AVYR

8-bit Microcontrollers

AVR32

32-bit Microcontrollers and Application Processors

7 Introduction to AVR Assembly Language Progranmming I
February 2009 AIMEL

1|Page

AVR Control Transfer -AVR Branching

Reading

The AVR Microcontroller and Embedded Systems using Assembly and C)
by Muhammad Ali Mazidi, Sarmad Naimi, and Sepehr Naimi

Chapter 3: Branch, Call, and Time Delay Loop
Section 3.1: Branching and Looping (Branch Only)

Additional Reading

e Introduction to AVR assembler programming for beginners, controlling sequential execution of
the program http://www.avr-asm-tutorial.net/avr_en/beginner/JUMP.html|

e AVR Assembler User Guide http://www.atmel.com/dyn/resources/prod
documents/doc1022.pdf

the avr
microcentroller
and embedded
systems
using assembly and ¢

2|Page

http://www.pearson.ch/HigherEducation/ElectricalEngineering/MicroprocessorSystemsand/1471/9780138003319/AVR-Microcontroller-and-Embedded.aspx
http://www.avr-asm-tutorial.net/avr_en/beginner/JUMP.html
http://www.atmel.com/dyn/resources/prod%20documents/doc1022.pdf
http://www.atmel.com/dyn/resources/prod%20documents/doc1022.pdf

TABLE OF CONTENTS

INSErUCtion SEt ArChITECTUIE (REVIEW) covvveeiieiiei ettt e e e e e e e et e e e e e e e e e e e saaab e e seeeeeeessassraneeeeaaens 4
INSTFUCTION SET (ROVIEW) vttt ettt ettt e e ee e e e e e et e e e e e e ab e e e e e e ab e e e s saaa s essasbansesessbanseessssanasessens 5
8 g] oI 1) o U ot o o TP 6
How the Direct Unconditional Control Transfer Instructions jmp and call Workoooevveeiiiiiiiiiiiieeiiee e 7
How the Relative Unconditional Control Transfer Instructions rimp and rcall Work...........oveieeiiiiiiiiiiiiiciiceee e, 8
2] Lo Lol a T [B o U Lot o] o 3PP RPPPPP 9
How the Relative Conditional Control Transfer Instruction BREQ WOIKSuuuiiiiiiiiiiiiiiiiiiiiee e 10
(0o aTe [1aToT T I =] = [o ol a T8 = a Voo Yo 1o -SRI 12
A Conditional Control Transfer (Branch) SEQUENCEcocoeieiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee et e 13
Conditional Branch INStruCtion SUMMAIYccoviiiiiiiiiiiie e e e e e e ettt e e e e e aae e e esaaaeeeesssnaeeeessnaneeesssnnns 14
Implementing @ High-Level [F STat@mMeEnt e e et e e e e et e e e e e eat e e e e eanneeaeeees 16
Implementing a High-Level IF...ELSE StatemMENtouuuuiiiii e e e e e e e e e e e e e 17
Assembly Optimization of a High-Level IF...ELSE Statement — Advanced TOPIC —ueeiiiiiiiieieeeeiccee e, 18
o4 Lo T Y a] o] (=T 19
Appendix A: Control Transfer INStruction ENCOQINGcoeevvueiiiiiiiiiiee e e e e er e e e e e ar e e e s eaaa s 27
Appendix B — AVR Status REZISTEr (SREG)cceeeiiiiiiiiiiiiiieee e eeeeeetiiee e e e e e e e e e ee et ree e e e e eeeeeeaaaaaaaeeeeeeeesssssssaaaeeeeeaens 30
Appendix C — Control Transfer (Branch) INStrUCLIONScoeiiiiiiiiiiiccee e e 31
Appendix D — ATMEega328P INSTIUCLION SOuuuii i e e et e e e e e et e e e e saaa e e esaaraeeesessnnnnns 32

3|Page

INSTRUCTION SET ARCHITECTURE (REVIEW)

The Instruction Set Architecture (ISA) of a microprocessor includes -,
all the registers that are accessible to the programmer. In other Pr—t-;;n-:HAr-ﬂ STACK
words, registers that can be modified by the instruction set of the "l counter [T POINTER ["
processor. With respect to the AVR CPU illustrated here?, these ISA
registers include the 32 x 8-bit general purpose resisters, status]

resister (SREG), the stack pointer (SP), and the program counter pF;OLEQHAM SRAM -
(PC). 5 " — — -
Data Transfer instructions are used to load and store data to the lNSTFiI:.ICTIDN S—
General Purpose Registers, also known as the Register File. REGISTER J PURPOEE |
Exceptions are the push and pop instructions which modify the REGISTERS |4i—
Stack Pointer. By definition these instructions do not modify the ¥ e X :
status register (SREG). '”gggg‘égﬁﬂ” e] Y
Arithmetic and Logic Instructions plus Bit and Bit-Test Instructions 1 ‘ E

use the ALU to operate on the data contained in the general : +
purpose registers. Flags contained in the status register (SREG) EC:'I\"JNTEH?L _A\"L/i/
provide important information concerning the results of these

operations. For example, if you are adding two signed numbers | *
together, you will want to know if the answer is correct. The state AVR CPU STATUS _ _ "
of the overflow flag (OV) bit within SREG gives you the answer to B i

this question (1 = error, 0 no error).

