
1 | P a g e  

EE 346 Microprocessor Principles and Applications 

An Introduction to Microcontrollers, Assembly Language, and Embedded Systems 

 

  



2 | P a g e  

READING 

The AVR Microcontroller and Embedded Systems using Assembly and C)  
by Muhammad Ali Mazidi, Sarmad Naimi, and Sepehr Naimi 

Chapter 0: Introduction to Computing 

Section 0.3: Semiconductor Memory (except DRAM) 

Section 0.4: CPU Architecture 

Chapter 1: The AVR Microcontroller: History and Features 

Section 1.2: Overview of the AVR Family 

Chapter 2: AVR Architecture and Assembly Language Programming 

SECTION 2.1: THE GENERAL PURPOSE REGISTERS IN THE AVR 

SECTION 2.2: THE AVR DATA MEMORY 

SECTION 2.8: THE PROGRAM COUNTER AND PROGRAM ROM SPACE IN THE AVR 

SECTION 2.9:  RISC ARCHITECTURE IN THE AVR 

SECTION 2.10: VIEWING REGISTERS AND MEMORY WITH AVR STUDIO IDE  

CHAPTER 3: BRANCH CALL AND TIME DELAY LOOP 

SECTION 3.3: AVR TIME DELAY AND INSTRUCTION PIPELINE 

 

  

http://www.pearsonhighered.com/educator/product/AVR-Microcontroller-and-Embedded-Systems-Using-Assembly-and-C/9780138003319.page


3 | P a g e  

CONTENTS 
What is a Flip-Flop and a Register ........................................................................................................................................................................................................ 4 

ATmega328P Block Diagram ................................................................................................................................................................................................................. 5 

The AVR Engine ..................................................................................................................................................................................................................................... 6 

Instruction Set Architecture ................................................................................................................................................................................................................. 6 

AVR CPU CORE Architecture ................................................................................................................................................................................................................. 8 

AVR CPU CORE Architecture ................................................................................................................................................................................................................. 9 

AVR CPU Instructions .......................................................................................................................................................................................................................... 10 

Instruction Fetch and Execute ............................................................................................................................................................................................................ 11 

Harvard versus Princeton Memory Model Instruction Fetch Cycle .................................................................................................................................................... 12 

Atmel ATmega328P Memory Model .................................................................................................................................................................................................. 14 

ATmega328P I/O Memory Map .......................................................................................................................................................................................................... 15 

 

  



4 | P a g e  

 

WHAT IS A FLIP-FLOP AND A REGISTER? 

You can think of a D flip-flop as a one-bit memory. The something to remember on the D input of flip-

flop is remembered on the positive edge of the clock input.1  

 

Dt   Qt+1  

0 0 

1 1 

X Qt   
 

A register is a collection of flip-flops sharing the same clock input. 

 
 

 
1 Source: http://sandbox.mc.edu/~bennet/cs314/slides/ch5me-4.pdf 

http://sandbox.mc.edu/~bennet/cs314/slides/ch5me-4.pdf
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ATMEGA328P BLOCK DIAGRAM2 

 

 
2 Here is a more accurate block diagram:  ATmega328P Data Sheet http://www.atmel.com/dyn/resources/prod_documents/8161S.pdf page 5 Figure 2-1 Block Diagram 
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THE AVR ENGINE 

Let’s adopt the analogy used by Charles Babbage when he called his computer an Analytical Engine. For closer look 

see this article in Wired and ATmega328 Wikipedia page. 

 
Photo credit Mayank Prasad,  maxEmbedded.com 
  

http://www.wired.com/2016/08/extreme-closeup-computer-hardware-looks-like-tiny-cities/
https://en.wikipedia.org/wiki/ATmega328
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INSTRUCTION SET ARCHITECTURE 

“The Parts of the Engine” 

• The Instruction Set Architecture (ISA) of a microprocessor 

includes all the registers that are accessible to the 

programmer. In other words, registers that can be 

modified by the instruction set of the processor. 

• With respect to the AVR CPU illustrated in Figure 5.2, 

these ISA registers include the 32 x 8-bit general purpose 

registers, status register (SREG), the stack pointer (SP), 

and the program counter (PC). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-2: AVR Central Processing Unit ISA Registers3 

 
3 Source: ATmega16 Data Sheet  http://www.atmel.com/dyn/resources/prod_documents/2466s.pdf page 3 

http://www.atmel.com/dyn/resources/prod_documents/2466s.pdf%20page%203
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AVR CPU CORE ARCHITECTURE4 
“Features of the Engine” 

Part I 
• Reduced Instruction Set Computer (RISC): The instruction set of the computer and target compiler(s) are 

developed in concert allowing the optimization of both. In this way, a relatively high performance processor 

can be realized by “reducing” the amount of work any single instruction needs to do; leading to a simpler 

hardware design (smaller, faster, and cheaper). 

