
Finite State Machine

Design Steps

STEP 1: Based on the problem statement draw a top-level block diagram showing the inputs to
(what you have) and the outputs from (what you want) the digital logic device to be
designed. In many cases this may simply be a box with inputs and outputs. In any case
the FSM(s) should be identified with its inputs and outputs clearly defined.

STEP 2: Working from the problem statement and your top-level block diagram select a Mealy
or a Moore (Asynchronous or Synchronous) FSM and draw the corresponding block
diagram.

STEP 3: Design the corresponding state transition diagram based on the problem and the FSM
model selected. Verify that for each state all transition conditions are defined.

STEP 4: Assign binary codes to the states and, if needed, the input conditions.

STEP 5: Obtain the state transition table from the state diagram. Skip this step if you are
implementing One-Hot State Encoding.

STEP 6: Design the Next State Decoder

a) Draw a K-Map for each next-state column

b) Define groups and check unused states. If needed adjust group(s) to create a
stable design (i.e. design does not circulate among unused states) – Update
state diagram to show unused states.

c) Derive D Flip-Flop input equations from the maps.

One-Hot State FSM: “You only care about the arrows coming at you.”

STEP 7: Design the Output Decoder

a) Draw a K-Map for each output column

b) Define groups

c) Derive output equations from the maps.

STEP 8: Draw the Logic Diagram or write HDL Description.

STEP 9: Simulate (Functional and Inertial) your circuit.

STEP 10: Prototype your design.

NOTES:

a) Do not forget to show the reset state

b) For each state the next state must be defined for all input conditions associated
with the state.

Selecting a FSM Model

 Moore Mealy

Model Attributes Synchronous Asynchronous Asynchronous Synchronous

Simplicity very simple simple complex most complex

Stability very stable stable least stable stable

Speed – response to
change in input

average – next
clock cycle

slow – next
clock cycle
with delay

very fast –
current clock
cycle

average – next
clock cycle

Optimization –
maximum number of
outputs per state
n = state bits
i = inputs

n 2
n
 2

(n+i)
 2

(n+i)

FSM Design Examples

Based on the “Design Steps” previously provided, design the eight FSM problems described
below. Your team should provide the following:

In Class

 A system level block diagram clearly defining inputs and outputs.

 A model of your FSM with all components and busses (including size) identified.

 A drawing of your state transition diagram.

At Home

 From the state transition diagram fill-in the state transition table.

 From the state transition table, construct K-maps, and write the Boolean expressions for the
next state and output decoder circuits

1. Convert a D Flip-Flop into a JK Flip-Flop.

2. Convert a D Flip-Flop into a T Flip-Flop

3. You can electronically roll a die (design two and you can roll a pair of dice) by designing a
counter that counts 1 – 4 – 5 – 6 – 7 – 0. Assume a single input (roll) that when true causes
the die to be rolled. Design the FSM and determine if your FSM is stable (returns to a known
state).

4. To launch a rocket the fire control officer must throw the arm switch and depress the fire
button. The launch sequence is to be stopped if this exact sequence is not followed. Design
the fire control sequencer.

5. An cruise control for a car has three outputs: accelerate, decelerate, and constant_speed.
The FSM is modeled with four states (stopped, low, medium, and high); transitions between
states depend on the state and the control inputs (brake and accelerate). The brake overrides
the accelerator in the event both are asserted. If neither is asserted the cruise control outputs
constant_speed.

6. A serial packet of data always begins with the start nibble 0 – 1 – 0 – 1. Design a FSM to
detect the beginning of a serial packet and set a start flag.

7. An amusement ride operator has a button (0 = up, 1 = down) to toggle a stoplight (0 = green
light, 1 = red light). In addition a second output is sent to the ride control computer indicating
that a button-up event has occurred. Design this ride control sequencer.

clock

input

x = button

outputs

y = button-up

z = light

8. Design a FSM to play a simple game of Tic-Tac-Toe. In this educational version of the game,
the computer always goes first and takes square 8, the player must follow by taking
square 1. The numbering of the board is illustrated at right. To enter a move the
player sets three switches, allowing him to enter any one of the eight available
squares (0 to 7), and presses a move button. Although the board has nine squares,
the computer always takes the center square, leaving only eight. The computer output
includes 4 lines, allowing it to place it’s marker (traditionally an X) into any of the nine squares
comprising the board. In addition to these 4 lines the computer has 2 lines for indicating an
input error or a win condition. Do to the simplifying assumptions made in the order of play, the
game will always result in a win by the computer. For this problem you only need to complete
the steps up to and including writing the Verilog Behavioral Description.

0 1 2
7 8 3

456