Control Transfer Instructions allow you to change the contents of the PC either conditionally or unconditionally.
Continuing our example if an error results from adding two signed numbers together we may want to conditionally
(OV = 1) branch to an error handling routine. As the AVR processor fetches and executes instructions it
automatically increments the program counter (PC) so it always points at the next instruction to be executed.

1 Source: ATmegal6 Data Sheet http://www.atmel.com/dyn/resources/prod_documents/2466s.pdf page 3 Figure 1-5 “AVR Central Processing Unit ISA Registers”

4|Page

http://www.atmel.com/dyn/resources/prod_documents/2466s.pdf

INSTRUCTION SET (REVIEW)

The Instruction Set of our AVR processor can be functionally divided (or classified) into the
following parts:

e Data Transfer Instructions

Arithmetic and Logic Instructions

Bit and Bit-Test Instructions

Control Transfer (Branch) Instructions

MCU Control Instructions

5|Page

JUMP INSTRUCTIONS

e There are two basic types of control transfer instructions — Unconditional and Conditional.

e From a programmer’s perspective an unconditional or jump instruction, jumps to the label

specified. For example, jmp loop will unconditionally jump to the label loop in your

program.

e Here are the unconditional control transfer “Jump” instructions of the AVR processor

— Direct Jmp, call

— Relative (1) rjmp, rcall

- ijmp, icall

- ret, reti
Note:

1. Jump relative to PC + (- 2¥1 = 2k1- 1 where k = 12) ©PC-2048 to PC+2047, within 16 K word
address space of ATmega328P

6|Page

HOw THE DIRECT CONTROL TRANSFER INSTRUCTIONS JMP AND CALL WORK

e From a computer engineer’s perspective, a direct jump is accomplished by loading the target address into
the program counter (PC). In the example, the target address is equated to label “1oop.”

o To provide a more concrete example, assume the label 1oop corresponds to address 0x0123 in
Flash Program Memory.

o To execute this instruction, the control logic of central procession unit (CPU) loads the 16-bit
Program Counter (PC) register with 0x123.

o Consequently, on the next fetch cycle it is the instruction at location 0x0123 that is fetched and then
executed. Control of the program has been transferred to this address.

0 Jjmp k
1 call k
15 12 11 8 7 4 3 0
1001 0100 0000 11n0
00kk kkkk kkkk kkkk
Flash Program Memory
15 0
0x0000
15 0
W
PC
Ox3FFF

7|Page

HOw THE RELATIVE

CONTROL TRANSFER INSTRUCTIONS RJMP AND RCALL WORK

e From a computer engineer’s perspective, a relative jump is accomplished by adding a 12-bit signed offset
to the program counter (PC)2. The result corresponding to the target address. In the example, the target

address is equated to labe

|II

loop.”

o To provide a more concrete example, assume the label 1oop corresponds to address 0x0123 in
Flash Program Memory (the target address).

o An rjmp loop instruction is located at address 0x206. When the rjmp is executed, the PCis
currently fetching what it thinks is the next instruction to be executed at address 0x207.
To accomplish this jump the relative address (kkkk kkkk kkkk) is equal to OxF1C (i.e., 0x123 — 0x207).
Consequently, on the next fetch cycle it is the instruction at location 0x0123 that is fetched and then
executed. Control of the program has been Transferred to this address>.

0| rjmp
1| rcall

k
k

Flash Program Memory

15 12 11 8 15 0
110n kkkk kkkk kkkk
/\/
15 0
PC +

2 |n the language of Computer Engineering, we are exploiting spatial locality of reference.

3 The instruction at address 0x207 is not executed

0x0000

Ox3FFF

8|Page

BRANCH INSTRUCTIONS
e When a conditional or branch instruction is executed one of two things may happen.
1. If the test condition is true then the branch will be taken (see jump instructions).
2. If the test condition is false then nothing happens (see nop instruction).

o This statement is not entirely accurate. Because the program counter always points to

the next instruction to be executed, during the execution state, doing nothing means

fetching the next instruction.

e The “test condition” is a function of one or more SREG flag bits. For example, while the Branch
if equal (breqg) or not equal (brne) instructions test only the Z flag; instructions like branch if

less than (br1t) and branch if greater than or equal (brge) test the condition of the Z, N, and
V flag bits.

9|Page

HOw THE

CONDITIONAL CONTROL TRANSFER INSTRUCTION BREQ WORKS

e If arelative branch is taken (test condition is true) a 7-bit signed offset is added to the PC. The result
corresponding to the target address. In the example, the target address is equated to label “match.”
o To provide a more concrete example, assume the label nomatch corresponds to address 0x0123 in
Flash Program Memory (the target address).

o A brne nomatch

instruction is located at address 0x0112. When the brneinstruction is

executed, the PCis currently fetching what it thinks is the next instruction to be executed at address

0x0113.

o To accomplish this jump the relative address (kk kkkk) is equal to 0b01 0000 (i.e.,, 0x123 - 0x113).
o Consequently, on the next fetch cycle it is the instruction at location 0x0123 that is fetched and then
executed. Control of the program has been Transferred to this address®.

