AVR

8-bit Microcontrollers

AVR32

32-bit Microcontrollers and Application Processors

7 Introduction to AVR Assembly Language Progranmming I
February 2009 ‘ I“El‘E

1|Page

Introduction to AVR Assembly Language Programming Il — ALU and SREG

Reading

The AVR Microcontroller and Embedded Systems using Assembly and C)
by Muhammad Ali Mazidi, Sarmad Naimi, and Sepehr Naimi

Chapter 2: AVR Architecture and Assembly Language Programming
Section 2.4: AVR Status Register

Chapter 5: Arithmetic, Logic Instructions, and Programs

Section 5.1: Arithmetic Instructions

Section 5.2: Signed Number Concepts and Arithmetic Operations
Chapter 6: AVR Advanced Assembly Language Programming

Section 6.5: Bit Addressability

Complementary Reading

The following source(s) cover the same material as Chapter 2 of your textbook.
They are provided to you in case you want a different viewpoint.

ATMEL document doc8161 "8-bit AVR Microcontroller with 4/8/16/32K Bytes In-System
Programmable Flash" Section 6.3.1: SREG - AVR Status Register

the avr
microcentroller
and embedded
systems
using assembly and ¢

2|Page

http://www.pearson.ch/HigherEducation/ElectricalEngineering/MicroprocessorSystemsand/1471/9780138003319/AVR-Microcontroller-and-Embedded.aspx
http://www.atmel.com/dyn/resources/prod_documents/doc8161.pdf

Contents

INSTrUCTION SET AFCHITECTUIE (REVIEW) ..euiiiiiiiieiiiieeiee sttt s e et e sttt e ettt e st e e e tae e sateeesaeesateaasseesateeasseesateasseesaseasseesaseasseesaseeasseeasseensseesnseansseesaseansseesaseensseesaseensseesnseennses 4
ALU — TWO OPEIANG INSTIUCTIONSeeitiiitieeieeette ettt et ettt e sttt et e e st e e e bt e s bt e e beesabe e ebeesabeeeabeeeabeeeaseeeabe e e aseeeabe e e aseeeabe e e ae e e s et e eab e e bt e e eabeeseeesmbe e st e esabeeabeeesnbeenneeesnneenntes 5
F YO [T=d Tl @ o Y=Y =Y Vo L1y o UL o3 TSRS 6
F YO oY= (=Y o ol 5T L a] o] [USRS 7
SREG = AVR SEatUS RO IS N e e e e s e s s s e s s s s s s e s s sssssssssssssssssssnsssssssesesssnsnsssesssesssnsnsnensnsnensnsnsnsns 8
THE SREG OVEIFIOW Bil. . .eeeeiiiiiieeiee ettt ettt ettt ettt e s bt e e bt e s bt e e bt e e shte e bt e e sh b e e ebe e e sa b e e st e e sas e e st e e sa s e e eae e e sa b e e eae e e sab e e se e e sabeeeaseesab e e easeesabeeeabeesabeesabeesabeesaseesabeenaneenn 10
Computing ALU Status REISLEr Bits — AQGITION —....c..eiiiiiiieeee ettt ettt s bt e e bt e e s a bt e s bt e e shb e e bt e e sat e e bt e e sae e e bt e e sabeesateesabe e st e e sabeennseesabeesnteesaneenntes 11
Computing ALU Status ReISter Bits — SUDTIACTION —...c..eiiiiiii ettt ettt e bt e s hb e e s at e e s ab e e eae e e sab e e sae e e s abeesateesabeeanteesabeesnseesabeesnteesaseennrs 12

3|Page

INSTRUCTION SET ARCHITECTURE (REVIEW)

Figure 1-5 AVR Central Processing Unit ISA Registers?

