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Hollow-Core Dendrimers Revisited
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In revisiting the original argument of de Gennes and Hervet [J. Phys. (Paris) 44, L351 (1983)]
leading to ‘““hollow-core” dendrimers, we show that a self-consistent application of their model leads to
the “filled-core” model first elucidated by Lescanec and Muthukumar [Macromolecules 23, 2280
(1990)]. The monomer density falls off parabolically from the center of the dendrimer, and the tips are

distributed throughout the molecule.
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Dendrimers have received much attention since their
invention [1], and today offer single-molecule smart ma-
terials for temperature-gated catalysis [2], and drug de-
livery [3,4]. The location and profusion of functional tips,
with a distinctive, selective core cavity provide many
avenues for harnessing self-assembled structures [5,6].

Much of the initial interest in dendrimers focused on
their application as drug delivery agents, prompted by the
“hollow-core” model of de Gennes and Hervet [7] [see
Fig. 1(a)]. Based on an analysis of the Edwards self-
consistent field model, it was shown that for G genera-
tions of trifunctional junctions joined by flexible polymer
in a good solvent, the chain tips spontaneously segregate
to the spherical edge of the molecule, creating a dense
shell enclosing a diffuse core that could be filled with
small molecules.

Shortly after this prediction, in dynamic simulations
on dendrimers with very short spacers, Lescanec and
Muthukumar [8] found a very different behavior, that of
the “filled core.” The chain tips were not segregated to an
extremal zone but were distributed throughout the mole-
cule. Very near the core of the dendrimer, a usable region
of lower polymer density exists at some generations. This
physical core region little resembles the one originally
predicted and is suited mainly for steric-controlled ca-
talysis [9—11]. All of the theoretical and simulation ap-
proaches to the problem uniformly support the filled-core
picture, with the single exception of the initial work in
Ref. [7]. Even still, the experimental picture is not clear
[12], at least as far as the distribution of chain tips is
concerned.

The clash between the filled- and hollow-core pictures
has not impeded the development of dendrimers for spe-
cific applications. The differing predictions, after all,
operate in different regimes (with the hollow-core
model depending on flexible Gaussian spacers, while the
filled-core simulations modeled spacers only one or two
monomers in length). A large step toward resolving the
controversy was taken by Boris and Rubinstein [13], who
applied a numerical self-consistent field (SCF) method to
the flexible-spacer problem and found that high-G den-

015502-1 0031-9007/03/90(1)/015502(4)$20.00

PACS numbers: 61.25.Hq, 36.20.Ey

drimers are densest in their cores, with distributed tips.
This calculation began a shift in the application of SCF
methods from collective many-chain physics [14,15] to
single-chain physics [16,17]. The only weakness, and it is
certainly not a crippling one, of Ref. [13] is that it is not
directly comparable to that in Ref. [7], as it rests on a
different set of approximations.

We propose here to follow the de Gennes model, cor-
recting its major flaw, and show that the properly pre-
dicted dendrimer conformation in all models is that of the
filled-core. The hollow-core prediction in Ref. [7] rests
upon a reasonable, through incorrect, assumption that a
single conformation of the dendrimer dominates all sta-
tistical averages in the thermodynamic limit. Fixing the
flaw fills in the dendrimer core.

The essential problem is to determine the consequence
of the connectivity of the dendrimer, which naturally
tends to contract the overall spread of the molecule, and
the consequence of hard-core excluded-volume interac-
tions between the monomers. To be specific, let the den-
drimer consist of flexible polymer spacers composed of N
spheres of diameter a = 1. Asin Fig. 1, the dendrimer has
a regularly branched structure, with 2¢ free tips. For each

==

FIG. 1. (a) The hollow core conformation of a G4 dendrimer
polymer. (b) The filled core conformation. The central mono-
mer of the dendrimer is marked by the filled circle.
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monomer in the molecule let the chemical index, n, be the
fewest number of monomers connecting the given mono-
mer to any of the tips. Thus, each of the free ends has
n =0, and the central monomer on the dendrimer has
n = GN. Each monomer with the same 7 is statistically
equivalent. Following Ref. [7], we consider each of the
flexible strands to be essentially Gaussian, but interacting
with a position-dependent concentration of monomers
within the chain. The local concentration of monomers
biases these random walks to seek lower monomer
concentrations, thus swelling the overall size of the den-
drimer. We take a second virial approach to the excluded-
volume interactions:

