
1 | P a g e

2 | P a g e

Introduction to AVR Assembly Language Programming II – ALU and SREG

Reading

The AVR Microcontroller and Embedded Systems using Assembly and C)
by Muhammad Ali Mazidi, Sarmad Naimi, and Sepehr Naimi

Chapter 2: AVR Architecture and Assembly Language Programming

Section 2.4: AVR Status Register

Chapter 5: Arithmetic, Logic Instructions, and Programs

Section 5.1: Arithmetic Instructions

Section 5.2: Signed Number Concepts and Arithmetic Operations

Chapter 6: AVR Advanced Assembly Language Programming

Section 6.5: Bit Addressability

Complementary Reading

The following source(s) cover the same material as Chapter 2 of your textbook.
They are provided to you in case you want a different viewpoint.

ATMEL document doc8161 "8-bit AVR Microcontroller with 4/8/16/32K Bytes In-System

Programmable Flash" Section 6.3.1: SREG - AVR Status Register

http://www.pearson.ch/HigherEducation/ElectricalEngineering/MicroprocessorSystemsand/1471/9780138003319/AVR-Microcontroller-and-Embedded.aspx
http://www.atmel.com/dyn/resources/prod_documents/doc8161.pdf

3 | P a g e

Contents

Instruction Set Architecture (Review) .. 4

ALU – Two Operand Instructions .. 5

ALU – Single Operand Instructions ... 6

ALU Program Example .. 7

SREG – AVR Status Register .. 8

The SREG Overflow Bit .. 10

Computing ALU Status Register Bits – Addition – ... 11

Computing ALU Status Register Bits – Subtraction – .. 12

4 | P a g e

INSTRUCTION SET ARCHITECTURE (REVIEW)

Figure 1-5 AVR Central Processing Unit ISA Registers1

1 Source: ATmega16 Data Sheet http://www.atmel.com/dyn/resources/prod_documents/2466s.pdf page 3

http://www.atmel.com/dyn/resources/prod_documents/2466s.pdf%20page%203

5 | P a g e

ALU – TWO OPERAND INSTRUCTIONS2

 All math (+, −,×,÷) and logic (and, or, xor) instructions work with the Register File (register to register).

 Most math and logic instructions have two operands Rd, Rr with register Rd initially containing one of the values

to be operated on and ultimately the result of the operation. The initial contents of Rd are therefore destroyed

by this operation.

add Rd, Rr ; Rd = Rd + Rr, You may use any register (R0 – R31).

 Some math and logic operations replace the source register Rr with a constant K. Typically denoted by an “i”

postfix.

subi Rd, K ; Rd = Rd - K, You may only registers (R16 – R31).

add, adc, adiw Adds two registers and the contents of the C Flag (adc only) and places the result in the

destination register Rd.

sub, sbc, subi, sbci, sbiw Subtracts the source register Rs or constant K from the

source/destination register Rr and subtracts with the C Flag (sbc and sbci only) and places the

result in the source/destination register Rd. Think of the C Flag as the Borrow bit within this

context.

mul, muls, mulsu, fmul, fmuls, fmulsu The multiplicand Rd and the multiplier Rr are two

registers containing binary or fractional (f-prefix) encoded numbers. Both numbers may be unsigned (mul, fmul),

or signed (muls, fmuls). Finally, the multiplicand Rd may be signed with the multiplier Rr unsigned (mulsu, fmulsu).

The 16-bit unsigned product is placed in R1 (high byte) and R0 (low byte). R1:R0  Rd x Rs

and, andi, or, ori, eor Performs the logical AND, OR, and XOR operations between the contents of

register Rd and register Rr or constant K.

2 Source: Atmel 8-bit AVR Instruction Set Document 0856

6 | P a g e

ALU – SINGLE OPERAND INSTRUCTIONS3

 All single operand math and logic instructions only need a single register and usually

the mnemonic alone is enough to tell you what it does.

Mnemonic Operation Description

com Rd  0xFF - Rd One’s complement.

neg Rd  0x00 – Rd Two’s complement.

inc Rd  Rd + 1 Increment4

dec Rd  Rd – 1 Decrement4

clr Clear

ser Rd  0xFF Set Register, Limited to r16 – r31

tst Test for Zero or Minus

3 Source: Atmel 8-bit AVR Instruction Set Document 0856
4 The C Flag in SREG is not affected by the operation.

7 | P a g e

ALU PROGRAM EXAMPLE

Write an Assembly program to implement the polynomial expression

B = A2 + A + 41

.INCLUDE <m328pdef.inc>

.DSEG

A: .BYTE 1 // 8 bit input

B: .BYTE 2 // 16 bit output

.CSEG

 ; load

lds r16, A ; r16 with the value of A

clr r17 ; r17 with 0

ldi r18, 41 ; r18 with 41

 ; do something

mul r16, r16 ; r1:r0 = A^2

add r0, r16

adc r1, r17 ; r1:r0 = A^2 + A

add r0, r18

adc r1, r17 ; r1:r0 = A^2 + A + 41

 ; store

sts B, r0 ; answer byte ordering

sts B+1, r1 ; is little endian

8 | P a g e

SREG – AVR STATUS REGISTER

9 | P a g e

SREG – AVR Status Register5

Non ALU

• Bit 7 – I: Global Interrupt Enable
The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual interrupt enable control is then performed in separate control

registers. The I-bit is cleared by hardware after an interrupt has occurred, and is set by the reti instruction. The I-bit can also be set and cleared by the

application with the sei and cli instructions.
• Bit 6 – T: Bit Copy Storage

The Bit Copy instructions bld (Bit LoaD) and bst (Bit STore) use the T-bit as source or destination. A bit from a register can be copied into T (Rb T) by

the bst instruction, and a bit in T can be copied into a bit in a register (T  Rb) by the bld instruction.