8051 Microcontroller ATmega328P Microcontroller 

cjne  A, 0x99,next cmp   r16,0x99 

 brne  next 

• Mostly 16-bit fixed-length instructions. Instructions have from zero to two operands. Many of today’s RISC 

microprocessors have up to three operands. 

• The Register File of the AVR CPU contains 32 x 8 bit mostly Orthogonal (or identical) General Purpose 

Registers – instructions can use any register; therefore, simplifying compiler design. 

• Load-store memory access. Before you can do anything to data, you must first load it from 

memory into one of the general-purpose registers. You then use register-register instructions 

to operate on the data. Finally, you store your answer back into memory. 

 
4 Reading: Section 5.2 AVR CPU Core 
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AVR CPU CORE ARCHITECTURE 

“Features of the Engine” 

Part II 

• Modified Harvard memory model: A Harvard memory model separates Program and Data 

memory into separate physical memory systems (Flash and SRAM) that appear in different 

address spaces. A Modified Harvard memory model has the ability to read/write data items 

from/to program memory using special instructions. A Princeton memory model computer has 

only a single address space, shared by both the program and data. 

• A Two-stage Instruction Pipeline (fetch and execute) resulting in most instructions being 

executed in one clock cycle. Consequently, the performance of a 20 MHz processor would 

approach 20 MIPS (Millions of Instructions Per Second). Compare this with the 8051 Complex 

Instructions Set Computer (CISC) computer which takes a minimum of 12 clock cycles to 

execute a single instructions (12 MHz clock = 1 MIPS). 

• Simplicity of the computer architecture translates to a faster learning curve and utilization of 

the machine by the student.  
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AVR CPU INSTRUCTIONS 

“The Language of the Machine” 

The Instruction Set of our AVR CPU can be functionally divided (or classified) into: 

1. Data Transfer 
2. Arithmetic and Logical 
3. Bit and Bit-Test 
4. Control Transfer (Branch Instructions) “Load the Program Counter”  
5. MCU Control     nop, sleep, wdr, break 

• Data Transfer instructions are used to Load and Store data to the General Purpose Registers, also known as the Register File.  

○ Exceptions are the push and pop instructions which modify the Stack Pointer.  

○ By definition these instructions do not modify the status register (SREG). 

• Arithmetic and Logic Instructions plus Bit and Bit-Test Instructions use the ALU5 to operate on the data contained in the general 

purpose registers6.  

○ Flags contained in the Status Register (SREG) provide important information concerning the results of these operations.  

○ For example, if you are adding two signed numbers together, you will want to know if the answer is correct. The state of 

the overflow flag (OV) bit within SREG gives you the answer to this question (1 = error, 0 no error). 

• As the AVR processor fetches and executes instructions it automatically increments the program counter (PC) so it always points 

at the next instruction to be executed. Control Transfer Instructions allow you to change the contents of the PC either conditionally 

or unconditionally. 

○ Continuing our example if an error results from adding two signed numbers together we may want to conditionally  

(OV = 1) branch to an error handling routine. 

 
5 Implemented using combinational logic 
6 Implemented using sequential logic 
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INSTRUCTION FETCH AND EXECUTE 
“The Basic Cycles of the Engine” 

Once built, our computer lives to Fetch and Execute instructions, the bread-and-butter of the computer programmer. For this reason, 

the programmer views the computer as a vehicle for executing a set of instructions. This perspective is codified by the Instruction Set 

Architecture (ISA) of the computer. 

reset

Fetch Execute

 
Figure 3: The Two Basic States of all Microprocessor 

 
Figure 4: AVR CPU Registers and Logic used to Fetch and Execute an Instruction7 

 
7 Source: ATmega16 Data Sheet  http://www.atmel.com/dyn/resources/prod_documents/2466s.pdf page 3 

http://www.atmel.com/dyn/resources/prod_documents/2466s.pdf%20page%203
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HARVARD VERSUS PRINCETON MEMORY MODEL INSTRUCTION FETCH CYCLE 

1. The CPU presents the value of The program counter (PC) on the address bus and sets the read control line.  

2. The Flash program memory looks up the address of the instruction and presents the value on the data bus.  

3. The value from the data bus is placed into the instruction register and the CPU clears the read control line. 

The instruction register now holds the instruction to be executed.  

