CECS 201 My Name The Date

Homework #2

1. Demonstrate by a proof by perfect induction the validity of the Second (Dual) Distributive Law: X+YZ=(X+Y)(X+Z)

X	Y	Ζ			
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

- 2. Prove the identity of each of the following Boolean equations, using algebraic manipulation. Do not forget to write the name of the law you are applying.
 - (a) $\overline{X} \cdot \overline{Y} + \overline{X} \cdot Y + X \cdot Y = \overline{X} + Y$
 - (b) $Y + \overline{X} \cdot Z + X \cdot \overline{Y} = X + Y + Z$
- 3. Reduce the following Boolean expressions to the indicated number of variables.
 - (a) $\overline{X} \cdot \overline{Y} + X \cdot Y \cdot Z + \overline{X} \cdot Y$ to three variables
 - (b) $\overline{W}X(\overline{Z} + \overline{Y}Z) + X(W + \overline{W}YZ)$ to one variable
- 4. Using DeMorgan's theorem, express the function: $F = A \cdot B \cdot C + \overline{A} \cdot \overline{C} + \overline{A} \cdot \overline{B}$
 - (a) with only OR and complement operations.
 - (b) with only AND and complement operations.
- 5. Obtain the truth table of the following functions, and express each function in sum-ofminterms and products-of-maxterms forms:

.

- (a) (XY + Z)(Y + XZ)
- (b) $(\overline{A} + B)(\overline{B} + C)$

Truth Tables for a) and b)

X	Y	Ζ	а		Α	В	С	b
0	0	0		-	0	0	0	
0	0	1			0	0	1	
0	1	0			0	1	0	
0	1	1			0	1	1	
1	0	0			1	0	0	
1	0	1			1	0	1	
1	1	0			1	1	0	
1	1	1			1	1	1	

(a) Sum of Minterms:

Product of Maxterms:

- (b) Sum of Minterms: Product of Maxterms:
- 6. For the Boolean function E and F, as given in the following truth table

x	Y	Ζ	E	F
0	0	0	1	0
0	0	1	1	0
0	1	0	1	1
0	1	1	0	1
1	0	0	0	0
1	0	1	1	0
1	1	0	0	1
1	1	1	0	1

- (a) Express E and F in sum-of-minterms algebraic form
- (b) Simplify E and F to expressions with a minimum number of variables.
- 7. Draw the logic diagram for the following Boolean expression. The diagram should correspond exactly to the equation. Assume that the complements of the inputs are not available. $A(B \cdot \overline{C} + \overline{B} \cdot C) + C(B \cdot D + \overline{B} \cdot \overline{D})$
- 8. Simplify the following expression, and implement it with NAND gates. Assume that both true and complement versions of the input variables are available.

 $F = W \cdot \overline{X} + W \cdot X \cdot Z + \overline{W} \cdot \overline{Y} \cdot \overline{Z} + \overline{W} \cdot X \cdot \overline{Y} + W \cdot X \cdot \overline{Z}$

9. Draw the NAND logic diagram for the following expression, using a multiple-level NAND circuit.

F = W(X + Y + Z) + XYZ

10. Convert the AND/OR/NOT logic diagram shown here to a) a NAND logic diagram and b) a NOR logic diagram

