
1 | P a g e

2 | P a g e

AVR Control Transfer -AVR Branching

Reading

The AVR Microcontroller and Embedded Systems using Assembly and C)
by Muhammad Ali Mazidi, Sarmad Naimi, and Sepehr Naimi

Chapter 3: Branch, Call, and Time Delay Loop

Section 3.1: Branching and Looping (Branch Only)

Additional Reading

 Introduction to AVR assembler programming for beginners, controlling sequential execution of
the program http://www.avr-asm-tutorial.net/avr_en/beginner/JUMP.html

 AVR Assembler User Guide http://www.atmel.com/dyn/resources/prod
documents/doc1022.pdf

http://www.pearson.ch/HigherEducation/ElectricalEngineering/MicroprocessorSystemsand/1471/9780138003319/AVR-Microcontroller-and-Embedded.aspx
http://www.avr-asm-tutorial.net/avr_en/beginner/JUMP.html
http://www.atmel.com/dyn/resources/prod%20documents/doc1022.pdf
http://www.atmel.com/dyn/resources/prod%20documents/doc1022.pdf

3 | P a g e

TABLE OF CONTENTS

Instruction Set Architecture (Review) .. 4

Instruction Set (Review) ... 5

Jump Instructions... 6

How the Direct Unconditional Control Transfer Instructions jmp and call Work .. 7

How the Relative Unconditional Control Transfer Instructions rjmp and rcall Work .. 8

Branch Instructions .. 9

How the Relative Conditional Control Transfer Instruction BREQ Works ... 10

Conditional Branch Encoding ... 12

A Conditional Control Transfer (Branch) Sequence .. 13

Conditional Branch Instruction Summary .. 14

Implementing a High-Level IF Statement ... 16

Implementing a High-Level IF…ELSE Statement ... 17

Assembly Optimization of a High-Level IF…ELSE Statement – Advanced Topic – ... 18

Program Examples ... 19

Appendix A: Control Transfer Instruction Encoding ... 27

Appendix B – AVR Status Register (SREG) ... 30

Appendix C – Control Transfer (Branch) Instructions .. 31

Appendix D – ATmega328P Instruction Set .. 32

4 | P a g e

INSTRUCTION SET ARCHITECTURE (REVIEW)

The Instruction Set Architecture (ISA) of a microprocessor includes
all the registers that are accessible to the programmer. In other
words, registers that can be modified by the instruction set of the
processor. With respect to the AVR CPU illustrated here1, these ISA
registers include the 32 x 8-bit general purpose resisters, status
resister (SREG), the stack pointer (SP), and the program counter
(PC).

Data Transfer instructions are used to load and store data to the
General Purpose Registers, also known as the Register File.
Exceptions are the push and pop instructions which modify the
Stack Pointer. By definition these instructions do not modify the
status register (SREG).

Arithmetic and Logic Instructions plus Bit and Bit-Test Instructions
use the ALU to operate on the data contained in the general
purpose registers. Flags contained in the status register (SREG)
provide important information concerning the results of these
operations. For example, if you are adding two signed numbers
together, you will want to know if the answer is correct. The state
of the overflow flag (OV) bit within SREG gives you the answer to
this question (1 = error, 0 no error).

Control Transfer Instructions allow you to change the contents of the PC either conditionally or unconditionally.
Continuing our example if an error results from adding two signed numbers together we may want to conditionally
(OV = 1) branch to an error handling routine. As the AVR processor fetches and executes instructions it
automatically increments the program counter (PC) so it always points at the next instruction to be executed.

1 Source: ATmega16 Data Sheet http://www.atmel.com/dyn/resources/prod_documents/2466s.pdf page 3 Figure 1-5 “AVR Central Processing Unit ISA Registers”

http://www.atmel.com/dyn/resources/prod_documents/2466s.pdf

5 | P a g e

INSTRUCTION SET (REVIEW)

The Instruction Set of our AVR processor can be functionally divided (or classified) into the
following parts:

 Data Transfer Instructions

 Arithmetic and Logic Instructions

 Bit and Bit-Test Instructions

 Control Transfer (Branch) Instructions

 MCU Control Instructions

6 | P a g e

JUMP INSTRUCTIONS

 There are two basic types of control transfer instructions – Unconditional and Conditional.

