A\"/ "4

8-bit Microcontrollers

AVR32

32-bit Microcontrollers and Application Processors

7 Intervupts and 16-bit Timer/Counter 1 (Norwal Mode)
February 2009 ‘ |||E|.

1|Page



Atmel ATmega32U4 Timing Subsystems

Reading

the avr
microcentroller
and embedded

systems
using assembly and ¢

The AVR Microcontroller and Embedded Systems using Assembly and C)

by Muhammad Ali Mazidi, Sarmad Naimi, and Sepehr Naimi

Chapter 9: Programming Timers 0, 1, and 2

9.1 Programming Timers 0, 1, and 2
92 CounterProgramming

9.3 Programming Timers in C

2|Page


http://www.pearson.ch/HigherEducation/ElectricalEngineering/MicroprocessorSystemsand/1471/9780138003319/AVR-Microcontroller-and-Embedded.aspx

CONTENTS

ATMEZAB2UA TIMING SUDSYSTEIM ...ttt ettt et e et e et e e bt e s bt e sttt s bt e s abeesabeesab et e aseesabe e e aseesabeeaaseeeabee e aseeeabe e e s e e eabe e e abeeeabeeeaseeeabeeeabeeeabeeebeeeabeeesaennneas 4
NN S I o R o o I TaTo I T o LU o =T o TSRS 5
BTV = =T s o110 Vo] Lo .Y RSSOt 6
TIMEE 1 IMOAES OF OPBIALION ..eecitiiiieiiiee ettt eeie e et e e e st e e e ettt e e eetteeeestteeeeabteeeeassaaeeasbasaaasssasesasssaeeaasssasansssssansssaeessesasanssaeeaasssasassseesanssaseanssaaeessasesanssseessseaeanssesesnnsen 7
INOFIMAT IMIOTE ..ttt ettt ettt sh et e bt e a bt euteshaesbeesbe e bt eaeeeaeesaeeshe e b e emteeabeea b e ee e e be e bee e e eabeeae e eae e oheeebe e b e eateea b e eabeshbeeh e e nh e e b e e abeeabeeateebeenbeenbeeabeeabeenbenbeenaeenes 8
Timer/Counter 1 Normal Mode — DESIZN EXAMIPIE.......cc.iiiiiiiieeieieie sttt ettt ettt ettt s ae et et et e be st e sbeeaeeaees e e st ensesa e b e abeebeeseeneente s enteaae st e eaeeneensentensessesbessesaeensenean 9
HOW t0 CalCUulate TiMEr LOAT ValUC.......ci ittt ettt e s bt e s a bt e st e e s a ke e e ab e e sa bt e e as e e sa bt e e as e e s a bt e e abeesa b e e e abeesab e e e abeesat e e e abeesabeeenseessbeeenbeesnneananeens 10
Steps to Calculate Timer Load Value (NOIMAl IMIOTE) ......uiiiuieiiiecieeciee ettt et s e e e te e st e e s rteesateeebeesateeansaesataeasseesasaeasseesasesanseeaataeanseesnsaeanseesnsaeanseesnteeanseesnsesesennne 11
Steps to Calculate Clock DiviSOr (NOFM@I IMOAE) .......eiiuiiieeeiie et ettt e e ettt e et e e e sttt e e e et e e e ssaeeeeesstaeaeassseeesssaeeesseeeeasssaeeansseeeanstaeeeanssesesnsssesasssseesanssssesssnesassenennnsn 12
(oo 1= & T o o] LR A Y= g o o] YA T T Y o RS S 13
POIIING EXAMPIE — C VEISION ...veiiitiei ettt e ettt e ee ettt e e ettt e e e et eeeeeetteeeeetseeeeaabeaeeassseeaasssaeeaabasasaasssaeaassaasesasssaaastaseaasssssesasssaeanstsseeansseseaassseeeaseseaanssseeasssseastseeeanssaseassaeas 14
MIOIE LOOPING EXAMPIES ...ttt ettt ettt skt e st e st e st esa bt e s abeesab e e e abeesa b e e e ab e e sa ke e e aseesa b e e e as e e sa b e e easeesab e e s aseesa b e e easeesab e e easeesateeeaseesateeenneesabeennseesnbeannneens 15

3|Page



ATMEGA32U4 TIMING SUBSYSTEM?