4. The program counter is incremented so it points to the next instruction to be executed.  

5. The instruction decoder interprets and implements (executes) the instruction. 

 

CPU

N

Program 

Counter (PC)

Opcode

Instruction 

Register (IR)

Address Bus

Read/Write

InstructionN

N - 1

N - 2

N + 1

Data Bus

Program and Data Memory

Enable

 
Figure 5: Bus Activity for an Instruction Fetch Cycle for Harvard (left) and Princeton (right) Memory Models 
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I/O Address Space versus Memory Mapped I/O 

• Input and Output ports have traditionally been treated as separate parts of the computer. 

• The AVR includes an in instruction to read from an I/O port and an out instruction to write to an I/O port. 

• The AVR has 64 I/O registers accessible to these two instructions 

Problem: The Atmel ATmega line of Microcontrollers needs more than 64 I/O registers (GPIO, Timers, …) 

Solution: Instead of looking at computers having 5 basic elements (Input, Output, ALU, CPU, Memory), you can 

simplify the design to only three (CPU, ALU, and Memory) now allowing the CPU to access 160 

“extended” I/O registers using SRAM instructions like lds (load from SRAM) and sts (store to SRAM). 

• This was such a powerful technique that Atmel extended the I/O mapping to include the 32 general purpose 

registers, the original 64 I/O registers, and the 160 extended I/O registers. The overlaying of the I/O address 

space with the SRAM address space is shown in the next slide. 

• A side benefit of the double mapping is the large number of ways of accessing data within SRAM (addressing 

modes) versus the limited number of instructions and addressing modes available for accessing the original 64 

I/O registers (i.e., in, out). 

• It is very important to realize that I/O registers are not contiguous within the address space (I/O or SRAM). The 

mapping is simply a convenient way of accessing registers physically located in diverse locations within the 

Silicon chip. 
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ATMEL ATMEGA328P MEMORY MODEL8 

FLASH Program 

Memory

16K x 16 (32 K bytes)

0x0000

0x3FFF

byte 1 0

16-bit 

Word 

Address

(little-

endian)

Application 

Flash 

Section

0x0000

0x08FF

32 Registers

SRAM Data 

Memory

2 K bytes

64 I/O Registers

160 Ext I/O Reg.

2048 x 8 SRAM

EEPROM Data 

Memory

1 K byte

0x001F
0x0020

0x005F
0x0060

0x00FF
0x0100

SRAM 

Address

0x0000

0x003F

I/O

Address

Boot Flash Section

256a2048 words

 

 
8 Source: ATmega328P Data Sheet http://www.atmel.com/dyn/resources/prod_documents/8161S.pdf Chapter 7. AVR Memories Figure 2-2 

http://www.atmel.com/dyn/resources/prod_documents/8161S.pdf
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ATMEGA328P I/O MEMORY MAP9 

 

 
9 Source: ATmega328P Data Sheet http://www.atmel.com/dyn/resources/prod_documents/8161S.pdf  Chapter 30 Register Summary 

http://www.atmel.com/dyn/resources/prod_documents/8161S.pdf
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APPENDIX A PROCESSOR CONTROL AND DATAPATH10 

Control Datapath 

Component of the processor that 

commands the datapath, memory, data, 

I/O devices according to the instructions 

of the memory  

Components of the processor that perform 

arithmetic operations and holds data 

 

 
 

10 https://www.ida.liu.se/~TDTS10/info/lectures/Lecture3.pdf 
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APPENDIX B CALCULATING THE LAST ADDRESS  

Given a 16K word (2 bytes / word) memory, what is the last address, in hexadecimal? 

• The range of memory addresses, like an unsigned number, is from 0 → 2n – 1 

• We are given the size of our memory in decimal as 16K10. So the first step is to 

convert this number to a power of 2. 

16K10 = 24 * 210 = 214, which in binary would be… 

• Which then can directly be expressed as a binary number. 

214 213 … 20  

1 0 … 0 , ...1 followed by 14 zeros 

   –1  

0 1  1 , or 14 ones  

• So the answer is 0x3FFF 

• As a short-cut, if you can convert the memory size to a power of 2, the exponent 

equals the number of 1 in the answer. By dividing the exponent by 4, you have the 

number of hex digits which are F (11112), with the remainder giving you the most 

significant hex digit. In our example 4 goes into 14, 3 times with a remainder of 2, 

where 2 ones (00112) equal hexadecimal 316. 



18 | P a g e  

APPENDIX C I/O ADDRESS SPACE VERSUS MEMORY MAPPED I/O 
Reading:  Your textbook covers memory organization in Section 0.3 “Semiconductor Memory” and I/O Mapping in Section 2.2 “The 
AVR Data Memory.” The following material covers mapping of the I/O address space in a slightly different way. The material was 
provided in bullet form earlier in this document. 
 
