
1 | H i l l   S e p t e m b e r  2 5 ,  2 0 1 2  

EE202 Lab#8 Part 2 Numerical Methods II 

[12.2] Matlab includes a number of functions that solve ordinary differential equations of the form 

  

  
        

numerically. In order to solve higher-order differential equations (and systems of differential equations) 

they must be reformatted into a system of first-order expressions. Matlab includes a wide variety of 

differential equation solvers (Table 12.1). However, all these solvers have the same format. This makes it 

easy to try different techniques by just changing the function name. Each solver needs the following 

three inputs as a minimum; 

1. A function handle to a function that describes the first-order differential equation or system of 

differential equations in terms of t and y. 

2. The time span of interest 

3. An initial condition for each equation in the system. 

The solvers all return an array t- and y-values. If you do not specify an output array, the function creates 

a plot of the results. 

1. Make a new M-File named ode_exp as define in Appendix A (points will be deducted if you do not 

include the header instructions and comments). Add the following function definition and 

comments at the beginning of your script.  
function  ode_exp 
% Chapters 12 Numerical Methods: Part II 
 

%% Lab 8 Part 2 Question 1 Simple First Order ODE.  

Next, add the following comment at the end of your function. Always keep this as the last 

instruction in the M-File. 
end 

In part 1 of this lab sequence (Part 1 

Problem 5) you used Matlab’s ODE 

solver(s) to find the solution to a first 

order differential equations. Let’s 

review by using ode45 to solve the 

following linear first order equation, 

for time -1 to 1 with initial conditions 

        

  

  
    

 

 

In this second part of the lab we will be looking at how to solve ODEs of higher power and which are 

in some cases may be non-linear. The solution of these problems is a three-step process: 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Solution of a 1st Order Differential Equation

x-axis, often represents time

y
-a

x
is

, 
o
ft

e
n
 r

e
p
re

s
e
n
ts

 d
is

ta
n
c
e



2 | H i l l   S e p t e m b e r  2 5 ,  2 0 1 2  

Step 1. Convert your nth-order differential equation 
  

   
      

    

                    into state 

space form; specifically, a series of simultaneous first-order differential equations   

 

  
      (      )          

Step 2. Create a Matlab function which defines your differential equation in state space form. 

In Matlab you may define the function (1) as an M-file function, (2) as a handler to a function that 

evaluates f, and (3) as a nested function. 

Step 3. Call the ODE solving function with the function defined in step 1. This will typically be ODE45. 

2. Working with the M-File from problem 1, add the following comment at the beginning of your script.  

%% Lab 8 Part 2 Question 2 Second Order ODE. Now let’s follow the above steps in order to solve 

the 2nd order differential equation 

   

   
 

  

  
          

over the interval -1 to +1 and initial conditions defined as y = 0 and z = 0 (which is the same as y = 

0 and dy/dt = 0) . 

Step 1. Convert your nth-order differential equation into a series of simultaneous first-order 

differential equations . 

Let    
  

  
  eq. 1 

where       

It directly follows that 
   

  
  

   

   
 

Substituting into the original equation and solving for 
   

  
 we have 

   

  
      

   

  
 eq. 2 

We now have two simultaneous first-order differential equations (equations 1 and 2). 

Step 2. Create a Matlab function which defines your differential equation in state space form. Add the 

following nest function to your M-file. 

% ----------------------------------------------------------------------- 
% Nested function  
% % 2nd Order Differential Equation (Matlab for Engineers page 530)  
    function dydt = twoeq(t,y) 
        dydt(1) = y(2); 
        dydt(2) = y(1) + t - dydt(1); 
        dydt = dydt'; 
    end 
% ----------------------------------------------------------------------- 



3 | H i l l   S e p t e m b e r  2 5 ,  2 0 1 2  

Step 3. Call the ODE solving function with the function defined in step 1. This will typically be ODE45. 

Add the following Matlab script just before your nest function definition. 

% 2nd Order Linear Differential Equation (Matlab for Engineers page 530) 
figure;     %create a new figure 2 
ode45(@twoeq,[-1,1],[0,0]) 
title('Solution of a 2nd Order Differential Equation'); 
xlabel('x-axis, often represents time'); 
ylabel('y-axis, often represents distance'); 
legend('y','dy/dt') 

 
3. Working with the M-File from problem 1, add the following comment at the beginning of your script.  

%% Lab 8 Part 2 Question 3 Control Problem. Applying what you have learned solve the following 

second order ODF, over the time interval 0 to 10 seconds.  

 ̈         ̇                      ̇       

 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0
Solution of a 2nd Order Differential Equation

x-axis, often represents time

y
-a

x
is

, 
o
ft

e
n
 r

e
p
re

s
e
n
ts

 d
is

ta
n
c
e

 

 

y

dy/dt

0 1 2 3 4 5 6 7 8 9 10
-4

-3

-2

-1

0

1

2

3
Solution of 2nd Order Differential Equation

time t

s
o
lu

ti
o
n
 z

 

 

z

dz/dt



4 | H i l l   S e p t e m b e r  2 5 ,  2 0 1 2  

4. Working with the M-File from problem 1, add the following comment at the beginning of your script.  

%% Lab 8 Part 2 Question 4 Van der Pol oscillator. Applying what you have learned solve the 

following second order ODF over the interval 0 to 3 or 20, whichever is greater.   

 

and initial conditions defined as x(0) = 2 and dx/dt = 0. 

You can find out more about the Van der Pol oscillator here. Try following the steps above to solve the 

Van der Pol oscillator equation. If you need help, look-up vdpode in the Matlab library folder on your 

computer. The plot below was done with  = 1000.    

 

Appendix A Creating Your Lab Report 

How to Organize and Clean up Your Work 
To clean up past work, place the following line at the beginning of your M-File(s). 

format compact  

clear,clc, close all  %  The close all command closes all figure windows 

To make more than one figure in an M file, use the function figure(n), where n is the next figure 

to be drawn. 

 

How to Publish your Lab 

Matlab can format your M-file and the resulting outputs for publishing (i.e., a format you can turn in 

with your lab) by selecting File  Publish To Word Document. If the conversion fails then try File 

 Publish To HTML, open in IE or Firefox and convert to PDF or simply print. 

 

0 500 1000 1500 2000 2500 3000
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Solution of van der Pol Equation,  = 1000

time t

s
o
lu

ti
o
n
 x