The ATmega32U4 is equipped with one 8-bit, two 16-bit and one 10-bit timer/counter. These timer/counters
let you...

1. Turn on or turn off an external device at a programmed time.

2. Generate a precision output signal (period, duty cycle, frequency). For example, generate a complex
digital waveform with varying pulse width to control the speed of a DC motor

3. Measure the characteristics (period, duty cycle, frequency) of an incoming digital signal

4. Count external events

l"j H-E oL
LI

1 Source: ATmega328P Data Sheet http://www.atmel.com/dyn/resources/prod_documents/8161S.pdf page 5

4|Page


http://www.atmel.com/dyn/resources/prod_documents/8161S.pdf%20page%205

WHAT IS A FLIP-FLOP AND A COUNTER

e You can think of a D flip-flop as a one-bit memory. The something to remember on the D input of flip-flop is
remembered on the positive edge of the clock input?.

D Qurt Something to Remember —D Q [— What I Remember

0 0

;]'( g'? Remember Now! —p @' — What | Remember
t

e The counter part of an ATmega32U4 Timer/Counter peripheral subsystem is an example of an asynchronous
(ripple) counter, which is a collection of flip-flops with the clock input of stage n connected to the output of
stagen -1

1= CLE _ I LR

e When compared with a synchronous counter, an asynchronous “ripple” counter: generates less noise and is
less expensive. On the negative side, an asynchronous “ripple” counter is slower than a synchronous counter.

2 Source: http://sandbox.mc.edu/~bennet/cs314/slides/chSme-4.pdf

5|Page


http://sandbox.mc.edu/~bennet/cs314/slides/ch5me-4.pdf

TIMING TERMINOLOGY
Frequency
The number of times a particular event repeats within a 1-s period. The unit of frequency is Hertz, or cycles per second. For example,

a sinusoidal signal with a 60-Hz frequency means that a full cycle of a sinusoid signal repeats itself 60 times each second, or every
16.67 ms. For the digital waveform shown, the frequency is 2 Hz.

Period

The flip side of a frequency is a period. If an event occurs with a rate of 1 Hz, the period of that event is 1000 ms. To find a period,
given a frequency, or vice versa, we simply need to remember their inverse relationship, F =1/T where F and T represent a frequency
and the corresponding period, respectively.

Duty Cycle

In many applications, periodic pulses are used as control signals. A good example is the use of a periodic pulse to control a servo motor.
To control the direction and sometimes the speed of a motor, a periodic pulse signal with a changing duty cycle over time is used.

Duty cycle is defined as the percentage of one period a signal is ON. The periodic pulse signal shown in the Figure is ON for 50% of the
signal period and off for the rest of the period. Therefore, we call the signal in a periodic pulse signal with a 50% duty cycle. This special
case is also called a square wave.

< F=1Hz >

ON T =1/F =1 second

OFF

<—— 500 ms ——»

6|Page



TIMER 1 MODES OF OPERATION

Table 15-4. Waveform Generation Mode Bit Description("
WGM12 WGM11 WGM10 | Timer/Counter Mode of Update of | TOV1 Flag
Mode | WGM13 | (CTC1) | (PWMi1) | (PWM10) | Operation TOP OCRix at | Seton

0 0 0 0 0 Normal OxFFFF Immediate | MAX

1 0 0 0 1 PWM, Phase Correct, 8-bit OxO0FF TOP BOTTOM
2 0 0 1 0 PWM, Phase Correct, 9-bit OxO01FF TOP BOTTOM
3 0 0 1 1 PWM, Phase Correct, 10-bit OxO03FF TOP BOTTOM
4 0 1 0 0 CTC OCR1A Immediate | MAX

5 0 1 0 1 Fast PWM, 8-bit Ox00FF BOTTOM TOP

6 0 1 1 0 Fast PWM, 9-bit Ox01FF BOTTOM TOP

7 0 1 1 1 Fast PWM, 10-bit Ox03FF BOTTOM TOP

8 1 0 0 0 (P:g?g’cfhase SR Freuency | ich BOTTOM | BOTTOM
9 1 0 0 1 CoM, Fhase and Frequency | ocriA | BOTTOM | BOTTOM
10 1 0 1 0 PWM, Phase Correct ICR1 TOP BOTTOM
11 1 0 1 1 PWM, Phase Correct OCR1A TOP BOTTOM
12 1 1 0 0 CTC ICR1 Immediate MAX

13 1 1 0 1 (Reserved) - - -

14 1 1 1 0 Fast PWM ICR1 BOTTOM TOP

15 1 1 1 1 Fast PWM OCR1A | BOTTOM | TOP

Note: 1. The CTC1 and PWM11:0 bit definition names are obsolete. Use the WGM12:0 definitions. However, the functionality and

location of these bits are compatible with previous versions of the timer.