From Charles Babbage’s Analytical Engine to Dr. Jon Von Neumann’s paper on the EDVAC computer, Input and Output have been 

treated as separate parts of the computer. Input and Output parts of your PC include the keyboard, mouse, printer, display, etc. To 

support these “peripheral” devices many microprocessors include a separate I/O address space and instructions for working with the 

registers contained used to control and access data provided by the peripheral device. For the AVR microcontroller you read an I/O 

register using an in instruction and write using the out instruction. When Atmel adopted the AVR architecture, they discovered 

that the 64 I/O registers accessible to these two instructions was insufficient for all the peripheral devices that they were planning on 

adding to the ATmega line of Microcontrollers. Specifically, they added 160 “extended” I/O registers. However, the AVR 

microprocessor was only designed for 64 I/O registers. To solve this problem, Atmel turned to an alternative way of working with I/O 

devices pioneered by Motorola and the 6800 family of processors (among others). Motorola realized that there was no reason to treat 

input and output devices any different from memory. Now instead of looking at computers having 5 basic elements (Input, Output, 

ALU, CPU, Memory), you could simplify the design to only three (CPU, ALU, and Memory). Now accessing the 160 “extended” I/O 

registers was accomplished using SRAM instruction like lds (load from SRAM) and sts (store to SRAM). This was such a powerful 

technique that Atmel extended the I/O mapping to include the 32 general purpose registers, the original 64 I/O registers, and the 160 

extended I/O registers. The overlaying of the I/O address space with the SRAM address space is shown in the next slide. 

A side benefit of the double mapping is the large number of ways of accessing data within SRAM (addressing modes) versus the limited 

number of instructions and addressing modes available for accessing the original 64 I/O registers. 

It is very important to realize that I/O registers are not contiguous within the address space (I/O or SRAM). The mapping is simply a 

convenient way of accessing registers physically located in diverse locations within the Silicon chip. 
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APPENDIX D A BRIEF HISTORY OF THE COMPUTER 
4,000 to 3,000 BC Abacus (+, -, *, /) 

• The abacus is an instrument used to perform arithmetic calculations. The positions of beads on a set of wires determine the value of the digit. 
Romans called these beads calculi the plural of calculus, meaning pebble. This Latin root gave rise to the word calculate. In one contest the 
Abacus easily won over a mechanical calculator. The abacus is still used in China, Japan, and Korea. 

 
1642 Blaise Pascal Mechanical Calculator (+, -) 

• Designed at the age of 20. Rotating wheel mechanical calculator with automatic carry between digits on addition and subtraction of decimal 
digits (like the odometer in a car). In 1671 Baron von Leibnitz created a calculator, which could add, subtract, and multiply.  

• A Human Computer with a mechanical calculator can execute 500 operations a day 
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1833 Charles Babbage and the Analytical Engine 

• Conceived by Babbage, the engine established the basic principles upon which modern general-purpose digital computers are constructed. 
This mechanical machine performed instructions dictated by punched cards, with the variable values being determined by a second set of 
cards. The punched cards came from Joseph marie Jacquard’s loom, where they controlled the operation of the weaving machines in 1812. 

• Neither the Analytical Engine or Difference Engine (1820), a special purpose computer designed to solve polynomial expressions (ex. N2 + N + 41), were 
ever entirely completed by Babbage known as “the irascible genius.” The difference engine has recently been built as shown here. 

1843 Ada Byron and the First Computer Program 

• Ada Byron, Lady Lovelace, was one of the most picturesque characters in computer history. Augusta Ada Byron was born December 10, 1815 the 

daughter of the illustrious poet, Lord Byron. Ada was brought up to be a mathematician and scientist. It was at a dinner party at Mrs. Somerville's that 

Ada heard in November 1834, Babbage's ideas for a new calculating engine, the Analytical Engine. Ada, in 1843, married to the Earl of Lovelace and 

the mother of three children under the age of eight, wrote an article describing Babbage's Analytical Engine. Lady Lovelace's prescient comments 

included her predictions that such a machine might be used to compose complex music, to produce graphics, and would be used for both practical and 

scientific use. When inspired Ada could be very focused and a mathematical taskmaster. Ada suggested to Babbage writing a plan for how the engine 

might calculate Bernoulli numbers. This plan, is now regarded as the first "computer program." Like her father, she died at 36, Ada anticipated by more 

than a century most of what we think is brand-new computing. 
Source: http://www.scottlan.edu/lriddle/women/love.htm 

 

http://www.wired.com/gadgetlab/2008/05/exclusive-video/
http://link.brightcove.com/services/player/bcpid4941044001?bckey=AQ~~,AAAAAF1BIQQ~,g5cZB_aGkYaAScpGZFCSGc35cGXa7l8Z&bclid=1745181320&bctid=1813573882
http://www.scottlan.edu/lriddle/women/love.htm
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1890 Herman Hollerith and the Census Counting Machine 