1 Source: ATmegal6 Data Sheet http://www.atmel.com/dyn/resources/prod _documents/2466s.pdf page 3

£ -
PROGRAM STACK N
COUNTER POINTER
' PROGRAM ™
'| FLASH n SRAM —
.
i INSTRUCTION GENERAL
REGISTER | [1sl PURPOSE
REGISTERS |«
. - X
INSTRUCTION . -
DECODER
I
CONTROL |
LINES ALU |
>
: ¥
: STATUS '
E AVR CPU T

4|Page

http://www.atmel.com/dyn/resources/prod_documents/2466s.pdf%20page%203

ALU — TWO OPERAND INSTRUCTIONS?

e All math (+, —,%X,+) and logic (and, or, xor) instructions work with the Register File (register to register).

e Most math and logic instructions have two operands Rd, Rr with register Rd initially containing one of the values
to be operated on and ultimately the result of the operation. The initial contents of Rd are therefore destroyed
by this operation.

add Rd, Rr ; Rd = Rd + Rr, You may use any register (RO - R31).
e Some math and logic operations replace the source register Rr with a constant K. Typically denoted by an “i”
postfix.
subi Rd, K ; Rd = Rd - K, You may only registers (R1l6 - R31).
add, adc, Adds two registers and the contents of the C Flag (adc only) and places the result in the
destination register Rd.
sub, sbc, subi, sbci, Subtracts the source register Rs or constant K from the
source/destination register Rr and subtracts with the C Flag (sbc and sbci only) and places the
result in the source/destination register Rd. Think of the C Flag as the Borrow bit within this
context.
mul, The multiplicand Rd and the multiplier Rr are two

registers containing binary or fractional (f-prefix) encoded numbers. Both numbers may be unsigned (mul, fmul),
or signed (muls, fmuls). Finally, the multiplicand Rd may be signed with the multiplier Rr unsigned (mulsu, fmulsu).
The 16-bit unsigned product is placed in R1 (high byte) and RO (low byte). R1:R0 €< Rd x Rs

and, andi, or, ori, eor Performs the logical AND, OR, and XOR operations between the contents of
register Rd and register Rr or constant K.

2 Source: Atmel 8-bit AVR Instruction Set Document 0856
5|Page

ALU — SINGLE OPERAND INSTRUCTIONS3

e All single operand math and logic instructions only need a single register and usually
the mnemonic alone is enough to tell you what it does.

Mnemonic Operation Description

com Rd € OxFF - Rd One’s complement.

neg Rd € 0x00 - Rd Two’s complement.

inc Rd € Rd + 1 Increment*

dec Rd € Rd - 1 Decrement*

clr Rd <« Rd®Rd Clear

ser Rd € OxFF Set Register, Limited to r16 —r31
tst Rd « RdeRd Test for Zero or Minus

3 Source: Atmel 8-bit AVR Instruction Set Document 0856
4 The C Flag in SREG is not affected by the operation.

6|Page

Write an Assembly program to implement the polynomial expression

B=A%?+A+41

.INCLUDE <m328pdef.inc>

.DSEG
A
B:

.CSEG

1lds
clr

1di

mul
add
adc
add

adc

sts

sts

.BYTE

.BYTE

rlo,
rl7
rls§,

rlo,
ro,
rl,
r0,

rl,

A

41

rlé6
rlé6
rl7
rl8
rl7

B, r0

B+1,

rl

1
2

.
r

ALU PROGRAM EXAMPLE

// 8 bit input
// 16 bit output

.
4

load

rl6 with the value of A

.
4

.
4

.
4

rl7 with 0O
rl8 with 41
do something

rl:r0 = A2

rl:r0 = A2 + A

rl:r0 A2 + A + 41
store
answer byte ordering

is little endian

7|Page

SREG — AVR STATUS REGISTER

8|Page

SREG — AVR Status Register?

Bit 7 6 5 4 3 2 1 0

0x3F (0x5F) I | T H S \") N Z C I SREG
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Non ALU

e Bit 7 —I: Global Interrupt Enable
The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual interrupt enable control is then performed in separate control
registers. The I-bit is cleared by hardware after an interrupt has occurred, and is set by the reti instruction. The I-bit can also be set and cleared by the
application with the sei and c11i instructions.

e Bit 6 —T: Bit Copy Storage
The Bit Copy instructions b1ld (Bit LoaD) and bst (Bit STore) use the T-bit as source or destination. A bit from a register can be copied into T (R, 2 T) by
the bst instruction, and a bit in T can be copied into a bit in a register (T = Rp) by the b1d instruction.

ALU

Signed two’s complement arithmetic

e Bit4-S:SignBit,S=NP Vv

Bit set if answer is negative with no errors or if both numbers were negative and error occurred, zero otherwise.
e Bit3-V: Two’s Complement Overflow Flag

Bit set if error occurred as the result of an arithmetic operation, zero otherwise.
e Bit 2 — N: Negative Flag

Bit set if result is negative, zero otherwise.