ALU

Signed two’s complement arithmetic

• Bit 4 – S: Sign Bit, S = N ⊕ V

Bit set if answer is negative with no errors or if both numbers were negative and error occurred, zero otherwise.
• Bit 3 – V: Two’s Complement Overflow Flag

Bit set if error occurred as the result of an arithmetic operation, zero otherwise.
• Bit 2 – N: Negative Flag

Bit set if result is negative, zero otherwise.

Unsigned arithmetic

• Bit 5 – H: Half Carry Flag
Carry from least significant nibble to most significant nibble. Half Carry is useful in BCD arithmetic.

• Bit 0 – C: Carry Flag
The Carry Flag C indicates a carry in an arithmetic operation. Bit set if error occurred as the result of an unsigned arithmetic operation, zero otherwise.

Arithmetic and Logical

• Bit 1 – Z: Zero Flag
The Zero Flag Z indicates a zero result in an arithmetic or logic operation.

5 Source: ATmega328P Data Sheet Document 8161 Section 6.3 Status Register

10 | P a g e

THE SREG OVERFLOW BIT
 The overflow bit indicates if there was an error caused by the addition or two n-bit 2’s complement numbers, where the n-1 “sign bit” is 1 if

the number is negative and 0 if the number is positive. In other words, the sum is outside the range -2n-1 to 2n-1-1.

 Another way to recognize an error in addition is to observe that if you add two numbers of the same sign (positive + positive = negative or

negative + negative = positive) then an error has occurred.

 An overflow condition can never result from the addition of two n-bit numbers of opposite sign (positive _ negative or negative + positive).

 Here are examples of all four cases for two 8 bit signed numbers.

Case A B C D

 0b6b5b4b3b2b1b0 0b6b5b4b3b2b1b0 1b6b5b4b3b2b1b0 1b6b5b4b3b2b1b0

 0b6b5b4b3b2b1b0 1b6b5b4b3b2b1b0 0b6b5b4b3b2b1b0 1b6b5b4b3b2b1b0

The variable “bn” simply indicates some binary value and may be 1 or 0. The index of the carry bit (Cn) is equal to the carry into bit bn. For

example, the carry into b0 is C0 and the carry out of an 8-bit register b7 is C8.

1. Looking first at Case A, a carry cannot be generated out of the sign bit (Cn+1=0); therefore, if a carry enters the sign bit (Cn=1), the sum will

be negative and the answer is wrong.

2. For Case B and Case C no error can occur. Observe that in both case B and C because the numbers are contained in an n-bit (n = 8) register,

we know they are in the range -2n-1 to 2n-1-1 (-128 to 127 for our two 8-bit numbers). Because one number is positive and the other

negative, we further know, the answer must be correct.

3. For Case D, a carry will always be generated out of the sign bit Cn+1=1 (ex. C8 = 1) with the sign bit itself set to 0; therefore, if a carry does

not enter the sign bit Cn=0 (C7=1) the sum will be positive and the answer will be wrong.

 Here is what we have discovered translated into a truth-table.
Cn+1 Cn V Case
0 0 0 may occur for cases A, B, C without error
0 1 1 A
1 0 1 D
1 1 0 may occur for cases B, C, D without error

 Solving for the overflow bit (V) we have, nn CCV  1

11 | P a g e

COMPUTING ALU STATUS REGISTER BITS – ADDITION –

0 1 0 0 1 1 0 0

1 0 1 1 1 0 1 0

0 0 0 0 0 1 1 0

11 1
c0c4c7c8

S = N V =

V = c8 c7 =

b0b1b2b3b4b5b6b7

N = b7 =

H = c4 =

C = c8 =

Z =

Unsigned

Signed

Arithmetic and Logical

1

1

0

0

0

0

76

+186

06

76

-70

06J

L

12 | P a g e

COMPUTING ALU STATUS REGISTER BITS – SUBTRACTION –

 For subtract instructions (sub, subi, sbc, sbci, sbiw), including compare instructions (cp, cpc, cpi, cpse), the carry bit is

equal to 8CC  and 4CH 

 Assume the subtract instruction sub r16, r17 has just been run by the ATmega328P microcontroller. Complete the table provided.

The “difference” column should reflect the contents of register r16 after the subtraction operation (leave the answer in 2’s complement form)
and not the actual difference (i.e., if done using your calculator).

 signed unsigned

r16 r17 difference relationship relationship H S V N Z C

3B 3B 00 + = + = 0 0 0 0 1 0

3B 15 26 + > + > 0 0 0 0 0 0

15 3B

F9 F6

F6 F9

15 F6

F6 15

68 A5

A5 68

 Use AVR Studio simulation software to check your answers.