• Hollerith developed punched cards for tabulating equipment used in the 11th census of the United States. Cards contained 288 locations, size of dollar 

bill in order to save on tooling. Contact brushes completed electrical circuits allowing the system to do: counting, sensing, punching, and sorting. Started 

Tabulating Machine Company, which turned into the Computer-Tabulating-Recording Company, which turned into the International Business Machine 

Corporation (IBM) in 1924. 
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1937 Harvard Mark I 

• Howard Hathaway Aiken at Harvard proposed to IBM the Mark I or Automatic Sequence Controlled Calculator — this was to be the first large-
scale calculator. Very similar to the Analytical engine, the machine used a combination of electromechanical devices, including many relays. 
It went to work in 1944 calculating with numbers of 23 digits and computer products of 46-digit accuracy. It received its instructions from 
perforated tape, from IBM cards, and from the mechanical setting of 1,440 dial switches. Output was either by IBM cards or by typing columns 
of figures on a roll of paper. The Mark I could perform one division per minute. The machine was in operation for many years, generating many 
tables of mathematical functions (particularly Bessel functions), and was used for trajectory calculations in World War II.  
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1943 Electronic Numerical Integrator and Computer (ENIAC) 

• Engineers J. Presper Eckert and John W. Mauchly created the ENIAC at the Moore School of Engineering of the University of Pennsylvania 
between 1943-1946. Built in war time secrecy for the army ordnance department, the ENIAC was designed to do Trajectory calculations. 
Containing 18,000 vacuum tubes,  each accumulator using 100 vacuum tubes arranged as 10 columns of 10 tubes each, the ENIAC could 
add two 10-digit numbers (the size of ENIAC’s decimal accumulators) in 200 microseconds. Thirty thousand (30,000) times faster than the 
Mark I. The ENIAC was programmed by patch board and switches. The ENIAC was later moved at a cost of $100,000 to the Ballistic 
Research Laboratories at the Aberdeen Proving Ground.  
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1945 Dr. John Von Neumann and the Electronic Discrete Variable Computer (EDVAC) 

• EDVAC was the first general-purpose stored program binary electronic (vacuum tube) computer. Completed in 1950 after the EDSAC thus it 
was not the first operational stored program computer. The technical work done on the EDVAC was by Eckert and Mauchly, Notable the 
Ultrasonic (or Supersonic) Delay Line, with the logical organization done by Von Neumann, Burke, and Goldstine. 

 
• This computer was the blueprint for most modern day computer systems having in it the 5 principle organs that make up almost all modern 

day computers. Input, Output, Arithmetical, Central Control, Memory (storing both the numerical as well as the instructional information for 
a given problem), Eckert as well as others left before the EDVAC was ever completed. Architecturally the EDVAC is classified as a general 
purpose  four address computer. 
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1947 The First Computer Bug 

• American engineers have been calling small flaws in machines "bugs" for over a century.  Thomas Edison talked about bugs in electrical circuits in the 
1870s.  When the first computers were built during the early 1940s, people working on them found bugs in both the hardware of the machines and in  
the programs that ran them.  

• In 1947, engineers working on the Mark II computer at Harvard University found a moth stuck in one of the components.  They taped the insect in their 
logbook and labeled it "first actual case of bug being found."  The words "bug" and "debug" soon became a standard part of the language of computer 
programmers. 

 

1951 John Von Neumann and Princeton’s IAS (Institute for Advance Study) Machine 

• Designed to develop a world weather model, the IAS machine incorporated most of the general concepts of parallel binary stored-program computers. 

That is it used random access memory or parallel memory, CRTs. One address computer. 
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1951 Eckert and Mauchly and the UNIVAC I 

• Soon after the formal dedication of ENIAC computer, J. Presper Eckert and John W. Mauchley’s left the University of Pennsylvania to start their own 
business.  Early orders from U.S. government agencies and other potential customers were not enough to keep the young Eckert-Mauchley Computer 
Corporation alive, and Remington Rand agreed to purchase the firm in 1950.  Work on the UNIVAC I (Universal Automatic Computer) went forward, and 
the first commercially available electronic (vacuum tube) digital computer was delivered to the Bureau of the Census in early 1951.  By 1957, some 46 
copies of the machine had been installed at locations ranging from the David Taylor Model Basin of the U.S. Navy Bureau of Ships, to Pacific Mutual 
Life Insurance Company, to the offices of the Commonwealth of Pennsylvania. 