 From a programmer’s perspective an unconditional or jump instruction, jumps to the label

specified. For example, jmp loop will unconditionally jump to the label loop in your

program.

 Here are the unconditional control transfer “Jump” instructions of the AVR processor

– Direct jmp, call

– Relative (1) rjmp, rcall

– Indirect ijmp, icall

– Subroutine & Interrupt Return ret, reti

Note:

1. Jump relative to PC + (– 2k-1  2k-1- 1, where k = 12) PC-2048 to PC+2047, within 16 K word

address space of ATmega328P

7 | P a g e

HOW THE DIRECT UNCONDITIONAL CONTROL TRANSFER INSTRUCTIONS JMP AND CALL WORK

 From a computer engineer’s perspective, a direct jump is accomplished by loading the target address into

the program counter (PC). In the example, the target address is equated to label “loop.”

o To provide a more concrete example, assume the label loop corresponds to address 0x0123 in

Flash Program Memory.

o To execute this instruction, the control logic of central procession unit (CPU) loads the 16-bit

Program Counter (PC) register with 0x123.

o Consequently, on the next fetch cycle it is the instruction at location 0x0123 that is fetched and then

executed. Control of the program has been transferred to this address.

11n0000001001001

PC

0x0000

Flash Program Memory

0x3FFF

015

015

kkkkkkkkkkkk00kk

015 34781112

jmp k

call k1

0

8 | P a g e

HOW THE RELATIVE UNCONDITIONAL CONTROL TRANSFER INSTRUCTIONS RJMP AND RCALL WORK

 From a computer engineer’s perspective, a relative jump is accomplished by adding a 12-bit signed offset

to the program counter (PC)2. The result corresponding to the target address. In the example, the target

address is equated to label “loop.”

o To provide a more concrete example, assume the label loop corresponds to address 0x0123 in

Flash Program Memory (the target address).

o An rjmp loop instruction is located at address 0x206. When the rjmp is executed, the PC is

currently fetching what it thinks is the next instruction to be executed at address 0x207.

o To accomplish this jump the relative address (kkkk kkkk kkkk) is equal to 0xF1C (i.e., 0x123 – 0x207).

o Consequently, on the next fetch cycle it is the instruction at location 0x0123 that is fetched and then

executed. Control of the program has been Transferred to this address3.

kkkkkkkkkkkk110n

015 34781112

rjmp k

rcall k1

0

PC +
015

0x0000

Flash Program Memory

0x3FFF

015

2 In the language of Computer Engineering, we are exploiting spatial locality of reference.
3 The instruction at address 0x207 is not executed

9 | P a g e

BRANCH INSTRUCTIONS

 When a conditional or branch instruction is executed one of two things may happen.

1. If the test condition is true then the branch will be taken (see jump instructions).

2. If the test condition is false then nothing happens (see nop instruction).

o This statement is not entirely accurate. Because the program counter always points to

the next instruction to be executed, during the execution state, doing nothing means

fetching the next instruction.

 The “test condition” is a function of one or more SREG flag bits. For example, while the Branch

if equal (breq) or not equal (brne) instructions test only the Z flag; instructions like branch if

less than (brlt) and branch if greater than or equal (brge) test the condition of the Z, N, and

V flag bits.

10 | P a g e

HOW THE RELATIVE CONDITIONAL CONTROL TRANSFER INSTRUCTION BREQ WORKS

 If a relative branch is taken (test condition is true) a 7-bit signed offset is added to the PC. The result

corresponding to the target address. In the example, the target address is equated to label “match.”

o To provide a more concrete example, assume the label nomatch corresponds to address 0x0123 in

Flash Program Memory (the target address).

o A brne nomatch instruction is located at address 0x0112. When the brne instruction is

executed, the PC is currently fetching what it thinks is the next instruction to be executed at address

0x0113.

o To accomplish this jump the relative address (kk kkkk) is equal to 0b01_0000 (i.e., 0x123 – 0x113).

o Consequently, on the next fetch cycle it is the instruction at location 0x0123 that is fetched and then

executed. Control of the program has been Transferred to this address4.

k001kkkk01kk1111

015 34781112

PC +
015

0x0000

Flash Program Memory

0x3FFF

015

4 Because in our example, the test condition is false (Z = 0) the instruction at address 0x113 is not executed.

11 | P a g e

BRANCH INSTRUCTIONS

 All conditional branch instructions may be implemented as brbs s,k

or brbc s,k, where s is the bit number of the SREG flag bit. For example brbs 6, bitset would branch

to label bitset, if the SREG T bit was set.