Flash Program Memory

15 12 11 8 4 3 15 0
1111 01kk kkkk k001
/\/
15 0
PC + W

4 Because in our example, the test condition is false (Z = 0) the instruction at address 0x113 is not executed.

0x0000

Ox3FFF

10|Page

BRANCH INSTRUCTIONS Enﬂnn
e All conditional branch instructions may be implemented as brbs s,k - | - | - o e i
or brbc s, k, where s is the bit number of the SREG flag bit. For example brbs 6, bitset would branch
to label bitset, ifthe SREG T bit was set.
e To make your code more readable, the AVR assembler adds the following “alias” instructions.
— SREG Flag bitis clear (brF'1agc) or set (brFlags)byname(/, T, H,S,V, C) or bit (brbc, brbs).
— These SREG flag bits (I, T, H, S, V, N, Z, C) use more descriptive mnemonics.
v’ Branch if equal (breq) or not equal (brne) test the Z flag.
v Unsigned arithmetic branch if plus (orpl) or minus (brmi) test the N flag, while branch if same or higher
(brsh) or lower (brlo), test the C flag and are equivalent to brcc and brcs respectively.
v’ Signed 2’s complement arithmetic branch if number is less than zero (br1t) or greater than or equal to
zero (brge) test the S flag
o Skipif...
— Bit(b) in a register is clear (sbrc) or set (sbrs).
— Bit (b) in 1/O register is clear (sbic) or set (sbis). Limited to I/O addresses 0-31

Note:

1. All branch instructions are relative to PC + (— 2¥1 & 2% 1 where k = 7) + 1 ©>PC-64 to PC+63
2. Skip instructions may take 1, 2, or 3 cycles depending if the skip is not taken, and the number of Flash program memory words

in the instruction to be skipped (1 or 2).

11| Page

CONDITIONAL BRANCH ENCODING

Here is how the brbs, brbc and their alias assembly instructions are encoded.

brbs
brbc

Sy

Sy

15 12 11 8 7 4 3 0
1111 On
alias
SREG sss |brbs s, k brbc s, k
I brie k brid k
T brts k brtc k
H brhs k brhc k
S brlt k brge k
v brvs k brve k
N brmi k brpl k
Z bregq k brne k
C brcs k brlo k brcc k brsh k

12| Page

A CONDITIONAL CONTROL TRANSFER (BRANCH) SEQUENCE

e A conditional control transfer (branch) sequence is typically comprised of 2 instructions.
1. The first instruction performs some arithmetic or logic operation using the ALU of the processor.

o Examples of this first type of instruction includes: cp, cpc, cpi, tst

o These ALU operations result in SREG flag bits 5 to 0 being set or cleared (i.e., H, S, V, N, Z, C).

o WARNING: The Atmel “Instruction Set Summary” pages provided as part of each quiz and exam
incorrectly classifies compare instructions (cp, cpc, cpi)as “Branch Instructions.” They should
be listed under “Arithmetic and Logical Instructions.” To highlight this inconsistency on Atmel’s part,
the tst instruction is correctly listed under “Arithmetic and Logical Instructions.”

o To allow for multiple branch conditions to be tested, these instructions typically do not modify any of
our 32 general purpose registers. For compare instructions, this is accomplished by a subtraction
without a destination operand.

2. The second instruction is a conditional branch instruction testing one or more SREG flag bits.

13|Page

CONDITIONAL BRANCH INSTRUCTION SUMMARY

e As mentioned in the previous slide, typically a conditional control transfer instruction follows a compare or test
instruction, where some relationship between two registers is being studied. The following table may be used
to quickly find the correct conditional branch instructions for these conditions.

Data Type Test SREG bit Mnemonic Complementary SREG bit Mnemonic
If(Test) {}
Signed R; > R, R;> R, =R, <R; |BRLT® R; < R, R;<R.=R, =Ry BRGE®
Signed Ry = R, S=0 BRGE R; <R, S=1 BRLT
Signed R; = R, Z=1 BREQ R; # R, Z=0 BRNE
Signed R; < R, R;<R.=R, =R; |BRGE R; > R, R;> R, =R, <Ry BRLT®
Signed Ry < R, S= BRLT Ry = R, S = BRGE
Unsigned R; > R, R;> R, =R, <R; |BRLO® R; <R, R;<R.=R, =Ry BRSH>
Unsigned Rq = R, C= BRSH/BRCC Ry <R, c=1 BRLO/BRCS
Unsigned R; = R, Z=1 BREQ R; # R, Z=0 BRNE
Unsigned R; <R, R;<R.=R, =R; |BRSH® R; > R, R;> R, =R, <Ry BRLO®
Unsigned Ry <R, C= BRLO/BRCS Ry = R, c=0 BRSH/BRCC
Simple Carry c=1 BRCS No Carry cC=0 BRCC
Simple Negative N=1 BRMI Positive N=0 BRPL
Simple Overflow V=1 BRVS No Overflow V=0 BRVC
Simple Zero Z=1 BREQ Not Zero Z=0 BRNE

5 Interchange Rd and Rr in the operation before the test, i.e., CP Rd,Rr = CP Rr,Rd

l4|Page

A Conditional Control Transfer (Branch) Example

e Here is how a high-level language decision diamond would be implemented in assembly.

