
1 | P a g e

2 | P a g e

AVR Control Transfer -AVR Looping

READING
The AVR Microcontroller and Embedded Systems using Assembly and C)
by Muhammad Ali Mazidi, Sarmad Naimi, and Sepehr Naimi

Chapter 3: Branch, Call, and Time Delay Loop

Section 3.1: Branching and Looping

Section 3.3: AVR Time Delay and Instruction Pipeline

ADDITIONAL READING

Introduction to AVR assembler programming for beginners, controlling sequential execution of the program
http://www.avr-asm-tutorial.net/avr_en/beginner/JUMP.html

AVR Assembler User Guide http://www.atmel.com/dyn/resources/prod
documents/doc1022.pdf

http://www.pearson.ch/HigherEducation/ElectricalEngineering/MicroprocessorSystemsand/1471/9780138003319/AVR-Microcontroller-and-Embedded.aspx
http://www.avr-asm-tutorial.net/avr_en/beginner/JUMP.html
http://www.atmel.com/dyn/resources/prod%20documents/doc1022.pdf
http://www.atmel.com/dyn/resources/prod%20documents/doc1022.pdf

3 | P a g e

CONTENTS

Reading ... 2

Additional Reading ... 2

Contents ... 3

Loop Constructs In C++ and Assembly .. 4

Button Debounce Example ... 5

Delay Calculation for AVR ... 5

Instruction (or Machine) Cycle Time for the AVR ... 6

Pipelining .. 7

AVR Interstage Pipeline Registers ... 8

AVR Two-stage Instruction Pipeline ... 9

Branch Penalty .. 10

Button Debounce Example - Continued ... 11

Delay Calculation for AVR ... 11

Calculating Maximum Delay ... 12

Calculating Loop Count for a Given Delay .. 13

Loop inside a loop delay ... 13

Design Example with EE346 Shield ... 14

My Design Steps ... 14

CSULB Proto-Shield Schematic ... 15

Configure GPIO Ports .. 16

ATmega328P Instruction Set .. 18

4 | P a g e

LOOP CONSTRUCTS IN C++ AND ASSEMBLY

Loop Example 1: Loop through a block of code 7 times.

 Typically we increment the counter variable in C++.

for(int i=0; i<7; i++); // This statement loops 7 times {i: 0,1,2,3,4,5,6}

 As shown in the example at the right below, in assembly we decrement the counter variable.

{i: 7,6,5,4,3,2,1}

This allows us to immediately test the SREG Z-flag bit without an intermediate compare instruction.

C++ Assembly

for(int i=7; i<>0; i--) int i = 7; ldi r16, 7

{ do loop:

Block of code { Block of code

} Block of code dec r16

 i--; brne loop

 } while(i<>0);

1. Initialization 1. Initialization 1. Initialization

2. Test Condition 2. Block of code 2. Block of code

3. Block of code 3. Decrement 3. Decrement

4. Decrement 4. Test Condition 4. Test Condition

5 | P a g e

BUTTON DEBOUNCE EXAMPLE
1

 In the screen capture (red waveform), a button

bounces for about 400us when pressed. Once the

transition is detected, we want to design a software

loop that will do nothing while the switch input

stabilizes.

 Specifically, we want to design a software delay

routine that will generate a delay of approx. 500 s.

DELAY CALCULATION FOR AVR

 We begin by designing a simple loop.

wait:

 ldi r16, ____ // Loop Count

delay:

 dec r16 // ____ machine cycles

 brne delay // ____ machine cycles

 To discover the delay generated by our “software” loop we begin by finding the answers to the questions.

o What “Loop Count” Lcnt will generate the maximum delay?

o What is a machine cycle and how many machine cycles are required for each line of code?

o What is the number of machine cycles Nmc in 1 loop?

1 http://generichid.sourceforge.net/buttonbounceDSO.png

http://generichid.sourceforge.net/buttonbounceDSO.png

6 | P a g e

INSTRUCTION (OR MACHINE) CYCLE TIME FOR THE AVR

 Machine Cycle – The number of clock cycles it takes the CPU to fetch and execute an instruction.

 Because the AVR processors incorporate a 2-stage pipeline, there is a one-to-one relationship between an

AVR machine cycle and a clock cycle. In contrast for the non-pipelined 8051 microcontroller one machine

cycle = 12 clock cycles.