 To make your code more readable, the AVR assembler adds the following “alias” instructions.

– SREG Flag bit is clear (brFlagc) or set (brFlags) by name (I, T, H, S, V, N, Z, C) or bit (brbc, brbs).

– These SREG flag bits (I, T, H, S, V, N, Z, C) use more descriptive mnemonics.

 Branch if equal (breq) or not equal (brne) test the Z flag.

 Unsigned arithmetic branch if plus (brpl) or minus (brmi) test the N flag, while branch if same or higher

(brsh) or lower (brlo), test the C flag and are equivalent to brcc and brcs respectively.

 Signed 2’s complement arithmetic branch if number is less than zero (brlt) or greater than or equal to

zero (brge) test the S flag

 Skip if …

– Bit (b) in a register is clear (sbrc) or set (sbrs).

– Bit (b) in I/O register is clear (sbic) or set (sbis). Limited to I/O addresses 0-31

Note:

1. All branch instructions are relative to PC + (– 2k-1  2k-1- 1, where k = 7) + 1 PC-64 to PC+63
2. Skip instructions may take 1, 2, or 3 cycles depending if the skip is not taken, and the number of Flash program memory words

in the instruction to be skipped (1 or 2).

12 | P a g e

CONDITIONAL BRANCH ENCODING

 Here is how the brbs, brbc and their alias assembly instructions are encoded.

015 34781112

kssskkkk0nkk1111

breq k brne k

brcs k brcc k brsh kbrlo k

brmi k brpl k

brge kbrlt k

brhs k brhc k

brts k brtc k

brvs k brvc k

brie k brid k

sss brbc s, k

alias

111

brbs s, kSREG

I

110

101

100

011

010

001

000

T

H

S

V

N

Z

C

brbs s, k

brbc s, k1

0

13 | P a g e

A CONDITIONAL CONTROL TRANSFER (BRANCH) SEQUENCE

 A conditional control transfer (branch) sequence is typically comprised of 2 instructions.

1. The first instruction performs some arithmetic or logic operation using the ALU of the processor.

o Examples of this first type of instruction includes: cp, cpc, cpi, tst

o These ALU operations result in SREG flag bits 5 to 0 being set or cleared (i.e., H, S, V, N, Z, C).

o WARNING: The Atmel “Instruction Set Summary” pages provided as part of each quiz and exam

incorrectly classifies compare instructions (cp, cpc, cpi) as “Branch Instructions.” They should

be listed under “Arithmetic and Logical Instructions.” To highlight this inconsistency on Atmel’s part,

the tst instruction is correctly listed under “Arithmetic and Logical Instructions.”

o To allow for multiple branch conditions to be tested, these instructions typically do not modify any of

our 32 general purpose registers. For compare instructions, this is accomplished by a subtraction

without a destination operand.

2. The second instruction is a conditional branch instruction testing one or more SREG flag bits.

14 | P a g e

CONDITIONAL BRANCH INSTRUCTION SUMMARY

 As mentioned in the previous slide, typically a conditional control transfer instruction follows a compare or test
instruction, where some relationship between two registers is being studied. The following table may be used
to quickly find the correct conditional branch instructions for these conditions.