; directions (see note)

.EQU south=0b00 ; most significant 6 bits zero Yes
.EQU east=0b01

.EQU west=0b10 NoO
.EQU north=0bl1l

cpi rl6,north ; step 1: Z flag set if rle = 0b00000011
breg vyes ; step 2: branch if Z flag is set

Note: These equates are included in testbench.inc

15|Page

IMPLEMENTING A HIGH-LEVEL IF STATEMENT

e Ahigh-level if statement is typically comprised of...

1. Conditional control transfer sequence (last slide) where the @ No

complement (not) of the high-level conditional expression is Ves

implemented.
Block of Code

2. High-level procedural block of code is converted to assembly.
e C++ High-level IF Expression 647

if (rlé == north) {
block of code to be executed if answer 1s yes.

e Assembly Version

cpi rl6,north ; Is bear facing north?
brne no ; branch if Z flag is clear (not equal)
block of code to be executed if answer 1s yes.
no:

16| Page

IMPLEMENTING A HIGH-LEVEL IF...ELSE STATEMENT

e Ahigh-level 1 f..else statementis typically comprised of...

1. Conditional control transfer sequence where the complement (not) @ No
Block of Code
of the high-level conditional expression is implemented.

Yes
2. High-level procedural block of code for yes (true) condition.
L i Block of Code
3. Unconditional jump over the no (false) block of code.
4. High-level procedural block of code for no (false) condition. é
e C++ High-level if...else Expression
if (rl6 == north) {
block of code to be executed if answer 1s yes (true).
}
else {
block of code to be executed if answer 1s no (false).
}
e Assembly Version
cpi rl6,north ; Is bear facing north?
brne else ; branch if Z flag is clear (not equal)

block of code to be executed if answer 1s yes.
rjmp end if
else:
block of code to be executed if answer 1S no.
end 1if:

17| Page

ASSEMBLY OPTIMIZATION OF A HIGH-LEVEL IF...ELSE STATEMENT — ADVANCED TOPIC —

e |[f the if-else blocks of code can be done in a single line of assembly then

the program flow is modified to guess the most likely outcome of the Guess North
test.
o This is possible if the value of a variable (for example the segments @ NO 5 Block of code
of a 7-segment display to be turned on) is the only thing done in Yes
each block. <

o This optimized program flow will always execute as fast as the
normal if..else program flow (if the guess if wrong) and faster if the guess is correct.
o This implementation is also more compact and often easier to understand.

e Assembly Version

1

=

; 7-segment display (see note)
.EQU seg a=0
.EQU seg b=l

o

=3

o3

1
.EQU seg c=2 —
1di rl7,1<<seg a ; guess bear 1is facing north
cpi rl6,north ; Is bear facing north?
breqg done ; branch if Z flag is clear (not equal)
block of code to be executed 1f guess was wrong.
done:

Note: These equates are included in spi shield.inc

18| Page

e Objective

PROGRAM EXAMPLES

Group A or B — Pseudocode example

Assign the least significant 4 switches on the CSULB shield to group A and the most significant to group B.

Based on user input, display A or B based on which group has the higher value. In the event of a tie display E

for equal. For this programming problem assume that people choose A 50% of the time, B 40% of the time,

and set the switches equal to each other 10% of the time.

e Pseudocode

o Using the ReadSwitches subroutine or reading the I/O ports directly, input group A into register A

(.DEF regA = rlo6)andgroupBinto register B(.DEF regB = rl7) 3.
o Preload the output register (.DEF answer = r18)withtheletter A < Guess |
o If (A>B) then go to display answer. —a
o Preload the output register with the letter B < Guess —
o If (B>A) then go to display answer. :LTL '
o Set answer to E and display answer.
e Seven segment display values.
dpgfedcba
A = 01110111 .SET groupA = 0x77 alternate: .EQU
b = 01111100 .SET groupB = 0x7C
E = 01111001 .SET equal = 0x79
e Programming work around by interchanging Rd and Rr.
Interchange of A and B
Solution Test Mnemonic | Test Mnemonic
Guess A>B BRLO* B<A BRLO/BRCS Unsigned

19| Page

http://www.avr-asm-tutorial.net/avr_en/beginner/DIREXP.html

Direction Finder — Two Program Solutions
Obijective

Design a digital circuit with two (2) switches that will turn on one of the rooms 4 LED segments
indicating the direction you want your bear to walk

Direction to Segment Conversion Table

Inputs Jutputs

Direction | 3W1l | 3WO | dir.l | dir.0 | Direction Jecment
O = 1, OFF =0

Log | LDb | LDE | LDa
SJouth DU | DWW | O o 1 a o o
East Dwr | OF a 1 a 1 o o
West oF DWr | 1 o a a 1 o
MNorth L LN 1 1 a a 0 1
Programmer's Reference Card
room turn | direction 1;:
o] b
[] 0000 [] 1000 10w € ol
0001 1001 | |00 [none a
L] - 01 |right =
[] 0010 [] 1010 ||10 |left 00 | ¢ b
] oo11 [J 1011 [[11 |turn around o
[o100 [1100 0.l
[0 o101 [J 1101 9
0110 1110
L] L P1.7 P1.0
1 o1t [J 1111 dp g f e d ¢ b a