• The UNIVAC, like the ENIAC, had vacuum tube circuit elements.  There also were some 18,000 crystal diodes.  Central memory was handled in acoustic 
delay-line tanks, which were used in several early computers. UNIVAC also had an external magnetic tape memory, as well as magnetic tapes used in 
input and output.  Users of UNIVAC played an important role in the development of programming languages. Source: Smithsonian Computer History 
Collection 
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1965 Digital Equipment Corporation (DEC) PDP-8 

• Designed using Integrated Circuits, DEC sold the first PDP-8 for only $18,000. Later versions of this machine that incorporated improvements in 

electronics appeared over the next decade.  These became steadily smaller and cheaper, triggering a rush of new applications in which the computer 

was embedded into another system and sold by a third party (called an Original Equipment Manufacturer, or OEM).  Some machines were specifically 

designed for time sharing and for business applications.  Ultimately over 50,000 PDP-8's were sold (excluding those embedded as single chips into other 

systems) bringing computers into the laboratory and the manufacturing plant’s production line, and thus the minicomputer industry was born. (read 

“The Sole of a New Machine”). 
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The x86 isn’t all that complex — it just doesn’t make a lot of sense 

Mike Johnson 
Leader of the 80x86 Design at AMD 
Microprocessor Report (1994) 

 

June 1969 to April 1971 Ted Hoff and Intel 3-chipset 4004  

• Intel, a company founded in 1968, is asked by Busicom of Japan to 

design a custom LSI calculator chip-set. Intel discovers design will 

take 11 36-40 pin IC packages and proposes a creative alternative. 

Ted Hoff, at Intel, had been working with the PDP-8 min-computer 

and proposed to Busicom that a general purpose LSI chip-set be 

designed that could be programmed to be a calculator or for other 

applications. We are so used to using computers, that the genus of 

this step can escape us. The traditional solution was to design what 

you wanted using logic gates. What Ted Hoff envisioned was a 

wholly different approach. You design a simple CPU and taught it 

using software to do what you want. Today these computers are 

known a microcontrollers and embedded systems. Publicly 

announced on November 1971. 

Nov 1969 to Jan 1972 Vic Poor and the Intel 8008 

• Vic Poor of Datapoint Corporation of San Antonio, Texas 

(manufacturers of “intelligent terminals” and small computer 

systems) along with Cogar and Viatron engineers design a very 

elementary computer, and put under contract Intel and Texas 

Instruments to implement the design on a single logic chip. Intel 

succeeded, but their product executed instructions approximately 

ten (10) times as slowly as Datapoint had specified and way behind 

schedule (work had been stopped by Intel to complete the Busicom 

chip-set.); so Datapoint declined to buy it, and built their own product 

using existing logic components. And thus Intel holding a computer-

like logic device (whose development had been paid for) marketed 

the Intel 8008 and the microcomputer industry was born.  
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1975 John Cocke and the IBM 801 

• The first (Reduced Instruction Set Computer) RISC machine was developed as part of the IBM 801 Minicomputer Project. 

John Cocke contributed many detailed innovations in the 801 processor and associated optimizing compiler, and is 

considered the "father of RISC architecture."  

• “John's concept of the RISC resulted from his detailed study of the trade-offs between high performance machine 
organization and compiler optimization technology. He recognized that an appropriately defined set of machine instructions, 
program controls, and programs produced by a compiler -- carefully designed to exploit the instruction set -- could realize a 
very high performance processor with relatively few circuits. Critical to the success of RISC was the concept of an optimizing 
compiler able to use the reduced instruction set very efficiently and maximize performance of the machine.”  

Source: http://domino.watson.ibm.com/comm/pr.nsf/pages/news.20020717_cocke.html 

1976 Intel i8748 

• Prior to 1976 small board computers (SBCs) were designed around microprocessor chips, like the 8080. These SBCs included all the features 

needed to implement a very simple computer system. These SBCs, of which the D2 by Motorola, KIM-1 by MOS Technology, and SDK-85 by Intel 

are the most memorable, quickly found their way into design labs at colleges, universities, and electronic companies. By adding peripheral cards 

these SBCs could read sensors and control actuators. In 1976 Intel put all of the features found on an SBC and parts of the peripheral cards into 

one chip known as the i8748. With over 17,000 transistors the i8748 was the first device in the MCS-48 family of microcontrollers. This IC, and other 

MCS-48 devices, quickly became the de facto industrial standard in control-oriented applications. Soon MCS-48 devices were replacing 

electromechanical components in many modern appliances. 

1980 Intel 8051 

• With over 60,000 transistors, the power, size, and complexity of microcontrollers moved to the next level with Intel’s introduction of the 8051, the first 

device in the MCS-51 family of microcontrollers. In a bold move, Intel allowed other manufacturers to make and market code-compatible variants of 

the 8051. This step led to its general acceptance by the engineering community as the de facto standard in microcontroller architectures. 