7|Page



NORMAL MODE3

. The simplest AVR Timer mode of operation is the Normal mode. Waveform Generation Mode for Timer/Counter 1 (WGM1) bits 3:0 = 0 — Highlighted in
- These bits are located in Timer/Counter Control Registers A/B (TCCR1A and TCCR1B). In this mode the Timer/Counter 1 Register
(TCNT1H:TCNT1L) counts up (incrementing), and no counter clear is performed. The counter simply overruns when it passes its maximum 16-bit value
OxFFFF and then restarts 0x0000. There are no special cases to consider in the Normal mode, a new counter value can be written anytime.

. In normal operation the Timer/Counter Overflow Flag (TOV1) bit — Highlighted in LIGHT BLUE. located in the Timer/Counterl Interrupt Flag Register
(T1FR1) will be set in the same timer clock cycle as the Timer/Counter 1 Register (TCNT1H:TCNT1L) becomes zero. The TOV1 Flag in this case behaves like
a 17th bit, except that it is only set, not cleared.

. The clock input to Timer/Counter 1 (TCNT1) can be pre-scaled (divided down) by 5 preset values (1, 8, 64, 256, and 1024). Clock Select Counter/Timer 1
(CS1) bits 2:0 — Highlighted in YELLOW are located in Timer/Counter Control Registers B.

ATmega32U4 Timer 1 Normal Mode (WGM 1 bits 3:0 = 0000,)

7 6 5 4 3 2
TCCR1A
TCCR1B
TIFR1
0x16 (0x36)

15 8 7 0
fclk_Tl fclklfo
TOV1 [« (0x85) TCNT1H (0x84) TCNTIL « Prescaler [«————
Table 13-5.  Clock Select Bit Description
cs12 cs11 €510 | Description
0 0 0 No clock source (Timer/Counter stopped).

clkyo/1 (No prescaling)

clkyo/8 (From prescaler)

clkyo/64 (From prescaler)

clkyo/256 (From prescaler)

clk;o/1024 (From prescaler)

External clock source on T1 pin. Clock on falling edge.

0 0
0 1
0 1
1 0
1 0
1 1
1 1

- |lola|lo|a|lol=a

External clock source on T1 pin. Clock on rising edge.

3 ATmega32U4_doc7766.pdf Table 14-5 Waveform Generation Mode Bit Description
8|Page



TIMER/COUNTER 1 NORMAL MODE — DESIGN EXAMPLE

ON

OFF

4—— 500 ms ——¥

e In this design example, we want to write a 500 msec delay routine assuming a system clock frequency of
8.000 MHz and a prescale divisor of 64.

e The first step is to discover if our 16-bit Timer/Counter 1 can generate a 500 ms delay.

Variable Definitions

tak 11 : period of clock input to Timer/Counterl
fak : AVR system clock frequency

frak /0 : AVR Timer clock input frequency to Timer/Counter Waveform Generator
How to Calculate Maximum Delay (Normal Mode)

e The largest time delay possible is achieved by setting both TCNT1H and TCNT1L to zero, which results in the
overflow flag TOV1 flag being set after 21¢ = 65,536 tics of the Timer/Counter1 clock.

le = chIk_I/O/64, given chIk_I/O = fclk then le = 8.000 MHz / 64 =125 KHz
and therefore T1max = 65,536 tics / 125 KHz = 524.288 msec
e C(learly, Timer 1 can generate a delay of 500 msec

e Our next step is to calculate the TCNT1 load value needed to generate a 500 ms delay.