Data Type Test SREG bit Mnemonic Complementary
If(Test){}

SREG bit Mnemonic

Signed 𝑅𝑑 > 𝑅𝑟 𝑅𝑑 > 𝑅𝑟 = 𝑅𝑟 < 𝑅𝑑 BRLT5 𝑅𝑑 ≤ 𝑅𝑟 𝑅𝑑 ≤ 𝑅𝑟 = 𝑅𝑟 ≥ 𝑅𝑑 BRGE5

Signed 𝑅𝑑 ≥ 𝑅𝑟 𝑆 = 0 BRGE 𝑅𝑑 < 𝑅𝑟 𝑆 = 1 BRLT

Signed 𝑅𝑑 = 𝑅𝑟 𝑍 = 1 BREQ 𝑅𝑑 ≠ 𝑅𝑟 𝑍 = 0 BRNE

Signed 𝑅𝑑 ≤ 𝑅𝑟 𝑅𝑑 ≤ 𝑅𝑟 = 𝑅𝑟 ≥ 𝑅𝑑 BRGE5 𝑅𝑑 > 𝑅𝑟 𝑅𝑑 > 𝑅𝑟 = 𝑅𝑟 < 𝑅𝑑 BRLT5

Signed 𝑅𝑑 < 𝑅𝑟 𝑆 = 1 BRLT 𝑅𝑑 ≥ 𝑅𝑟 𝑆 = 0 BRGE

Unsigned 𝑅𝑑 > 𝑅𝑟 𝑅𝑑 > 𝑅𝑟 = 𝑅𝑟 < 𝑅𝑑 BRLO5 𝑅𝑑 ≤ 𝑅𝑟 𝑅𝑑 ≤ 𝑅𝑟 = 𝑅𝑟 ≥ 𝑅𝑑 BRSH5

Unsigned 𝑅𝑑 ≥ 𝑅𝑟 𝐶 = 0 BRSH/BRCC 𝑅𝑑 < 𝑅𝑟 𝐶 = 1 BRLO/BRCS

Unsigned 𝑅𝑑 = 𝑅𝑟 𝑍 = 1 BREQ 𝑅𝑑 ≠ 𝑅𝑟 𝑍 = 0 BRNE

Unsigned 𝑅𝑑 ≤ 𝑅𝑟 𝑅𝑑 ≤ 𝑅𝑟 = 𝑅𝑟 ≥ 𝑅𝑑 BRSH5 𝑅𝑑 > 𝑅𝑟 𝑅𝑑 > 𝑅𝑟 = 𝑅𝑟 < 𝑅𝑑 BRLO5

Unsigned 𝑅𝑑 < 𝑅𝑟 𝐶 = 1 BRLO/BRCS 𝑅𝑑 ≥ 𝑅𝑟 𝐶 = 0 BRSH/BRCC

Simple Carry 𝐶 = 1 BRCS No Carry 𝐶 = 0 BRCC

Simple Negative 𝑁 = 1 BRMI Positive 𝑁 = 0 BRPL

Simple Overflow 𝑉 = 1 BRVS No Overflow 𝑉 = 0 BRVC

Simple Zero 𝑍 = 1 BREQ Not Zero 𝑍 = 0 BRNE

5 Interchange Rd and Rr in the operation before the test, i.e., CP Rd,Rr  CP Rr,Rd

15 | P a g e

A Conditional Control Transfer (Branch) Example

 Here is how a high-level language decision diamond would be implemented in assembly.

; directions (see note)

.EQU south=0b00 ; most significant 6 bits zero

.EQU east=0b01

.EQU west=0b10

.EQU north=0b11

cpi r16,north ; step 1: Z flag set if r16 = 0b00000011

breq yes ; step 2: branch if Z flag is set

Note: These equates are included in testbench.inc

r16=north

No

Yes

16 | P a g e

IMPLEMENTING A HIGH-LEVEL IF STATEMENT

 A high-level if statement is typically comprised of…

1. Conditional control transfer sequence (last slide) where the

complement (not) of the high-level conditional expression is

implemented.

2. High-level procedural block of code is converted to assembly.

 C++ High-level IF Expression

if (r16 == north) {

block of code to be executed if answer is yes.

}

 Assembly Version

 cpi r16,north ; Is bear facing north?

 brne no ; branch if Z flag is clear (not equal)

 block of code to be executed if answer is yes.

no:

dir=north

Yes

No

Block of Code

17 | P a g e

IMPLEMENTING A HIGH-LEVEL IF…ELSE STATEMENT

 A high-level if…else statement is typically comprised of…

1. Conditional control transfer sequence where the complement (not)

of the high-level conditional expression is implemented.