1996 Atmel AVR 

• AVR is a moniker for a family of Atmel 8-bit RISC microcontrollers. The AVR is a Modified Harvard architecture machine with program and data 
stored in separate physical memory systems that appear in different address spaces. The AVR architecture was conceived by Alf-Egil Bogen and 
Vegard Wollan at the Norwegian Institute of Technology (NTH). When the technology was sold to Atmel, the internal architecture was further 
developed by Alf and Vegard at Atmel Norway, a subsidiary of Atmel founded by the two architects. The name AVR sounds cool and does not stand 
for anything. Source: http://en.wikipedia.org/wiki/Atmel_AVR   

http://domino.watson.ibm.com/comm/pr.nsf/pages/news.20020717_cocke.html
http://en.wikipedia.org/wiki/Modified_Harvard_architecture
http://en.wikipedia.org/w/index.php?title=Alf-Egil_Bogen&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Vegard_Wollan&action=edit&redlink=1
http://en.wikipedia.org/wiki/Norwegian_Institute_of_Technology
http://en.wikipedia.org/wiki/Atmel_AVR
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APPENDIX E CLASSIC COMPUTER ARCHITECTURE 
As we discovered in our short history lesson, computers are designed to meet a specific set of requirements. In the early days, these requirements were to meet 

some military, science, civil, or commercial need. For the military, it was predominately the calculation of ballistic tables; for science to calculate the motion of 

the planets or the weather. For civil keeping track of people and commercial keeping track of the money. To meet these requirements the computer was 

conceived and described by its (1) hardware components and (2) the instructions it could execute. The former, for all modern day computers, were codified by 

Von Neumann in his landmark paper describing the architecture of the EDVAC computer.  

Von Neumann’s paper describes a computer architecture having five basic components: Input, Output, Memory, Control, and Arithmetical. 

Figure 1-1 A First Draft of a Report on the EDVAC: June 30, 1945 
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For this class we will Reparation these elements as discussed in the next section and defined in Figure 1-3. An important component of this new viewpoint is the 

central processing unit (CPU) which will be divided into a Control and a Datapath element as shown in the Figure 1-2. Atmel literature uses the term 

microcontroller unit (MCU) in place of the more generic central processing unit. In this course the two terms are considered synonymous.  

Figure 1-2 High-level view of a CPU 
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Classic Microcontroller Architecture 

The CPU is divided into a Control and a Datapath element as shown in the Figure 1-2. The Control Unit contains combination logic and translates the instructions 

held in the instruction register (not shown) into the control signals needed to execute the instruction. The data path contains the General Purpose Registers 

(technically known as the Register File) and the Arithmetic and Logic Unit (ALU). The Datapath includes a few other registers which we will learn about shortly.  

The integration of the program and data memory described by Von Neumann is today known as the Princeton memory model. The architecture of our AVR 

processor separates these two types of memory into Flash Program Memory and Static Random Memory (SRAM). This separation of program and data memory 

more resembles the Harvard Mark I computer, than the EDVAC computer, and is therefore known as the Harvard memory model. 

The input and output functions of Figure 1-1 will be treated together and simply called input/output (I/O). For microcontrollers, the term I/O includes all the 

Peripherals (Parallel I/O, Counter/Timers, etc.) supported by a particular model of microcontroller, in our case the ATmega328P.  

For this class the Von Neumann architecture is thus repartitioned into five basic blocks: Flash Program Memory, SRAM Data Memory, Control Unit, Datapath, 

and Input-Output. 

Figure 1-3 Basic Microcontroller Architectural Elements 
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APPENDIX F ATMEGA328P ARCHITECTURAL OVERVIEW 
Reading: Section 5.1 Overview plus Atmega8 Block Diagram 

Clock 

• ATmega Family – Up to 20 MHz 

• Arduino Duemilanove – 16 MHz (ATmega328P) 

• ALU – On-chip 2-cycle Hardware Multiplier 

Memory  

• ATmega Family – Up to 256 KBytes Flash, 4K Bytes EEPROM and 8K 

Bytes SRAM. 

• ATmega328P – 32 KBytes Flash, 1K Bytes EEPROM, and 2K Bytes SRAM 

• Self-Programming Flash memory with boot block (ICSP header) 

Peripheral Subsystems 

• Two 8-bit (PORTB, PORTD), plus One 7-bit (PORTC) General Digital I/O Ports 

• Programmable Serial USART, Master/Slave SPI Serial Interface.  

• Byte-oriented 2-wire Serial Interface (TWI) is Philips I2C compliant. 

• Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode  

• One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode 

• Six PWM Channels 

• 8-channel 10-bit A/D converter with up to x200 analog gain stage. 

• Programmable Watchdog Timer with Separate On-chip Oscillator 

• On-Chip Debug through JTAG or debugWIRE interface. 