 Therefore to calculate the time it takes for one machine cycle you only need to take the inverse of the clock

frequency.

tmc = 1 / fclk Example: fclk = 16 MHz tmc = 1 / 16 MHz = 0.0625 µs (62.5 ns)

 As shown in the “Complete Instruction Set Summary” on page 11 of the AVR Instruction Set Document

(Atmel doc0856) most AVR instructions need only one or two clock cycles to fetch and execute an instruction.

 Given a clock frequency of 16 MHz and based on the above table a multiple MUL instruction will take

2 x 0.0625 µs = 0.125 µs to execute

 For branch instructions, the answer is not so straight forward.

http://www.csulb.edu/~hill/ee346/Reference/AVR%20Instruction%20Set_doc0856.pdf

7 | P a g e

PIPELINING

Before you can fully understand branching and looping you need to understand the concept of pipelining and how

it is implemented in our AVR processor.

 Pipelining is a technique that breaks operations, such as instruction processing (fetch and execute) into

smaller distinct stages so that a subsequent operation can begin before the previous one has completed.

reset

Fetch Execute

 For most instructions, especially one based on a modified Harvard memory model, program memory is not

accessed during the execution cycle. This memory down time could be used to fetch the next instruction to

be executed, in parallel with the execution cycle of the current instruction. Here then is an opportunity for

pipelining!

8 | P a g e

AVR INTERSTAGE PIPELINE REGISTERS

 A pipeline stage begins and ends with a register;

controlled by a clock. Technically these are

known as interstage pipeline registers.

 With respect to our AVR architecture the two

registers of interest are the Program Counter

(PC) and the Instruction Register (IR).

 Between the register(s) is combinational logic.

Although counter-intuitive, Flash Program

memory can be viewed as combinational logic

with an address generating a word of data.

 Without pipelining these two registers in the

control unit (PC, IR) would require two clock

cycles to complete a basic computer operation

cycle. Specifically, an instruction is (1) fetched

and then (2) executed.

9 | P a g e

AVR TWO-STAGE INSTRUCTION PIPELINE

 The AVR pipeline has two independent stages. The first stage fetches an instruction and places it in the

Instruction Register (IR), while the second stage is executing the instruction.

Fetch and Execute Cycle of the Atmel ATmega Microcontroller

Fetch Instruction Execute ResultAddress

 For our RISC architecture most instructions are executed in a single cycle (also known as elemental

instructions). In this perfect world where all instructions take one cycle to fetch and one cycle to execute,

after an initial delay of one cycle to fill the pipeline, known as latency, each instruction will take only one

cycle to complete.

Program Execution in a AVR RISC two-Stage Instruction Pipelined Architecture

 Time

 1 2 3 4

Fetch Instr. 1 Instr. 2 Instr. 3 Instr. 4

Execute Instr. 1 Instr. 2 Instr. 3

10 | P a g e

BRANCH PENALTY

 Within the context of pipeline architecture, when the execution stage of the pipeline is executing a

conditional branch instruction, the execution stage must “predict” the outcome of the instruction in order

to fetch what it “guesses” will be the next instruction.

 While on average 80% of the time a branch is taken, the AVR always guesses that the branch will not be

taken. This guess is made simply because it is the simplest to implement (the program counter automatically

points at the next instruction to be executed).

 When a branch is taken, and the guess is wrong, the processor must build the pipeline from scratch thus

accruing a “penalty.” With our simple 2-stage pipeline that penalty is one clock cycle as shown in the AVR

Instruction Set Document.

11 | P a g e

BUTTON DEBOUNCE EXAMPLE - CONTINUED

2

 In the screen capture (red waveform), a button

bounces for about 400us when pressed. Once the

transition is detected, we want to design a software

loop that will do nothing while the switch input

stabilizes. To remove the noise, we will design a

software delay routine that will generate a delay of

approx. 500 us.

