Boolean Algebra

Steps to Solution (SOP)

- 1. From the problem statement a truth table is formed. The problem may be expressed in words, waveforms, tables, Boolean expressions, or as a circuit. The problem statement must specify (a) the number of inputs, and (b) the desired output for all input conditions. With this information in hand the problem is synthesized into a set of input and corresponding output conditions in tabular form (a truth table).
- 2. A column is added to the truth table and named product terms. For each row whose output is 1, a product term is formed from the input columns.
- 3. A sum-of-products (SOP) expression is built from these product terms.
- 4. The algebraic expression is simplified
- 5. The answer is checked.
- 6. A logical circuit is designed.

Boolean Operators

INPUT		0	UTPUT			
		NOT	OR	AND	Logical Operators	
x	у	\overline{x} or x'	<i>x</i> + <i>y</i>	xy	Traditional Representation	
		~ <i>x</i>	x/y	x&y	Bitwise HDL Verilog	
0	0	1	0	0		
0	1		1	0		
1	0	0	1	0		
1	1		1	1		

Basic Laws and Theorems of Boolean Algebra

Law		Dual (D)	
1	$\overline{\overline{x}} = x$		Involution
	OR Laws	AND Laws	
2	x + 0 = x	$x \cdot 1 = x$	Identity element under addition is 0 and under multiplication it is 1
3	x + 1 = 1	$x \cdot 0 = 0$	Dominance
4	x + x = x	$x \cdot x = x$	Idempotent
5	$x + \overline{x} = 1$	$x \cdot \overline{x} = 0$	Complements
	Commutative		
6	x + y = y + x	$x \cdot y = y \cdot x$	
	Associative		
7	x + (y + z) = (x + y) + z	x(yz) = (xy)z	
	Distributive		
8	x(y+z) = xy + xz	x + yz = (x + y)(x + z)	
Theorem	Simplification		
9	x + xy = x	x(x+y) = x	Absorption
10	$x + \bar{x}y = x + y$	$x(\bar{x}+y) = xy$	Degenerate-Reflect Law
	De Morgan's		
11	$\overline{x+y} = \overline{x} \cdot \overline{y}$	$\overline{x \cdot y} = \overline{x} + \overline{y}$	

ASCII Code

	b ₆ b ₅ b ₄								
$b_{3}b_{2}b_{1}b_{0}$	000	001	010	011	100	101	110	111	
0000	NUL	DLE	SP	0	@	Р	٢	р	
0001	SOH	DC1	!	1	А	Q	а	q	
0010	STX	DC2	"	2	В	R	b	r	
0011	EXT	DC3	#	3	С	S	с	s	
0100	EOT	DC4	\$	4	D	Т	d	t	
0101	ENQ	NAK	%	5	E	U	e	u	
0110	ACK	SYN	&	6	F	V	f	v	
0111	BEL	ETB	,	7	G	W	g	W	
1000	BS	CAN	(8	Н	Х	h	х	
1001	HT	EM)	9	Ι	Y	i	у	
1010	LF	SUB	*	:	J	Z	j	Z	
1011	VT	ESC	+	;	K	[k	{	
1100	FF	FS	,	<	L	\	1		
1101	CR	GS	—	=	Μ]	m	}	
1110	SO	RS		>	Ν	^	n	~	
1111	SI	US	/	?	0	-	0	DEL	