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Spontaneous Chirality in Simple Systems
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Two simple examples of spontaneous chiral symmetry breaking are presented. The first is close-packed
cylindrically confined spheres. As the cylinder diameter is varied, one obtains a variety of chiral phases.
The second example involves unconfined dipolar particles with an isotropic attraction, which also exhibits
chiral ground states. We speculate that a dilute magnetorheological fluid film, with the addition of smaller
particles to provide an attractive entropic interaction, will exhibit a chiral columnar ground state.

PACS numbers: 61.44.–n, 83.80.Gv
The excluded volume interaction is responsible for
a remarkable range of collective structures and pattern
formation, from solvation shells in simple fluids [1], the
crystallization of hard-sphere fluids [2], solvent swelling
of polymers [3] and its screening in concentrated solution,
and lyotropic liquid crystallinity [4]. These all come about
by requiring that no two physical bodies overlap. The
excluded volume interaction is thus merely a constraint,
which may be supplemented by further constraints, as in
films of hard spheres [2,5]. Here we look at structures
caused by hard-sphere exclusion and cylindrical con-
finement on the one hand, and pairwise anisotropic (yet
achiral) interactions on the other. In both cases, we find
evidence of spontaneous twisting conformations (see
Fig. 1), and the spontaneous breaking of chiral symmetry.
Chirality is all around and even within us. Despite the fact
that all atoms and many small molecules are achiral, i.e.,
there is an improper rotation which maps each to itself,
our bodies are filled with chiral organic molecules, and
the handedness of each molecule is the same for each and
every living creature on Earth. The fact that, e.g., DNA
is right-handed is possibly a complicated manifestation of
this symmetry breaking [6].

The first model is a hard-sphere fluid at zero tempera-
ture, maximally packed into an infinite, hard, and smooth
cylinder. Hard spheres (“balls”) are packed as densely as
possible into the cylinder; effectively they are at infinite
pressure. The cylinder axis is along ẑ and its diameter is
D in units of the ball diameter. The resulting structure has
a volume fraction depending only on the degree of confine-
ment, D. For D � 1 the balls form a single infinite chain,
clearly achiral. For D ! ` the balls arrange themselves
in one of the two maximum volume-fraction structures,
face-centered cubic (fcc) or hexagonal closed-packed (hcp)
[2]. (This degeneracy results in neither a pure fcc nor a
pure hcp state; next-nearest neighbor interactions can lift
this degeneracy and suppress the defects.) These uncon-
fined structures are also achiral.

To determine the situation between these two limits,
we applied simulated annealing. For fixed D and num-
ber of balls N , we determined the smallest length cylinder
capable of accommodating all N balls, and thus the maxi-
0031-9007�00�85(17)�3652(4)$15.00
mal volume-fraction configuration. Increasing N we were
able to extrapolate N , L ! ` for fixed D. Then D was
increased by a small amount and these steps were carried
out again. In every case we considered (1 # D # 1 1

2�
p

3 � 2.155), the structure was able to be accurately
described by identical, staggered, helices of balls in con-
tact with the cylindrical surface. There were relative shifts
in azimuthal angle and in z from one helix to another. In

FIG. 1. Close-packed configurations of hard spheres confined
inside a cylinder with ratio of diameters given by D. Six phases
were found in the range 1 , D � 2.155, five of them chiral.
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terms of cylindrical coordinates (rn, zm, fn),

rn �
D 2 1

2
,

zn � na 1 b , (1)

fn � nc 1 d ,

where n labels balls on the helix, a and c are the same for
all balls and for all helices, and b and d vary from one
helix to another.

To accelerate convergence in our simulated annealing
runs, we allowed the balls to pass through each other with
an overlap penalty. As the temperature tended to zero, the
penalty suppressed overlap entirely. (This was checked at
the end of each run.) The pattern of ball positions was
easily identified to be of the form (1), and the parame-
ters were determined from a simple analytic calculation
using the linking matrix, i.e., the pattern of interball con-
tacts, determined from the numerical configuration. These
values were then checked against the numerical results.
As N was increased, the discrepancy between the analytic
and numerically obtained parameters decreased, typically
to one part in 105 away from the ends of the cylinder, where
boundary effects were observed. To check that the state of
maximum volume fraction had indeed been reached, we re-
peated the simulations many times with no states of higher
volume fraction appearing. An additional experimental but
qualitative check involved placing small uniform balls in a
cylinder and shaking the cylinder until order appeared.