20| Page

1lds

// facing east

bst
bld
bst
bld
com
and
bst
bld

Implementation of Boolean expressions for segments a,

rlo, di

rle,0
var B, 0
rlo,1
var A, 0
var A
var B,
var B, 0

Direction Finder — Truth Table Implementation

r

var_A

//

(segment

//
//
//
//
//

//

Spi7SEG, seg b //

schematic)

move direction bits into a working register
b)

store direction bit 0 into T

load rle6e bit 0 from T

store direction bit 1 into T

load rl7 bit 0 from T

B = /A *B

store rlo bit 0 into T

load r8 bit 1 from T

f,

and g (circuit

21| Page

1lds

1di
cpi
breqg
1di
cpi
breg
1di
cpi
breg
1di

done:
mov

call

Direction Finder — Using Conditional Expressions

rle, dir

rl7, 1<<seg g
rl6,south
done

rl7, 1<<seg f
rl6e,west

done

rl7, 1<<seg b
rl6,east

done

rl7, 1<<seg a

Sspi7SEG, rl7

WriteDisplay

guess bear

if bear 1is

guess bear

if bear 1is

guess bear

if bear 1is

is facing south

facing south then we are done

is facing west

facing west then we are done

is facing east

facing east then we are done

bear is facing north

answer to 7-segment register

22 |Page

Pseudo-Instructions TurnlLeft, TurnRight, and TurnAround

Using switches 3 and 2, located on Port C pins 3 and 2 respectively, input an action you want the bear to take. The
three possible actions are do nothing, turnLeft, turnRight, and turnAround. Write a subroutine named WhichWay
to take the correct action as defined by the following table.

SW.3 SW. 2 Action

DWN =0 | DWN = 0 | Show direction
DWN=0|UP = 1| recall turnRight
UP = 1| DWN= 0| rcall turnLeft
UP = 1| UP = 1| recall turniround

Table 5.2 Truth Table of Turn Indicators

1 /\ 0
switch 3

cond 1X cond 0X
1 0 1 0
cond 11 ! cond 10 ! cond 01 ‘ cond 00
Turn Around Turn Left Turn Right
4 y A A

L
(return)

23| Page

; ——— Which Way Do I Go? —---

call ReadSwitches // input port C pins (0x06) into register r7

bst switch, 3 // store switch bit 3 into T
brts cond 1X // branch if T is set
bst switch, 2 // store switch bit 2 into T
brts cond 01 // branch 1f T is set

cond 00:
rjmp whichEnd

cond 0O1:

rcall TurnRight

rjmp whichEnd
cond 1X:

// branch based on the state of switch bit 2
cond 10:
cond 11:

whichEnd:

Warning: The above code is for illustrative purposes only and would typically be found in the main looping section
of code not in a subroutine. Do not use this code to implement your lab.

24 |Page

InForest and Implementation of IF...ELSE Expression

The inForest subroutine tells us if the bear is in the forest (i.e., has found his way out of the

maze).

The rows and columns of the maze are numbered from 0 to 19 (13h) starting in the upper left hand
corner.

When the bear has found his way out of the maze he is in row minus one (-1). The subroutine is to
return true (r25:r24 != 0) if the bear is in the forest and false (r25:r24 == 0) otherwise.

The register pair r25:r24 is where C++ looks for return values for the BYTE data type.

yes no

4 4

r25:r24 #0 r25:24=0

A
return

25|Page

InForest and Implementation of IF...ELSE Expression — Continued —

e In Forest —-—-——————-
; Called from whichWay subroutine
; Input: row Outputs: C++ return register (r24)

; No others registers or flags are modified by this subroutine

inForest:
push reg F // push any flags or registers modified
in reg F, SREG
push rle
lds rl6, row

test if bear 1is in the forest

endForest:
clr r25 // zero extend
pop rl6 // pop any flags or registers placed on the
out SREG, reg F
pop reg F
ret

stack

26| Page

APPENDIX A: CONTROL TRANSFER INSTRUCTION ENCODING

Direct
wt All control transfer addressing modes modify the program counter.
0| jmp k
1| call k
15 12 11 0
A4
1001 010k kkkk 11nk
kikkk kkkk kkkk kkkk
color key Flash Program Memory
. ATmega Family 4 M words 15 0
ATmega328P 16 K words
/\/
15 0
W
PC

0x0000

Ox3FFF

27 |Page

CONTROL TRANSFER INSTRUCTION

ENCODING — Indirect

nnn |opcode notes
000
001 | ijmp see i1llustration
010 15 12 11 8 7 4 3 0
011 |eijmp n/a to 328P 1001 010n 000n 100n
100 | ret PC < M[SP + 1]
101 |icall see illustration Flash Program Memory
110 | reti PC & M[SP + 1]
111 |eicall n/a to 328P
15 0
Z - Register
15 0
A4
PC

0x0000

Ox3FFF

28| Page

CONTROL TRANSFER INSTRUCTION ENCODING — Relative

UNCONDITIONAL

0| rimp Kk Flash Program Memory
1| rcall k
15 12 11 8 7 4 3 0 15 0
110n kkkk kkkk kkkk
/\/
/’———___“-~__________,—’
15 0
PC +
CONDITIONAL
0| brbs s, k
1| brbc s, k
15 12 11 8 7 4 3 0
1111 OnkKk kkkk ksss
alias
brbs s, k brbc s, k
k brid k
k brtc k
k brhc k
k brge k
k brve k
k brpl k
k brne k
NOTES k brlo k brcc k brsh k

