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ABSTRACT  

Ontologies support knowledge discovery, sharing and reuse among people and enable 

semantic interoperability between computer-based systems. To establish 

correspondences between knowledge concepts represented in ontologies, ontology 

mapping is at the heart of dealing with heterogeneity on the semantic web. A great deal 

of effort has focused on the matching of ontologies that are written in the same natural 

language and various tools have been developed to facilitate this monolingual ontology 

matching process. However, as knowledge and knowledge representations are not 

restricted to the usage of a single natural language, to make use of knowledge bases 

across natural language barriers, matching tools and techniques must be able to work 

with ontologies that are written in heterogeneous natural languages. This research 

identifies key challenges, tools and techniques to support the process of cross-lingual 

ontology mapping between independent ontologies that are written in diverse natural 

languages. One approach to cross-lingual ontology mapping (CLOM): the translation-

based approach, is to use translation techniques to convert a cross-lingual mapping 

problem into a monolingual mapping problem which can then be solved via existing 

monolingual matching tools. However, noise can be introduced during the translation 

process which leads to poor mapping quality in the subsequent monolingual matching 

step. This thesis aims to address this challenge faced by translation-based approach to 

cross-lingual ontology mapping by proposing the concept of appropriate ontology label 

translation (AOLT). Appropriate translations in the context of cross-lingual ontology 

mapping are those translations that are most likely to maximise the success of the 

subsequent monolingual ontology matching step. In particular, this thesis presents two 

realisations of the AOLT concept, which have been integrated in two Semantic-

Oriented Cross-lingual Ontology Mapping systems: SOCOM and SOCOM++. It is 

shown through the evaluations of SOCOM and SOCOM++ that the proposed AOLT 

concept is effective at improving CLOM quality compared to the baseline system. A 

major contribution of this thesis is the AOLT concept, its demonstration and evaluation. 

The proposed AOLT concept distinguishes translations that take place for the purpose 

of cross-lingual ontology mapping and those that take place for the purpose of 

localisation. This AOLT concept is the first attempt that aims to improve mapping 

quality in translation-based cross-lingual ontology mapping systems.  
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1 INTRODUCTION 

1.1. Chapter Overview  

This chapter presents an overview of this thesis. In particular, the motivation of this 

research is discussed in section 1.2. The research question addressed by this thesis is 

presented in section 1.3. A list of objectives and goals derived from this research 

question are discussed in section 1.4. The technical approach undertaken for this 

research is presented in section 1.5, followed by a discussion of the contributions in 

section 1.6. A glossary of terminologies used in this thesis is included in section 1.7. 

Finally, section 1.8 presents an overview of the remaining chapters of this thesis.  

1.2. Motivation  

Berners-Lee et al. define the semantic web as “an extension of the current web in which 

information is given well-defined meaning, better enabling computers and people to 

work in cooperation” [Berners-Lee et al., 2001]. Comparing to the current web, where 

information is presented for humans to read and understand, on the semantic web, 

information is encoded in semantics that can be read and understood by machines. 

Ontologies, as specifications of conceptualisations [Gruber, 1993], are recognised as a 

“basic component of the semantic web” in [Berners-Lee et al., 2001] and have been 

widely used in knowledge management in recent years [Jurisica et al., 2004].  

One approach to ontology construction, is to use language neutral identifiers to 

label concepts [Nirenburg & Raskin, 2001], whereby ontological resources are natural 

language independent. However, this view is debatable. For instance, as Bateman points 

out “the path towards viable ontologies is one that is irreconcilably connected to natural 

language” [Bateman, 1993]. Also in practice, natural language labels are commonly 
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used in ontological resource identifiers as seen in [Noy & McGuinness, 2001; Horridge 

et al., 2004]. For instance, figure 1-1 presents a snippet of the pizza ontology1 used in 

the Protégé tutorial [Horridge et al., 2004] where a class is labelled with CheeseTopping 

in natural language. As a result of the use of natural languages in resource naming 

during ontology development, ontologies that are labelled in diverse natural languages 

are increasingly evident. For instance, at the time of this writing, the OntoSelect 

Ontology Library2 reports over 25% of 1530 ontologies indexed are written in natural 

languages other than English.  