Figure 1 shows these closed-packed structures in the
range 1.8 # D # 1 1 2�

p
3. There were six distinct

phases found; between each some derivative of the volume
fraction with respect to D is discontinuous. The achiral
phase from 1 # D # 1 1

p
3�2 � 1.866 (I) consists of

a zigzag planar arrangement of balls which can also be de-
scribed as a single helix such that the change of azimuthal
angle from one ball to the next is equal to p . This phase is,
of course, achiral. At D � 1 1

p
3�2 the gaps between

the next-nearest neighbor balls vanish. To maintain maxi-
mum volume fraction with D * 1 1

p
3�2, the third ball

falls off to the left or to the right with respect to the first,
determining the chirality. Although the chiral phase from
1 1

p
3�2 , D , 1 1 4

p
3�7 � 1.99 (II) appears to

consist of two helices winding around each other, it can be
described algebraically as a single helix. This is no longer
the case for 1 1 4

p
3�7 , D , 2 (III), which consists

of two staggered helices. D � 2 is an isolated case con-
sisting of achiral “doublets.” The phases 2 , D , 1 1

3
p

3�5 � 2.04 (IV) and 1 1 3
p

3�5 , D & 2.14 (V) are
also described algebraically by two staggered, identical
helices but are distinguished by the “linking pattern,” i.e.,
the pattern of contact neighbors of each ball. The state
from 2.14 & D , 1 1 2�

p
3 � 2.155 (VI) is described

algebraically by three staggered, identical helices. Finally,
at D � 1 1 2�

p
3 � 2.155 there is an isolated achiral

“triplet” state. We did not proceed beyond D � 2.155.
Each of the chiral configurations shown in Fig. 1 is one
of a pair of structures with opposite handedness. Each
handedness appears roughly half the time in our simula-
tions, and both have the same volume fraction. This is
the nature of the spontaneous symmetry breaking of chiral
symmetry, demonstrated here in the incompressible limit
of the hard-core, cylindrically confined solid.

Figure 2 shows the volume fraction as a function of D
over approximately the same range as Fig. 1. At any D, it
is impossible to fill the cylinder more densely with spheres.
Any increase in the internal sphere density violates some
hard-core constraint in the system. Four of the five struc-
tural transitions are clearly evident as cusps; the one at
D � 1 1 4

p
3�7 � 1.99 is not as obvious. For refer-

ence, the volume fraction of fcc and hcp phases is approxi-
mately 0.74.

Figure 3 presents a chiral order parameter, j�D�
that is a cousin of one derived by Harris, Kamien, and
Lubensky [7]. Defining rlm �

P
i Ylm�ui , fi� [as in their

Eq. (9) but without the factors of jrij], where i labels the
balls and the Ylm are spherical harmonics, we let Cl1l2L �P

mn C�l1l2L; mn�rl1,m rl2,n r
�
L,m1n , with the C�l1l2L; mn�

appropriate Clebsch-Gordan coefficients (see [7]).
Specifically, we define j �

p
jC2

234j 1 jC2
346j 1 jC2

456j.
This choice is certainly not unique, but does have the
property that j . 0 implies that the structure is chiral, and
the size of j measures the amount of chirality. Figure 3
shows that the only achiral states in the range studied
are the achiral doublet and achiral triplet states at D � 2
and D � 1 1 2�

p
3, respectively. The discontinuity in

j at D � 2.14 accompanies a discontinuous change in
structure.

There might be physical applications of the structures
discovered here. For example, typical nanotubes have
inner diameters of 3 6 nm, and methods for filling them
with various molecules and even small crystals have been
available for some time [8]. By packing a nanotube with
weakly interacting molecules or a mesoscopic tubule with
weakly interacting colloids, chiral structures including
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FIG. 2. Volume fraction as a function of D.
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FIG. 3. Chiral order parameter as a function of D. Here we
plot the chiral order parameter, j, defined in the text, vs the de-
gree of confinement, D, for cylindrically confined hard spheres.
In all cases, j was calculated for 15 consecutive spheres in the
analytically determined close-packed structure. The structures
are achiral (j � 0) only for D # 1 1

p
3�2, for D � 2, and

for D � 1 1 2�
p

3.

chiral filters might be constructed with precisely designed
properties. Such chiral filters could be of use in the
physical separation of enantiomers, and facilitate the
inorganic synthesis of bioactive compounds [9].

It turns out that packing models similar to the one dis-
cussed above are found in the literature of phyllotaxis, the
study of helical patterns in sunflowers, pineapples, pine
cones, etc. [10]. In Ref. [10], however, it was assumed
that the closest packing state could be described mathe-
matically by a single helix, which is not generally the
case. Also, when D becomes large enough so that not
every sphere in the close-packed configuration is in con-
tact with the cylinder surface, all contact with the cylinder
phyllotaxis models is lost. We have not carried out simu-
lations to such large D, however.

