait:

 in r16, TIFR1

 ror r16

 brcc wait

wait:

 in r16, TIFR1

 lsr r16

 brcc wait