1. See Register Direct Addressing for encoding of skip register bit set/clear instructions sbrc and sbrs.

2. See I/O Direct Addressing for encoding of skip 1/O register bit set/clear instructions shis and sbic.

0x0000

Ox3FFF

29| Page

APPENDIX B — AVR STATUS REGISTER® (SREG)

Bit 7 6 5 4 3 2 1 0

0x3F (Ox5F) | T H S Vv N Z C SREG
Read/Write R/W R/W R/W R/wW R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Non ALU

e Bit 7 - I: Global Interrupt Enable
The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual interrupt enable control is then performed in separate control
registers. The I-bit is cleared by hardware after an interrupt has occurred, and is set by the reti instruction. The I-bit can also be set and cleared by the
application with the sei and c1i instructions.

e Bit 6 —T: Bit Copy Storage
The Bit Copy instructions b1d (Bit LoaD) and bst (Bit STore) use the T-bit as source or destination. A bit from a register can be copied into T (R, 2 T) by
the bst instruction, and a bit in T can be copied into a bit in a register (T = Rp) by the b1d instruction.

ALU

Signed two’s complement arithmetic

e Bit4-S:SignBit,S=NP v

Bit set if answer is negative with no errors or if both numbers were negative and error occurred, zero otherwise.
e Bit3-V:Two’s Complement Overflow Flag

Bit set if error occurred as the result of an arithmetic operation, zero otherwise.
e Bit 2 - N: Negative Flag

Bit set if result is negative, zero otherwise.

Unsigned arithmetic

e Bit5-H: Half Carry Flag
Carry from least significant nibble to most significant nibble. Half Carry is useful in BCD arithmetic.
e Bit0-C: CarryFlag
The Carry Flag C indicates a carry in an arithmetic operation. Bit set if error occurred as the result of an unsigned arithmetic operation, zero otherwise.

Arithmetic and Logical

e Bit1l-2Z:ZeroFlag
The Zero Flag Z indicates a zero result in an arithmetic or logic operation.

6 Source: ATmega328P Data Sheet http://www.atmel.com/dyn/resources/prod_documents/8161S.pdf Section 6.3 Status Register

30|Page

http://www.atmel.com/dyn/resources/prod_documents/8161S.pdf

APPENDIX C — CONTROL TRANSFER (BRANCH) INSTRUCTIONS

Compare and Test cp, cpc, cpi, tst, bst

Unconditional

o Relative (1) rjmp, rcall

o Direct jmp, call

o Indirect ijmp, icall

o Subr. & Inter. Return ret, reti
Conditional

o Branchif(2) ...
— SREG Flag bitis clear (brFlagc)orset (brFlags)byname(/,T,H,S,V, C) or bit (brbc, brbs).
— These SREG flag bits (I, T, H, S, V, N, Z, C) use more descriptive mnemonics.
v' Branch if equal (breq) or not equal (brne) test the Z flag.
v' Unsigned arithmetic branch if plus (brpl) or minus (brmi) test the N flag, while branch if same or higher (orsh) or
lower (brlo), test the C flag and are equivalent to brcc and brcs respectively.
v' Signed 2’s complement arithmetic branch if number is less than zero (br1t) or greater than or equal to zero (brge)
test the S flag
o Skipif...
— Bit (b) in a register is clear (sbrc) or set (sbrs).
— Bit(b)in1/O register is clear (sbic) or set (sbis). Limited to I/O addresses 0-31

1. Branchrelativeto PC+ (—2%1=> 211 where k=12) + 1 ©>PC-2047 to PC+2048, within 16 K word address space of ATmega328P
2. All branch relative to PC + (— 2% = 2k 1 where k = 7) + 1 ©PC-64 to PC+63, within 16 K word address space of ATmega328P

31|Page

APPENDIX D — ATMEGA328P INSTRUCTION SET’