The other model we consider in this paper consists of
hard-sphere particles with embedded dipole moments all
held parallel to the z axis, and short-ranged attractive
interactions,

U � Uhard sphere 1 Udipole 1 Uattr . (2)

An approximate example of such a system consists of
magnetorheological (MR) particles with additional short-
ranged, attractive interactions generated by the addition
of smaller particles [11]. In the absence of boundaries,
setting Uattr � 0 in (2) for less than 30 particles gives a
ground state consisting of all the available particles form-
ing a single straight chain along the z axis. Uattr fi 0 tends
to break the chain and cause columns to form. Through nu-
merical simulations we have found that a certain range of
choices for Uattr results in ground states which consist of
helices of particles similar to those in Fig. 1. The particles
thus arrange themselves to have more neighbors, lowering
the energy of the system.
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We have tried a variety of models for the short-ranged
interaction, but present only one class here. For simplicity
we work in units for which the ball diameter and the dipole
moment of the particles are set equal to 1. As a function of
the distance between two balls, r , let the pairwise attractive
potential be

Uattr�r� �

(
2e

R2r
R21 , 1 # r # R

0 , otherwise

)
, (3)

with e $ 0 and R $ 1 controlling the strength and range
of the interaction. Here Udipole �

r223z2

r5�2 if the particles
are separated by z in the dipole direction. The model has
no chiral interactions and no boundary conditions. The
simulations described here were carried out with 15 balls.
Using this small number made it feasible to find the exact
ground state for many different choices of e and R by
simulated annealing, despite the presence of an extremely
rough energy landscape.

Let us first examine the limiting cases. For e ! 0 the
attractive interaction is turned off, and the ground state is
a single achiral chain, independent of R. For e ! ` the
dipolar interaction is turned off and an achiral cluster is
obtained, for all R. For R ! ` the attractive interaction
is a constant for nonoverlapping particles, independent of
e, and we are back to the single achiral chain. Thus any
chiral phase must occur between these extremes.

Figure 4 shows the approximate phase diagram for
15 balls, exhibiting a region of chiral ground states. Most
of these states consist of three chains winding around
each other, with the number of balls in each chain and
the detailed structure varying with the parameters e and
R. Thus, we suggest that if one adds excess surfactant
(or other small particles) to a dilute MR fluid film [11],
a chiral columnar phase may appear within a range of
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FIG. 4. Range of potentials of the form (2) and (3), in which
spontaneous chiral symmetry breaking occurs. Three sample
sphere configurations are indicated (two chiral, one achiral). The
bold line contains all the chiral states, and is merely meant to
guide the eye. The tiny open circles indicate achiral states as
determined by simulation. The size of the chiral order parameter
is roughly indicated.
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parameters. Our purpose in specifying films, rather than
unconfined droplets, is simply to keep the columnar
clusters finite. It is interesting to note that some chiral
MR columns have been observed in simulations and
experiments [12,13], but there is no evidence that these
were metastable [12]. It is therefore probable that the
ground state of an MR fluid film is chiral only in the
presence of an additional attractive interaction.

One might criticize the relevance of our two models to
chiral symmetry breaking, as follows. The first model
is one dimensional, and therefore exhibits a symmetry-
breaking phase transition only in the unphysical limit of
infinite pressure or zero temperature. The second model,
with a single cluster, involves only a finite number of par-
ticles, and hence no true phase transition is possible. While
these statements are certainly true, one can easily define a
chiral correlation length in terms of a local version of the
order parameter j (above). Real systems are, in fact, fi-
nite, and if the chiral correlation length exceeds the size
of the system, spontaneous chirality will occur, at what-
ever temperature. This is presumably how chiral molecules
such as amino and nucleic acids form naturally from essen-
tially achiral atoms. Furthermore once chiral clusters are
formed, intercluster interactions will in general depend on
whether the clusters have the same or different chirality.
Thus, if these chiral building blocks are tightly bound, one
can get extended chiral phases in two and three dimensions,
for example, in chiral nematic and cholesteric liquid crys-
tals, and perhaps in the modified MR fluid film described
above.

We speculate that many examples of spontaneous chi-
ral symmetry breaking in physical systems at the molecu-
lar and the mesoscopic scale are a result of competing
interactions or boundary effects, similar to those associ-
ated with the models discussed here. One possible ex-
ample involves the synthesis of polyisocyanates. These
helical homopolymers can be synthesized with no intrinsic
(chemical) chirality, yet nevertheless spontaneously form
left- and right-handed helices [14]. Another possible ex-
ample involves chiral tubule phospholipids which in their
initial stages form ribbonlike structures in a manner com-
patible with chiral symmetry breaking [15]. Although the
large molecular building blocks in this example have a
small chiral component, roughly equal numbers of left- and
right-handed inner tubule layers form. It is therefore likely
that the chirality of the building blocks play little role in
this initial and rapid stage of tubule formation, and the ori-
gin of the chirality is spontaneous symmetry breaking due
to packing and/or interactions.
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cussions. This work was supported in part by National
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California State University.

Note added.—While making final revisions, three rele-
vant papers have come to our attention, two of them
published very recently. In Ref. [16], simulations are
presented that suggest that extremely thin aluminum
and lead wires could be chiral, and in Ref. [17], chiral
gold wires are experimentally realized. In Ref. [18],
evidence of intense optical activity in small gold clusters
is presented. We feel that our work provides additional
evidence of the ubiquitous nature of such chiral states due
to packing and/or a variety of achiral interactions.
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