U(r) = v,é(r), )

where U(r) is the free energy required to insert a mono-
mer at the position r in the dendrimer, while ¢(r) is the
average volume fraction at the position r given that the
center monomer on the dendrimer is held at »r = 0, and v,
is related to the excluded volume. Unless U(r) = const,
each strand in the dendrimer is not an ideal Gaussian
random walk but rather displays fluctuations around a
systematically varying path R(n) = r(n) + &(n). For the
moment, we focus on the mean path, r(n), for the strand,
and ignore the fluctuations, 6(n). Let the mth monomer on
a linear substrand have its mean position in the dendrimer
be r(m). This monomer is subject to two average tensile
forces from the chain segments on either side, these forces
being in magnitude approximately

dr
Fo=— 2
out dm Hm—1) ( )
and
dr
Fip=—— : (3)
dm r(m+1)

The difference in these tensions must be balanced by a
gradient in the monomer potential

d’r

— = VU(r), 4

= VU )
the continuum limit linear response force balance equa-
tion. Equation (4) holds at each nonjunction monomer in
the dendrimer, supplemented by 57’1 |,u=0 = 0 holding for
each of the 2¢ chain tips.

The junction points have two statistically equivalent
incoming chains leading outward to the free tips of the
dendrimer and one chain leading inward toward the
central monomer. Mechanical equilibrium then requires

dr —>5 dr
dm r(m+1) dm

(&)

r(m—1)

so that the chain extension is discontinuous at the
junctions.
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This set of equations enforcing mechanical equilib-
rium on each chain segment and junction actually arises
from a variational principle on the overall dendrimer free
energy [18]. Indeed, mechanical equilibrium is essen-
tially enforced through

_ d;'; [ f(n)%} + F)VU() =0, ©)

where the weighting function f(n) imposes the doubling
of the chain tension at each of the junction points. We let

f(n) =2° when 0 <n <N, 7

f(n) =2 when (G — )N <n <GN. (8)

Thus, f(n) counts the number of statistically equivalent
monomers at each n. A further approximation can be
made, as in Ref. [7],

fln) = 2620-0m/(Em), ©)

smoothing out the discontinuities of f(n).
Equation (6) is thus generated as the classical equation
of motion for the action

dz

str) = [ anfn)] 5 |5

2
+U[r(n)]} (10)

S[r(n)] is the Edwards single-chain free energy, and a
polymer obeying Eq. (6) represents the saddle-point ap-
proximation to the full partition function. If the value of
this saddle-point free energy evaluated self-consistently
is much larger than unity, then 8(n) above may be safely
ignored. This approach has been successful in determin-
ing the microsegregation of dendrimer-dendrimer copoly-
mers [19,20] and the behavior of dendrimer polymer
brushes [18].

Thus, the heart of the matter is the determination of the
self-consistent monomer potential, or in light of Eq. (1),
simply the monomer density as a function of distance
from the core. The calculation of Ref. [7] starts with the
force balance in Eq. (6) and further assumes that there is a
unique “typical” trajectory r(n) which dominates all
statistical averages, and from which the self-consistent
U(r) can be determined. This program of calculation was
highly successful in determining the properties of a
strongly absorbed polymer layer [21], and rests on the
physically reasonable assumption that a unique ground-
state, self-consistent trajectory can be found for the ac-
tion S[r]. If a degeneracy develops, then more of these
monotonic trajectories have to be considered in the sta-
tistical averages. Up to the assumption that the ground
state is unique, Hervet and de Gennes were led directly to
the hollow-core scenario, and this model still carries
significant weight as an a priori prediction of flexible
dendrimer conformations.
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The reality, as below, is that there are infinitely many
degenerate trajectories for the true self-consistent poten-
tial, U(r). The situation mirrors that between the
Alexander polymer brush and the parabolic brush of
Refs. [22,23]. Following the development for the linear
polymer brush, let us suppose that the correct potential is
harmonic (so that each trajectory will arrive at r =0
after the proper “time” = GN has been played out):