2. High-level procedural block of code for yes (true) condition.

3. Unconditional jump over the no (false) block of code.

4. High-level procedural block of code for no (false) condition.

 C++ High-level if…else Expression

if (r16 == north) {

block of code to be executed if answer is yes (true).

}

else {

block of code to be executed if answer is no (false).

}

 Assembly Version

 cpi r16,north ; Is bear facing north?

 brne else ; branch if Z flag is clear (not equal)

 block of code to be executed if answer is yes.

rjmp end_if

else:

 block of code to be executed if answer is no.

end_if:

dir=north

Yes

No

Block of Code

Block of Code

18 | P a g e

ASSEMBLY OPTIMIZATION OF A HIGH-LEVEL IF…ELSE STATEMENT – ADVANCED TOPIC –

 If the if-else blocks of code can be done in a single line of assembly then

the program flow is modified to guess the most likely outcome of the

test.

o This is possible if the value of a variable (for example the segments

of a 7-segment display to be turned on) is the only thing done in

each block.

o This optimized program flow will always execute as fast as the

normal if..else program flow (if the guess if wrong) and faster if the guess is correct.

o This implementation is also more compact and often easier to understand.

 Assembly Version

; 7-segment display (see note)

.EQU seg_a=0

.EQU seg_b=1

.EQU seg_c=2

…

 ldi r17,1<<seg_a ; guess bear is facing north

 cpi r16,north ; Is bear facing north?

 breq done ; branch if Z flag is clear (not equal)

 block of code to be executed if guess was wrong.

done:

Note: These equates are included in spi_shield.inc

dir=north

Yes

No
Block of Code

Guess North

19 | P a g e

PROGRAM EXAMPLES

Group A or B – Pseudocode example

 Objective

Assign the least significant 4 switches on the CSULB shield to group A and the most significant to group B.

Based on user input, display A or B based on which group has the higher value. In the event of a tie display E

for equal. For this programming problem assume that people choose A 50% of the time, B 40% of the time,

and set the switches equal to each other 10% of the time.

 Pseudocode

o Using the ReadSwitches subroutine or reading the I/O ports directly, input group A into register A

(.DEF regA = r16) and group B into register B (.DEF regB = r17)

o Preload the output register (.DEF answer = r18) with the letter A  Guess

o If (A>B) then go to display answer.

o Preload the output register with the letter B  Guess

o If (B>A) then go to display answer.

o Set answer to E and display answer.

 Seven segment display values.

 dpgfedcba

A = 01110111 .SET groupA = 0x77 alternate: .EQU

b = 01111100 .SET groupB = 0x7C

E = 01111001 .SET equal = 0x79

 Programming work around by interchanging Rd and Rr.

 Interchange of A and B

Solution Test Mnemonic Test Mnemonic

Guess A > B BRLO1 B < A BRLO/BRCS Unsigned

http://www.avr-asm-tutorial.net/avr_en/beginner/DIREXP.html

20 | P a g e

Direction Finder – Two Program Solutions

 Objective

Design a digital circuit with two (2) switches that will turn on one of the rooms 4 LED segments

indicating the direction you want your bear to walk

 Direction to Segment Conversion Table

 Programmer's Reference Card

21 | P a g e

Direction Finder – Truth Table Implementation

 lds r16, dir // move direction bits into a working register

 // facing east (segment b)

 bst r16,0 // store direction bit 0 into T

 bld var_B,0 // load r16 bit 0 from T

 bst r16,1 // store direction bit 1 into T

 bld var_A,0 // load r17 bit 0 from T

 com var_A // B = /A * B

 and var_B, var_A

 bst var_B,0 // store r16 bit 0 into T

 bld spi7SEG, seg_b // load r8 bit 1 from T

Implementation of Boolean expressions for segments a, f, and g (circuit

schematic)