DELAY CALCULATION FOR AVR

 Returning to our simple software loop

wait:

 ldi r16, ____ // Loop Count

delay:

 dec r16 // 1 clock cycle

 brne delay // + 2 cycles if true, 1 cycle if false

Tdelay = (Nmc × Lcnt - 1)tmc

Tdelay = Delay generated by the loop
tmc = period of one machine cycle = 1/Fclk (note: 1 machine cycle = 1 clock cycle) = 1 / 16 MHz = 0.0625 usec
Nmc = number of machine cycles in 1 loop = 3 (for brne Nmc = 2 cycles, we subtract 1 for the one cases where
our guess is correct.)
Lcnt = number of times loop is run (Loop Count) = ?

2 http://generichid.sourceforge.net/buttonbounceDSO.png

http://generichid.sourceforge.net/buttonbounceDSO.png

12 | P a g e

CALCULATING MAXIMUM DELAY

 Next we will calculate the maximum delay

Lcnt = 0 which results in a count of 256

Tmax_delay = (3 x 256 - 1)(0.0625 µs) = 48 µsec (approx)

 Now Let’s increase this delay by adding a nop instruction and then recalculating the maximum delay

Nmc = number of machine cycles in 1 loop = 4

wait:

 clr r16 // 0 = maximum delay

delay:

 nop // 1

 dec r16 // 1 clock cycle

 brne delay // + 2 cycles if true, 1 cycle if false

Tmax_delay = (256 x 4 - 1)(0.0625 µs) = 64 µsec (approx) with r16 = 0 (clr r16)

Test is False

13 | P a g e

CALCULATING LOOP COUNT FOR A GIVEN DELAY

 To generate a delay of 500 µs we will initialize r16 for a delay of 50 µs and then write an outside loop that

will run the inside loop 10 times for a total delay of approximately 500 µs

 Solving our Tmax equation for Loop Count Lcnt

Lcnt = (Tdelay/tmc+ 1)/Nmc = (Tdelay × Fclk + 1)/Nmc

 Set Lcnt for a delay of 50 µsec

Lcnt = (50µs/0.0625µs+ 1)/4  200 = 0xC8

wait:

 ldi r16, 0xC8 // 200

delay:

 nop // 1

 dec r16 // 1 clock cycle

 brne delay // + 2 cycles if true, 1 cycle if false

LOOP INSIDE A LOOP DELAY

 On your own, create an outside loop with a count of 10 to give us a delay of approximately 500 µsec (Hint
see Example 3-18 in your textbook)

14 | P a g e

DESIGN EXAMPLE WITH EE346 SHIELD

When the user presses the button, read first 3 switches (least significant), if the number is less than or equal to 5
then calculate factorial. If greater than 5 turn on decimal point. Display the least significant 4 bits of the answer.

MY DESIGN STEPS

Step 1: Initialized Ports

Step 2: Turned on LED 0 to indicate initialization complete

Step 3: Wrote code to pulse the clock

Step 4: Read in pin waiting for button to be pressed (Loop Example 1)

Step 5: Need to filter out Bounce (Loop Example 2)

 Maximum delay that could be generated was only 48 usec

Step 6: Added a NOP instruction, max delay was now 64 usec

 Set delay for nice even number of 50 usec

Step 7: Made an outside loop of 10 (Loop Example 3)

Step 8: Converted loop to a subroutine so I could change condition to button release.

Step 9: Check for button pressed and then released

Step 10: Read Switch and check if less than or equal to 6

Step 11: Calculate Factorial (Loop Example 4)

Step 12: Store 4 digit answer to SRAM (SRAM Indirect Addressing Mode)

Step 13: Sequentially, Load each digit and ... (SRAM Indirect Addressing Mode)

Step 14: convert to 7-segment display (Flash Program Indirect Addressing Mode)

15 | P a g e

CSULB PROTO-SHIELD SCHEMATIC

16 | P a g e

CONFIGURE GPIO PORTS

17 | P a g e

Conditional Branch Summary

Source: http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf page 10
 http://apachepersonal.miun.se/~mathje/ET014G/Lectures/F3-AVR.pdf

http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf%20page%2010
http://apachepersonal.miun.se/~mathje/ET014G/Lectures/F3-AVR.pdf

18 | P a g e

ATMEGA328P INSTRUCTION SET3

3 Source: ATmega328P Data Sheet http://www.atmel.com/dyn/resources/prod_documents/8161S.pdf Chapter 31 Instruction Set Summary

http://www.atmel.com/dyn/resources/prod_documents/8161S.pdf

19 | P a g e

20 | P a g e