>
U(")Ez—Nz(RQ_Vz), (11)

where we introduce the dimensionless angular frequency
of the oscillator w and the overall size of the dendrimer R.
Using a dimensionless measure of “time” (i.e., chemical
index), u = n/N, the equation of motion for the polymer
trajectory becomes [Eq. (6) with Egs. (9)—(11)]
d’r dr

the equation for a curiously damped linear oscillator. In
this case, the drag coefficient b = log2(1 — 1/G) serves
to further accelerate the motion. The fact that Eq. (11)
represents an equal-time potential is easy to show. Subject
to the initial conditions, r(0) = r, and ;_; lo = 0, we have

b
r(w) = roeh#ﬂ[coshﬂ — Zginn2” } (13)
2 v 2

where we have introduced the discriminant of Eq. (12),
v?> = b? — 4w?. The equal-time property is maintained
when r(u = G) = 0 for any choice of r,, which for this
linear equation and solution is therefore b = v cotGv/2,
which may be nearly analytically inverted [24]. The
resulting w(G) is shown in Fig. 2. S[r] evaluated for
Eqg. (13) with w(G) as in Fig. 2 has the single-chain
free energy independent of r,. Thus, chains with each
and every 0 <r, <R contribute to all statistical aver-
ages, filling in the dendrimer core.

The physical size of the dendrimer can easily be de-
termined once w(G) is known. The maximum value taken
by the monomer volume fraction ¢, satisfies ¢, =
b<R. As all of the monomers on the chain are to be

2N?
accounted for, the overall size of the dendrimer is

1526 — 1)
27w

1/5

R= ‘ vl N3/, (14)

The G dependence of the prefactor in Eq. (14) is shown in
the inset to Fig. 2.

It would seem that the self-consistent potential is nec-
essarily parabolic for all G, resulting in a parabolic
density profile for the dendrimer molecule, a novel pre-
diction agreeing well with numerical studies [11,13].
The proviso is that chain tips must exist in all regions 0 <
r <R, and the overall saddle-point free energy must be
large. If self-consistency requires that ends be excluded
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FIG. 2. w(G) for G =1,...,20. The inset is the dimension-
less size of the dendrimer, up to a prefactor scaling as N3/°p1/5,
G =5 (marked as the vertical dashed line) is the physical
region of the calculation for which the end density is non-
negative at all r.

from some zone (““dead” zones, or end-exclusion zones),
then another self-consistent potential must be sought [25].
We have carried this out numerically and show in Fig. 3
that as long as G = 5 the required end distribution is non-
negative. Also shown in Fig. 3 is the end distribution
calculated in a Scheutjens and Fleer lattice self-consistent
calculation for G = 10 dendrimers with N = 60 flexible
spacers, and the inset is the overall monomer density for a
G = 8 dendrimer with highly stretched, short spacers,
N = 4. The small dip in monomer density at the core of
the molecule is characteristic of small-spacer, high gen-
eration dendrimers as in Ref. [11], explicitly not the limit
considered by Ref. [7] or this work.

Thus, for large G, and long enough N for Gaussian
statistics to hold for individual chain lengths, the cross
section density profile for flexible dendrimer molecules is
parabolic and achieves its maximum value at the center,
decreasing toward the edge of the dendrimer. Our con-
clusions are drawn almost completely without resorting
to numerical work.

We have appropriately generalized the original de
Gennes and Hervet hollow-core dendrimer model and
come to the conclusion that their model analyzed consis-
tently agrees with the simulations of Lescanec and
Muthukumar. This argument can now be placed to rest,
or rather back into the context of how to force the tech-
nologically intriguing Alexander-like packing of chain
ends. This is not a new conclusion [8,13], but now it
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FIG. 3. The distribution of free ends for a dendrimer of G =
2-5 are plotted. Only at G = 5 and higher does the end-density
profile become non-negative at all r. Thus, for G =5 the
concentration profiles are parabolic. The end distribution for
G = 10 dendrimers with flexible N = 60 spacers has been
calcualted in a lattice self-consistent field and agrees well
with the present model. Shown in the inset is the density
distribution for a G = 8 dendrimer with N = 4 spacers, again
as calculated in the self-consistent lattice model. The axis of
revolution for the full three-dimensional structure is shown and
compares well with the characteristics of short-spacer, high
generation dendrimers as in Ref. [11]. Only at high N does the
parabolic picture hold, precisely the limit originally conceived
in Ref. [7].

appears that all theoretical notions about flexible den-
drimers lead to the same filled-core conclusion.

We gratefully acknowledge the support of the Research
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