Mnemonics Operands Description Operation Flags | #Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS
ADD Rd. Br Add two Registars Ad +« Ad + Ar ZCMNVH 1
ADC Rd. Br Add with Camry two Registers Rd+Rd+Ar+C ZCMNVH 1
ADIW RdLK Add Immedizte to Word Rdh:Rdl + Rdh:Rdl + K ZLNVE 2
SUB Rd, Rr Subtract two Registers RAd + Ad - Ar ZCHNH 1
SUBI Rd. K Subdract Constant from Register Rd«<RAd-K ZCOMNVH 1
SBC Rd, Rr Subtract with Carry two Registers RAd+ Ad-RAr-C ZCHNH 1
SBCI Rd, K Subtract with Carry Constant from Reg. Rd+ Ad-K-C ZCHNH 1
SEIW RdlLK Subiract Immediate from Ward Rdh:Rdl « Rdh:Rdl - K ZONV.E 2
AND Rd, Rr Logical AND Registers RAd + Ad = Rr ZNN 1
ANDI Rd, K | AND Register and Constant RAd + Ad = K ZNN 1
OR Rd. Rr Logical OR Registers Rd«RAdv Ar ZNY 1
ORI Rd, K Logical OR Register and Constant RAd + Ad v K ZNN 1
EOR Rd, Rr Exclusive OR Registers Rd + Ad & Ar ZNN 1
COM Rd One’s Complament Rd « 0xFF - Rd ZONV 1
NEG Rd Two's Complament Rd « 0x00 - Rd ZONVH 1
SER Rd.K Set Bit{s) in Ragister Ad + Adv K ZNV 1
CER Rd.K Clear Bit{s} in Register Rd + Ad « (0«FF - K} ZNV 1
INC Rd Increment Rd«<Rd+1 ZNV 1
DEC Rd Decrement Rd«<Rd-1 ZNV 1
TST Rd Test for Zero or Minus Fd + Ad « Ad ZNY 1
CLR Rd Clear Register Ad « Rd € Rd ZNV 1
SER Rd Set Register Rd «— 0xFF None 1
MUL Rd. Rr Multiply Unsigned R1:R0« RAdx Ar ZC 2
MULS Rd, Rr Multiply Signed R1:R0 + Ad x Rr ZC 2
MULSU Rd, Rr Multiply Signed with Unsigned R1:A0 + Ad x Rr ZC 2
FMUL Rd. Ar Fractional Multiply Unsigned Fi1:R0 + (Fdx Fr) << 1 ZC 2
FMULS Rd, Rr Fractional Multiply Signed R1:R0 + (Rd x Rr} << 1 ZC 2
|_FMULEU Rd. Ar Fractional Multiply Signed with Unsignad F1:A0 < (Fdx B} <<] Z.C 2
BRANCH INSTRUCTIONS
RJMP k Relative Jump PC—PC=k +1 MNone 2
lIMP Indirect Jumgp to {Z) PC+Z Mone 2
JMp k Direct Jump Cek Nane 3
RACALL k Relative Subroutine Call PC—PC+k+1 Nane 3
ICALL Indirect Call to (T} PC+Z Mone 3
caLL K Direct Subroutine Call PCek Mons 4
RET Subroutine Raturn PC « STACK Nane 4
RET Interrupt Return C + STACK | 4
CPEE Rd.Ar Compars, Skip if Equal fRd=RPC+ PC+2ar® Mona 11203
CP Rd.Rr Compare Rd-Ar ZHV.CH 1
CPC Rd.Ar Compare with Carry Rd-Ar-C I HNCH 1
CPl Rd.K Compare Register with Immediate Z NV.CH 1
SBRC Rr.b Skip if Bit in Register Clearad J|PC+—PC+20or3 MNona 11203
SBRS Ar. b Skip if Bit in Register is Sat JPC+«PC+20r3 None 11203
SBIC F.b Skip if Bit in VO Register Clearsd C+—PC+20r3 MNone 11203
SBIS F.b Skip if Bit in VO Register is Set PC+—PC+2ard Mone 1203
BRBS 3.k Branch if Status Flag Set) then PC+—PC+k + 1 Mone 12
BREC 5.k Branch if Status Flag Clearsd if [SREGI: then PCPC+k +1 Nana 12
BREQ k Eranch if Equal fZ=1)thenPC—PC+k+1 Nane 12
BRNE k Branch if Not Equal } then PC«— PC+k+1 MNone 12
BRC: k Branch if Cary S&t fenPC—PC+k+1 Naone 12
BRC k Branch if Camy Cleared hen PC«— PC+k+1 Nane 12
BRSH k Branch if Same or Higher fC=0)thenPC+—PC+k+1 MNone 12
EBALD k Branch if Lower if[C=1)thenPC— PC+k+1 Nane 12
ERM: k Branch if Minus fN=1)thenPC— PC+k+1 Nane 12
BRFL k Branch if Plus nPC+—PC+k+1 Nana 12
BRGE k Branch if Greater or Equal, Signed then PC+—PC+k+1 MNone 12
BRLT k Branch if Less Than Zero, Signed fMNeV=1)then PC+—PC+k+1 MNone 12
BRHS k Branch if Half Carry Flag Sat i TenPC+— PC+k+1 MNone 12
BRHC k Branch if Half Carry Flag Clearsd | then PC+— PC+k+1 MNone 12
EATS k Branch if T Flag Set fT=1jthenPC—PC+k +1 MNane 12
BATC k Branch if T Flag Clearsd fT=0thenPC—PC+k+1 Nane 12
ERVE k ifW=1)thenPC+PC+k+1 None 12
BRVC k =00]ﬂiﬂ Ei"' L PC ke w]a

7 Source: ATmega328P Data Sheet http://www.atmel.com/dyn/resources/prod_documents/8161S.pdf Chapter 31 Instruction Set Summary

