Homework \#5

1. Using sequential circuit design procedure beginning with a state diagram, convert a D-type flip-flop to a T-type flip-flop by adding input logic. Show that the logic obtained is an exclusive-OR gate..

Present State	Inputs	Next State
$Q(t)$	T	$D(t)$
0	0	0
0	1	1
1	0	1
1	1	0

$D=\bar{Q} \cdot T+Q \cdot \bar{T} \quad$ This is the definition of an exclusive or gate!
2. Implement the following Boolean function with an 8 -to-1 line multiplexer and a single inverter: $F(A, B, C, D)=\sum m(2,3,5,6,8,9,12,14)$

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{F}	
0	0	0	0	0	$F=0$
0	0	0	1	0	
0	0	1	0	1	$F=1$
0	0	1	1	1	
0	1	0	0	0	$F=D$
0	1	0	1	1	
0	1	1	0	1	$F=\bar{D}$
0	1	1	1	0	
1	0	0	0	1	$F=1$
1	0	0	1	1	
1	0	1	0	0	$F=0$
1	0	1	1	0	
1	1	0	0	1	$F=\bar{D}$
1	1	0	1	0	
1	1	1	0	1	$F=\bar{D}$
1	1	1	1	0	

3. Design a sequential circuit using two D flip-flops A and B and combinational logic. Your circuit has one input X and one output Y, and is defined by the following state diagram - Traditional Design Solution

Present State	$Q_{0}(t)$	Inputs	Next State	Output	
$Q_{1}(t)$		X	$D_{0}(t)$	$D_{0}(t)$	Y
0	0	0	0	1	1
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	1	0	0
1	1	1	1	1	0

$D_{1}=Q_{0} X+Q_{1} \bar{X}$

$D_{0}=Q_{0} \cdot X+\overline{Q_{1}} \cdot \bar{X}$

$Y=\overline{Q_{1}} \cdot \overline{Q_{0}}$
4. A sequential circuit has two flip-flops A and B, one input X and one output Y. The state diagram is shown below. Design the circuit with D flip-flops. - Design using One-Hot State Encoding

$$
\begin{aligned}
& S 0(t+1)=D 0(t)=X \cdot S 0+X \cdot S 2=X(Q 0+Q 2) \\
& S 1(t+1)=D 1(t)=\bar{X} \cdot S 0+\bar{X} \cdot S 1=\bar{X}(Q 0+Q 1) \\
& S 2(t+1)=D 2(t)=\bar{X} \cdot S 2+\bar{X} \cdot S 3=\bar{X}(Q 2+Q 3) \\
& S 3(t+1)=D 3(t)=X \cdot S 1+X \cdot S 3=X(Q 1+Q 3) \\
& Y(t)=S 0(t)=Q 0
\end{aligned}
$$

5. Convert a D-type flip-flop into a JK flipflop, using external gates. The gates can be derived by means of a sequential circuit design procedure starting from a state table with the D flip-flop output as the present state and its input as the next state and with J and K as circuit inputs.

Present State	Inputs		Next State
$Q(t)$	J	K	$D(t)$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

D

JK			
Q	00	0111	10
0		1	1
1	1)		1

$$
D=\bar{Q} J+Q \bar{K}
$$