Unsigned arithmetic

e Bit 5—H: Half Carry Flag
Carry from least significant nibble to most significant nibble. Half Carry is useful in BCD arithmetic.
e Bit0-C: Carry Flag
The Carry Flag C indicates a carry in an arithmetic operation. Bit set if error occurred as the result of an unsigned arithmetic operation, zero otherwise.

Arithmetic and Logical

e Bit1-2:Zero Flag
The Zero Flag Z indicates a zero result in an arithmetic or logic operation.

5> Source: ATmega328P Data Sheet Document 8161 Section 6.3 Status Register
9|Page

THE SREG OVERFLOW BIT

@ The overflow bit indicates if there was an error caused by the addition or two n-bit 2’s complement numbers, where the n-1 “sign bit” is 1 if
the number is negative and 0 if the number is positive. In other words, the sum is outside the range -2"* to 2"1-1.

@ Another way to recognize an error in addition is to observe that if you add two numbers of the same sign (positive + positive = negative or
negative + negative = positive) then an error has occurred.

@ Anoverflow condition can never result from the addition of two n-bit numbers of opposite sign (positive _ negative or negative + positive).

@ Here are examples of all four cases for two 8 bit sighed numbers.
Case A B C D
Obebsbsbsbabibg Obebsbibsbabibg 1bebsbsbsbabibg 1bebsbsibsbabibo
Obebsbsbsbobibg 1bsbsbsbsbobibg Obesbsbsbsbobibo 1bsbsbsbsbobibg

The variable “b,” simply indicates some binary value and may be 1 or 0. The index of the carry bit (C.) is equal to the carry into bit b,. For
example, the carry into bo is Co and the carry out of an 8-bit register by is Cs.

1. Looking first at Case A, a carry cannot be generated out of the sign bit (C,.1=0); therefore, if a carry enters the sign bit (C,=1), the sum will
be negative and the answer is wrong.

2. For Case B and Case C no error can occur. Observe that in both case B and C because the numbers are contained in an n-bit (n = 8) register,
we know they are in the range -2"*! to 2™-1 (-128 to 127 for our two 8-bit numbers). Because one number is positive and the other
negative, we further know, the answer must be correct.

3. For Case D, a carry will always be generated out of the sign bit Cn.1=1 (ex. Cg = 1) with the sign bit itself set to 0; therefore, if a carry does
not enter the sign bit C,=0 (C;=1) the sum will be positive and the answer will be wrong.

@ Here is what we have discovered translated into a truth-table.

Cns1 Cn \Y Case

0 0 0 may occur for cases A, B, C without error
0 1 1 A

1 0 1 D

1 1 0 may occur for cases B, C, D without error

@ Solving for the overflow bit (V) we have, V =C_, ®C_

n+l

10| Page

COMPUTING ALU STATUS REGISTER BITS — ADDITION —

4

Cg Cy C Co

| Y I I 2
b7bebsbs bsbabibg
0100 1100
1011 1010

0000 0110

Unsigned
76 H=c4,=
+186 C=cg=
060
Signed
76 N = b7 - 6
-70 V=cgpcy; =10
06© S=NovV= |0

Arithmetic and Logical

2= [

11 |Page

COMPUTING ALU STATUS REGISTER BITS — SUBTRACTION —

Bit 7 6 5 4 3 2 1 0
0x3F (0x5F) | [T | | Z | c | srec
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 Q 0 0 0

@ For subtract instructions (sub, subi, sbc, sbci, sbiw), including compare instructions (cp, cpc, cpi, cpse), the carry bitis
equalto C=C; and H=C,

@ Assume the subtract instruction sub rl6, rl17 has justbeen run bythe ATmega328P microcontroller. Complete the table provided.
The “difference” column should reflect the contents of register r16 after the subtraction operation (leave the answer in 2’'s complement form)
and not the actual difference (i.e., if done using your calculator).

signed unsigned
rl6 |rl7 | difference | relationship | relationship | H S V N [Z |C
3B [3B |00 +=+ = 0 0 0 O |1 |0
3B |15 |26 +>+ > 0 0 0 O |0 |O
15 | 3B
F9 | F6
F6 | F9
15 |F6
F6 |15
68 | A5
A5 |68

@ Use AVR Studio simulation software to check your answers.

12| Page