32|Page

http://www.atmel.com/dyn/resources/prod_documents/8161S.pdf

Mnemonics Operands Description Operation Flags #Clocks
m k Branch i Interrupt Enabled dil=Athen PC+—PC+k+1 None 12
BRID ki Br_a h if In'.erruet Cisabled if(1=0) 1he_n PC+—PC+k=+1 MNone 112
BIT AND BIT-TEST INSTRUCTIONS
SBI Pb Szt Bit in VO Ragister ID[P.h) « 1 2
CBI Ph Clear Bit in 10 Register W2(Ph) =0 2
LSL Rd Logical Shift Laft Rdin+1} + Rdin}. Ad[0} 1
LSH Rd Logical Shift Right Rdin] + Rdin+1). Ad 1
ROL Rd Rotate Left Through Carry Rd{2)+C Adin+1}— Rdi 1
ACH Rd Rotste Right Through Carry Rd(7}+C.Adinj+— Rd(n+1).C«Rd(T} 1
ASH Rd Arithmetic Shift Right Rdin) « Rdin+1). n=0.8& 1
SWAP Rd Swap Nibbles J—RAd[2..0} 1
BSET s Flag Set 1
BCLR 3 Flag Clear SREG(s) <0 1
BET Ar. b Eit Store from Register fo T T+ Airb} 1
BLD Rd. b Bit load from T to Register Rdib) « T 1
SEC Set Camry Cei c 1
CLC Clear Carry C+0 c 1
SEN Szt Nagative Flag N+ N 1
CLN Clear Negative Flag N+10 il 1
SEZ Set Zero Flag 1 i 1
CLZ Clear Zerg Flag Z+0 z 1
SEI Gilobal Interrupt Enable le=1 | 1
CLI Global Interrupt Disable |0 | 1
SES Set Signed Test Flag Sei s 1
CLs Clear Signed Test Flag S+« 0 =] 1
SEV S=1 Twoa Complament Crvarflow. Ve i v 1
CLV Clear Twos Complemsnt Cverflow V0 v 1
SET SetTin SREG T+1 T 1
CLT Clear T in SREG T+0 T 1
SEH Set Half Carry Flagin SREG HeA H 1
CLH Clear Half Carry Flag in SRE H«10 H 1
DATA TRANSFER INSTRUCTIONS
MOV Rd, RBr Move Batween Registers Rd « RAr MNone 1
MOV Rd. Rr Copy Register Word Rd+1:Ad « Rr+1:Ar None 1
LD Rd. K Load immediate Rd « K None 1
LD Rd, X Load Indirsct Rd « (¥} Nene 2
LD Rd. X+ Load Rl (¥). XX+ 1 Nana 2
LD Rd. - X Load X+ X -1, Rd«{X) Naone 2
LD Rd. ¥ Load Rd « (¥} None 2
LDy Rd. ¥+ Load Rl (Y] ¥+ ¥+ 1 None 2
L Rd, - ¥ Load ¥ ¥ -1, Rd (Y] Nane 2
LoD Rd.Y+q Load Indirsct with Displacement Rd (Y +q) Naons 2
LD Rd. Z Load Indirect Rd « (7} None 2
LD Rd, Z+ Load Indir=ct and Post-| Rd + (Z}, Z + Z+1 MNane 2
LD Rd. -Z Load Indirzct and Pre-Dec. Z+Z-1,Rd« (7} Nane 2
LoO Ad., Z=q Load Indirect with Displacemeant Rde—i(Z+q) None 2
LDE Rd. k Load Direct from SAAM Rd + &) Nene 2
ST X Ar Store Indiract [X} < Rr Nana 2
=11 X+, Ar Siore Indirect and Post-Inc. Kl=Rr X< X+1 None 2
ST - ¥, Fr Store Indirect and Pre-Dec. X X-1, () «Rr None 2
ST Y, Rr Siore Indirect [¥} = Rr None 2
ST Y+, Ar Sitore Indirect and Fost-Inc. =AY <Y+1 Nane 2
ST -, Br Siore Indirect and Pre-Dec. Y Y- 1, (¥}« Rr Nane 2
STOD Y+q,Rr Siore Indirect with Displacement [Y+q)«Ar None 2
ST Z.Rr Siore Indiract [Z)+Rr MNone 2
ST Z+, RAr Siore Indirect and Post-Inc. [Z)+—RAr, Z+—Z +1 None 2
5T -Z, Rr Store Indirect and Pre-Dec. Z+Z-1,(Z)+FRr MNone 2
STD Z+gAr Store Indirect with Displacemsnt [Z+g)«<PRr None 2
5T k. Br Stora Diract to SHAM (k) Hr MNane 2
LPM Load Program Memory RO+ (2} Nene 3
LPM Rd. Z Load Program Memory Rd « (7} Nene 3
LPM Rd. Z+ Load Program Memory and Post-inc Rd+ (Z} £+ 741 None 3
SPM Sitore Program Memory [Z) + Ri:AD Nane
IN Rd. F In Port Rd«F Hone 1
ouT F. Rr Ot Port F« RAr None 1
PUSH Rr Push Register on Stack STACK « Ar Hone 2

33|Page

Mnemonics Operands Description Operation Flags #Clocks
PP Rd Pop Aegister from Stack RAd « STACK None 2
MCU CONTROL INSTRUCTIONS
NOP Mo Cperation None 1
SLEEP Slesp [see specilic descr. for Slesp function) Mane 1
WDR ‘Watchdog Reset [zee specific descr. for WDRAiImer) MNane 1
EREAK Break For Cn-chip Debuwg Only Mane MiA

Mote: 1. These instructions are only available in ATmega168PA and ATmega328P.

34|Page