9|Page



tri= 8 us / tic

How TO CALCULATE TIMER LOAD VALUE

T,=500 ms

<« 2"
«—2"1

- 62,500

Convert to Hex

Time Tics
0000 0000 0000 0000 <—— 65 356 tics
=[524.283MS L7777 1111 1111 1111 <— 65,535 tics
500 8 i
500 ms 1 ms /(8 us / tic) »| 62,500 tics
|
2
65,536
24.288 ms=—» 0000 1011 1101 1100— 3,036 tics
| 0000 0000 0000 0001 |
8 us— <——1tic

— 0000 0000 0000 0000—"

3 » 0xOBDC

TCNT1H = Ox0B
TCNT1L = 0xDC

10| Page



STEPS TO CALCULATE TIMER LOAD VALUE (NORMAL MODE)

Problem

ON

OFF

—— 500 ms ——¥

Generate a 500 msec delay assuming a clock frequency of 8 MHz and a prescale divisor of 64.

Solution

1. Divide desired time delay by tclkT1 where tclkT1 = 64/fclkl/O = 64 / 8.000 MHz = 8 usec/tic
500msec / 8 ps/tic = 62,500 tics
short-cut: TCNT1H = high(-62,500) and TCNT1L = low(-62,500)

2. Subtract 65,536 —step 1
65,536 — 62,500 = 3,036

3. Convert step 2 to hexadecimal.
3,036 = 0x0BDC
For our example TCNT1H = 0x0B and TCNT1L = OxDC

4. Check Answer

3,036 tics x 8 us/tic = 24.288 msec
524.288 msec — 500 msec = 24.288 msec  V

11| Page



STEPS TO CALCULATE CLOCK D1vISOR (NORMAL MODE)

In the previous example we assumed a divisor of 64, and then by calculating the maximum delay Tyax verified
that this assumption was correct. After that we simply followed the steps defined in the previous slide to
calculate the value to be loaded into 16-bit timer/counter TCNT1.

2NN
feik

TMAX — eql.

Where:  Tmax = maximum delay
N = divisor
N = number of flip-flops making-up the timer
feik = system clock frequency

But what if we are not given N and need to find TCNT1 for a given delay T. In this case we know that T < Tyax
and applying a little algebra can find an equation for N.

T.
N > fclk eq2.

= "on

Let’s take a second look at our 500 msec delay problem. This time we will not assume a divisor of 64. Applying
equation 2 we have:

N > (500 msec x 8 MHz) / 2%° = 61.035...

From Table 13.5 “Clock Select Bit Description” on page 10, we see that the possible clock divisors are 1, 8,
64, 256, and 1024. From this list we want to select the divisor that is the closest value, yet greater than or
equal to N. For our example, not surprisingly the answer is again 64.

12| Page



Delay 500ms

POLLING EXAMPLE — ASSEMBLY VERSION

; Called from main program
none Output: none
; no registers are modified by this subroutine

; Input:

Delay:
push
in
push

wait:
sbis
rjmp
sbi
1di
sts
1di
sts
pop
out
pop
ret

rlb
rl5, SREG
rlo

TIFR1, TOV1
wait

TIFR1, TOV1
rlée,0x0B
TCNT1H,rl6
rlé6,0xDC
TCNT1L,rl6
rlo

SREG, rlb
rlb

// clear flag bit by writing a one (1)
// load value high byte 0x0B

// load value low byte 0xDC

Set TOV1 flag

:

TCNT1 = 0x0BDC

return

13| Page



POLLING EXAMPLE — C VERSION

; —————— Delay 500ms -—-----
; Called from main program
; Input: none Output: none

void T1lDelay ()

{
while (! (TIFR & (1<<TOV1l))) // eq. to Ex: 9-42 expression
TIFR = 1<<TOV1; // clear timer overflow flag
TCNT1H = 0x0B;
TCNT1L = 0xDC;

Set TOV1 flag

.

TCNT1 = 0x0BDC

return

l4|Page



MORE LOOPING EXAMPLES

Here are six (6) other ways of implementing the looping part of the Polling Example written in assembly. See if you

can come up with a few more.

wait: wait:
sbis TIFR1, TOV1 // targets a specific in rl6, TIFR1
bit sbrs rl6, TOV1
rjmp wait rjmp wait
wait:
in rle, TIFR1
bst rl6, TOV1
brtc wait
wait: wait:
in rle, TIFRL in rle, TIFR1
andi rleo, 0x01 // bitwise operation cbr rl6, OXxFE
breg wait breg wait
wait: wait:
in rle, TIFR1 in rlo, TIFR1
ror rlb6 lsr rlb6
brcc wait brcc wait

15| Page



