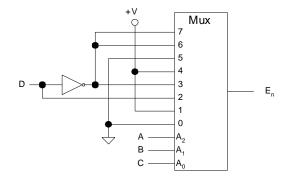
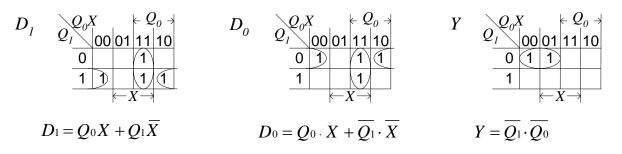

Hill EE 201 11/30/11

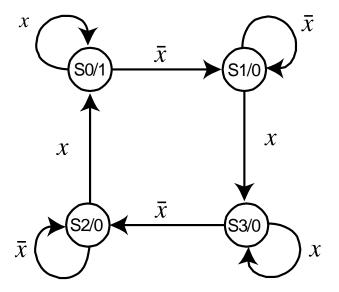
Decoder

Homework #5

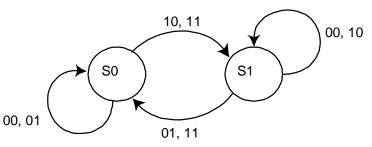


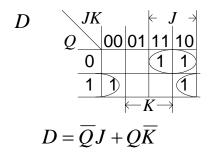

2. Implement the following Boolean function with an 8-to-1 line multiplexer and a single inverter: $F(A, B, C, D) = \sum m(2,3,5,6,8,9,12,14)$

Α	в	С	D	F	
0	0	0	0	0	F=0
0	0	0	1	0	
0	0	1	0	1	F=1
0	0	1	1	1	
0	1	0	0	0	F=D
0	1	0	1	1	
0	1	1	0	1	$F = \overline{D}$
0	1	1	1	0	I = D
1	0	0	0	1	F=1
1	0	0	1	1	
1	0	1	0	0	F=0
1	0	1	1	0	
1	1	0	0	1	$F = \overline{D}$
1	1	0	1	0	I = D
1	1	1	0	1	$F = \overline{D}$
1	1	1	1	0	I = D



Design a sequential circuit using two D flip-flops A and B and combinational logic. Your circuit
has one input X and one output Y, and is defined by the following state diagram — Traditional
Design Solution


Present State		Inputs	Next State	Output	
$Q_1(t)$	$Q_0(t)$	X	$D_0(t)$	$D_0(t)$	Y
0	0	0	0	1	1
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	1	0	0
1	1	1	1	1	0


 A sequential circuit has two flip-flops A and B, one input X and one output Y. The state diagram is shown below. Design the circuit with D flip-flops. — Design using One-Hot State Encoding

- $S0(t+1) = D0(t) = X \cdot S0 + X \cdot S2 = X(Q0+Q2)$ $S1(t+1) = D1(t) = \overline{X} \cdot S0 + \overline{X} \cdot S1 = \overline{X}(Q0+Q1)$ $S2(t+1) = D2(t) = \overline{X} \cdot S2 + \overline{X} \cdot S3 = \overline{X}(Q2+Q3)$ $S3(t+1) = D3(t) = X \cdot S1 + X \cdot S3 = X(Q1+Q3)$ Y(t) = S0(t) = Q0
- 5. Convert a D-type flip-flop into a JK flipflop, using external gates. The gates can be derived by means of a sequential circuit design procedure starting from a state table with the D flip-flop output as the present state and its input as the next state and with J and K as circuit inputs.

Present State	Inputs		Next State
Q(t)	J	K	D(t)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