Other Features 

• External and Internal Interrupt Sources with 2 instruction words/vector 

Note 

• In the following Block Diagram, Power (Vcc), Ground (GND), and the clock input (XTAL) are are present but not shown. 

http://www.flylogic.net/blog/?cat=2
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APPENDIX G  MICROPROCESSOR VERSUS MICROCONTROLLER 
 

 Typical Microprocessor Low-Cost Microcontrollers 

Cost Expensive ($100s) Cheap (<$10) 

 Factor of a ten (10) 

Speed 3 GHz (giga - 109) 20 MHz (mega – 106) effective = 20 MIPS 

 Factor of a hundred (102) 

Cores Up to Four One 

Pipeline Stages 4 to 20 0 to 2 

Address Bus 64 bits (264 = 22260) 16 bits (216 = 26210) 

 264 = 18,446,744,073,709,551,616 ≈ 1019 216 = 65,536 ≈ 104 

 Factor of approximately a Quadrillion (1015) 

Data Bus 32 bits to 64 bits 8 bits 

Instruction Set  Complex Simple and I/O control oriented  

ALU Floating Point Unit Simple ALU (+, -, x, plus logic operations) 

Program & Data Memory No Yes 

Peripherals No Parallel I/O, Counter/Timers … 
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APPENDIX H  TWO-STAGE INSTRUCTION PIPELINE 
Pipelining A technique that breaks operations, such as instruction processing or bus transactions, into smaller distinct stages or tenures (respectively) so 

that a subsequent operation can begin before the previous one has completed. 

From the Atmel ATmega328P Data Sheet Chapter 6 AVR CPU Core, Section 6.1 Overview and with respect to Figure 6-1 Block Diagram of the AVR Architecture  

“In order to maximize performance and parallelism, the AVR uses a Harvard architecture – with separate memories and buses for program and data. 

Instructions in the program memory are executed with a single level pipelining. While one instruction is being executed, the next instruction is pre-fetched 

from the program memory. This concept enables instructions to be executed in every clock cycle. The program memory is In-System Reprogrammable Flash 

memory.” 

A pipeline stage begins and ends with a register; controlled by a clock. Between the register(s) is combinational logic. Although counter-intuitive, Flash program 

memory can be viewed as combinational logic with an address generating a word of data. With respect to our AVR architecture (Figure 6-1) the two registers of 

interest are the Program Counter (PC) and the Instruction Register (IR). Without pipelining these two registers in the control unit (PC, IR) would require two clock 

cycles to complete a basic computer operation cycle. Specifically, an instruction is (1) fetched and then (2) executed. 

Figure 10 Fetch and Execute Cycle of the Atmel ATmega Microcontroller 

Fetch Instruction Execute ResultInstruction

 

For most instructions, especially one based on a modified Harvard memory model, program memory is not accessed during the execution cycle. This memory 

down time could be used to fetch the next instruction to be executed, in parallel with the execution cycle of the current instruction. Here then is an opportunity 

for pipelining! Figure 10.2 illustrates the idea. The pipeline has two independent stages. The first stage fetches an instruction and places it in the Instruction 

Register (IR), while the second stage is executing the instruction. This two-stage instruction pipeline is also called instruction prefetch can be found in some of 

the earliest microprocessors including the Intel 8086 

Figure 11 Instruction Prefetch of the Intel 8086 Microprocessor 
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For our RISC architecture most instructions are executed in a single cycle (also known as elemental instructions). In this perfect world where all instructions take 

one cycle to fetch and one cycle to execute, after an initial delay of one cycle to fill the pipeline, known as latency,  each instruction will take only one cycle to 

complete.  
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Figure 12 Program Execution in a AVR RISC two-Stage Instruction Pipelined Architecture 

  Time   

 1 2 3 4 

Fetch Instr. 1 Instr. 2 Instr. 3 Instr. 4 

Execute  Instr. 1 Instr. 2 Instr. 3 

 

Forgetting for now the circuit delays attendant with implementing the pipeline (for example the latch), and other complicating issues, our performance would 

be twice that of a non-pipelined design. 
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APPENDIX I ATMEGA328P INSTRUCTION SET11 
The Instruction Set of our AVR processor can be functionally divided (or classified) into the following types: 
 

• Data Transfer Instructions 

• Arithmetic and Logic Instructions 

• Bit and Bit-Test Instructions 

• Branch (Control Transfer) Instructions 

• MCU Control Instructions 

 

 
11 Source: ATmega328P Data Sheet http://www.atmel.com/dyn/resources/prod_documents/8161S.pdf  Chapter 31 Instruction Set Summary 

http://www.atmel.com/dyn/resources/prod_documents/8161S.pdf
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