22 | P a g e

Direction Finder – Using Conditional Expressions

 lds r16, dir

 ldi r17, 1<<seg_g ; guess bear is facing south

 cpi r16,south ; if bear is facing south then we are done

 breq done

 ldi r17, 1<<seg_f ; guess bear is facing west

 cpi r16,west ; if bear is facing west then we are done

 breq done

 ldi r17, 1<<seg_b ; guess bear is facing east

 cpi r16,east ; if bear is facing east then we are done

 breq done

 ldi r17, 1<<seg_a ; bear is facing north

done:

 mov spi7SEG, r17 ; answer to 7-segment register

 call WriteDisplay

23 | P a g e

Pseudo-Instructions TurnLeft, TurnRight, and TurnAround

Using switches 3 and 2, located on Port C pins 3 and 2 respectively, input an action you want the bear to take. The

three possible actions are do nothing, turnLeft, turnRight, and turnAround. Write a subroutine named WhichWay

to take the correct action as defined by the following table.

Table 5.2 Truth Table of Turn Indicators

24 | P a g e

; --------------------------

; --- Which Way Do I Go? ---

 call ReadSwitches // input port C pins (0x06) into register r7

 bst switch, 3 // store switch bit 3 into T

 brts cond_1X // branch if T is set

 bst switch, 2 // store switch bit 2 into T

 brts cond_01 // branch if T is set

cond_00:

 rjmp whichEnd

cond_01:

 rcall TurnRight

 rjmp whichEnd

cond_1X:

 // branch based on the state of switch bit 2

 :

cond_10:

 :

cond_11:

 :

whichEnd:

Warning: The above code is for illustrative purposes only and would typically be found in the main looping section

of code not in a subroutine. Do not use this code to implement your lab.

25 | P a g e

InForest and Implementation of IF…ELSE Expression

 The inForest subroutine tells us if the bear is in the forest (i.e., has found his way out of the

maze).

 The rows and columns of the maze are numbered from 0 to 19 (13h) starting in the upper left hand

corner.

 When the bear has found his way out of the maze he is in row minus one (-1). The subroutine is to

return true (r25:r24 != 0) if the bear is in the forest and false (r25:r24 == 0) otherwise.

 The register pair r25:r24 is where C++ looks for return values for the BYTE data type.

row = -1

r25:r24 ≠ 0 r25:24 = 0

yes no

return

inForest

26 | P a g e

InForest and Implementation of IF…ELSE Expression – Continued –

; --------------------------

; ------- In Forest --------

; Called from whichWay subroutine

; Input: row Outputs: C++ return register (r24)

; No others registers or flags are modified by this subroutine

inForest:

 push reg_F // push any flags or registers modified

 in reg_F,SREG

 push r16

 lds r16,row

 test if bear is in the forest

endForest:

 clr r25 // zero extend

 pop r16 // pop any flags or registers placed on the stack

 out SREG,reg_F

 pop reg_F

 ret

27 | P a g e

APPENDIX A: CONTROL TRANSFER INSTRUCTION ENCODING

Direct

 All control transfer addressing modes modify the program counter.

11nkkkkk010k1001

PC

0x0000

Flash Program Memory

0x3FFF

015

015

kkkkkkkkkkkkkkkk

ATmega328P

ATmega Family

color key

16 K words

4 M words

015 34781112

jmp k

call k1

0

28 | P a g e

CONTROL TRANSFER INSTRUCTION ENCODING – Indirect

n/a to 328P

ijmp

eijmp

000

001

011

010

ret

icall

reti

eicall

100

101

111

110

100n000n010n1001

n/a to 328P

notes

PC

0x0000

Flash Program Memory

0x3FFF

015

015

015 34781112

Z - Register

015

see illustration

see illustration

n/a to 328P

PC M[SP + 1]

PC M[SP + 1]

opcodennn

29 | P a g e

CONTROL TRANSFER INSTRUCTION ENCODING – Relative

CONDITIONAL

UNCONDITIONAL

kkkkkkkkkkkk110n

015 34781112

kssskkkk0nkk1111

breq k brne k

brcs k brcc k brsh kbrlo k

brmi k brpl k

brge kbrlt k

brhs k brhc k

brts k brtc k

brvs k brvc k

brie k brid k

sss brbc s, k

alias

111

brbs s, kSREG

I

110

101

100

011

010

001

000

T

H

S

V

N

Z

C

1. See Register Direct Addressing for encoding of skip register bit set/clear instructions sbrc and sbrs.

2. See I/O Direct Addressing for encoding of skip I/O register bit set/clear instructions sbis and sbic.

015 34781112

rjmp k

rcall k1

0

brbs s, k

brbc s, k1

0

PC +
015

0x0000

Flash Program Memory

0x3FFF

015

NOTES

30 | P a g e

APPENDIX B – AVR STATUS REGISTER6 (SREG)

Non ALU

• Bit 7 – I: Global Interrupt Enable
The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual interrupt enable control is then performed in separate control
registers. The I-bit is cleared by hardware after an interrupt has occurred, and is set by the reti instruction. The I-bit can also be set and cleared by the

application with the sei and cli instructions.
• Bit 6 – T: Bit Copy Storage

The Bit Copy instructions bld (Bit LoaD) and bst (Bit STore) use the T-bit as source or destination. A bit from a register can be copied into T (Rb T) by

the bst instruction, and a bit in T can be copied into a bit in a register (T  Rb) by the bld instruction.

ALU

Signed two’s complement arithmetic

• Bit 4 – S: Sign Bit, S = N ⊕ V

Bit set if answer is negative with no errors or if both numbers were negative and error occurred, zero otherwise.
• Bit 3 – V: Two’s Complement Overflow Flag

Bit set if error occurred as the result of an arithmetic operation, zero otherwise.
• Bit 2 – N: Negative Flag

Bit set if result is negative, zero otherwise.

Unsigned arithmetic

• Bit 5 – H: Half Carry Flag
Carry from least significant nibble to most significant nibble. Half Carry is useful in BCD arithmetic.

• Bit 0 – C: Carry Flag
The Carry Flag C indicates a carry in an arithmetic operation. Bit set if error occurred as the result of an unsigned arithmetic operation, zero otherwise.

Arithmetic and Logical

• Bit 1 – Z: Zero Flag
The Zero Flag Z indicates a zero result in an arithmetic or logic operation.

6 Source: ATmega328P Data Sheet http://www.atmel.com/dyn/resources/prod_documents/8161S.pdf Section 6.3 Status Register

http://www.atmel.com/dyn/resources/prod_documents/8161S.pdf

31 | P a g e

APPENDIX C – CONTROL TRANSFER (BRANCH) INSTRUCTIONS

Compare and Test cp, cpc, cpi, tst, bst

Unconditional

o Relative (1) rjmp, rcall

o Direct jmp, call

o Indirect ijmp, icall

o Subr. & Inter. Return ret, reti

Conditional

o Branch if (2) …

– SREG Flag bit is clear (brFlagc) or set (brFlags) by name (I, T, H, S, V, N, Z, C) or bit (brbc, brbs).

– These SREG flag bits (I, T, H, S, V, N, Z, C) use more descriptive mnemonics.

 Branch if equal (breq) or not equal (brne) test the Z flag.

 Unsigned arithmetic branch if plus (brpl) or minus (brmi) test the N flag, while branch if same or higher (brsh) or

lower (brlo), test the C flag and are equivalent to brcc and brcs respectively.

 Signed 2’s complement arithmetic branch if number is less than zero (brlt) or greater than or equal to zero (brge)

test the S flag

o Skip if …

– Bit (b) in a register is clear (sbrc) or set (sbrs).

– Bit (b) in I/O register is clear (sbic) or set (sbis). Limited to I/O addresses 0-31

Note:

1. Branch relative to PC + (– 2k-1  2k-1- 1, where k = 12) + 1 PC-2047 to PC+2048, within 16 K word address space of ATmega328P

2. All branch relative to PC + (– 2k-1  2k-1- 1, where k = 7) + 1 PC-64 to PC+63, within 16 K word address space of ATmega328P

32 | P a g e

APPENDIX D – ATMEGA328P INSTRUCTION SET7

7 Source: ATmega328P Data Sheet http://www.atmel.com/dyn/resources/prod_documents/8161S.pdf Chapter 31 Instruction Set Summary

http://www.atmel.com/dyn/resources/prod_documents/8161S.pdf

33 | P a g e

34 | P a g e