<owl:Class rdf:about="#CheeseTopping"> 
<rdfs:label xml:lang="pt">CoberturaDeQueijo</rdfs:label> 
<rdfs:subClassOf> 
<owl:Class rdf:about="#PizzaTopping"/> 
</rdfs:subClassOf> 

</owl:Class> 

Figure  1-1. Natural Language Content as Resource Identifiers 

Given ontologies that are likely to be authored by different actors using different 

terminologies, structures and natural languages, ontology mapping - the process of 

generating correspondences between ontological resources [Euzenat & Shvaiko, 2007] - 

has emerged as a way to achieve semantic interoperability. To date, research in the field 

of ontology mapping has largely focused on dealing with ontologies that are labelled in 

the same natural language3, little research has focused on providing assistance and 

support in mapping scenarios where the ontologies involved are labelled in different 

natural languages. The issue with current matching techniques is that they often rely on 

lexical comparisons made between resource identifiers, which limits their deployment 

to ontologies labelled in the same natural language or at least in comparable natural 

languages4. For example, a match may be established between a class <owl:Class 

rdf:about="#Cheese"> in the source ontology and a class <owl:Class 

rdf:about="#cheese"> in the target ontology (i.e. both ontologies are in English). 

However, when lexical comparison is not possible between two natural languages (e.g. 

English and Chinese from different language families), a match to the class 

<owl:Class rdf:about="#奶酪"> in the target ontology would be neglected given 

                                                 
1 http://www.co-ode.org/ontologies/pizza/2007/02/12/pizza.owl 
2 http://olp.dfki.de/ontoselect?wicket:bookmarkablePage=:de.dfki.ontoselect.Statistics 
3 A survey of monolingual matching tools is presented in [Euzenat & Shvaiko, 2007 chapter 6], example 
tools can be found in appendix B and a discussion can be found in chapter 2, section 2.5. 
4 An example of comparable natural languages can be English and French, which both belong to the same 
Germanic language family. Another example is Italian and German, though the former belongs to the 
Romance language family and the latter belongs to the Germanic language family, however, they are 
both alphabetic letter-based hence have comparable graphemes that can be analysed using string 
comparison techniques such as edit distance. An example of natural languages that are not comparable in 
this context can be Chinese and English, where edit distance is not applicable since the graphemes in the 
former is logogram-based and the graphemes in the latter is alphabetic letter-based. 
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monolingual matching tools. Even though multilingual support can be provided to 

ontologies via language tagging to assist monolingual matching tools without changing 

the natural language segments in the resource identifiers, this form of assistance may 

not always be available to every mapping scenario. For example, in figure 1-1, 

<rdfs:label xml:lang="pt">CoberturaDeQueijo</rdfs:label> tags the label of 

the CheeseTopping class with CoberturaDeQueijo in Portuguese. Assuming the other 

ontology is in Portuguese, the <rdfs:label> element content may then be used by 

monolingual matching tools instead of the class identifier to generate matches in this 

case. However, such an approach requires all the resources in a given ontology to be 

tagged with target natural language content, which may be a difficult requirement. To 

the best of this author’s knowledge, mapping tools that use multilingual resource 

tagging are not yet available.  

Given the limitations of existing matching tools that focus on mostly monolingual 

matching processes, there is a pressing need for the development of matching 

techniques that can work with ontologies in different natural languages. One way to 

enable semantic interoperability between ontologies in different natural languages is by 

means of cross-lingual ontology mapping. In this thesis, cross-lingual ontology 

mapping (CLOM) refers to the process of establishing relationships among ontological 

resources from two or more independent ontologies where each ontology is labelled in 

a different natural language.  

A popular approach [Zhang et al., 2008; Bouma, 2010; Wang et al., 2009; Trojahn, 

2010] to achieve CLOM is to use translation techniques with the goal of converting a 

cross-lingual mapping problem into a monolingual mapping problem which can then be 

solved by state of the art monolingual ontology matching (MOM) tools (for a detailed 

discussion, see chapter 2, section 2.5). This translation-based CLOM process can be 

summarised as follows: given ontologies O1 and O2 that are labelled in different natural 

languages, the labels of one of them, for example, O1, are first translated into the natural 

language used by O2. As both ontologies are now labelled in the same natural language, 

the mappings between them can then be created by simply applying monolingual 

ontology matching techniques. The intermediary step involving the translation of 

ontological resource labels is often achieved by using machine translation (MT) 

techniques. Various techniques [Clark et al., 2010] such as statistical MT and rule-

based MT have been developed, which aim to improve the quality of translation via 

word sense disambiguation [Navigli, 2009]. More importantly, MT tools are intended to 
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generate the most accurate translations in the linguistic sense, which is not necessarily a 

requirement in CLOM. To achieve CLOM, translation is merely an intermediate stage 

to the actual goal which is generating mappings between ontological resources. 

Consequently, translating the labels of the source ontology is not solely concerned with 

finding linguistic equivalents in the target natural language, but also finding translations 

that can lead to the discovery of quality mappings.  

There can be various ways to express the same or a very similar concept in many 

natural languages. A simple example of this is: the term Ph.D. candidate and the term 

doctoral student can both describe someone who is pursuing an academic degree of 

Doctor of Philosophy. Envision this in the context of cross-lingual ontology mapping, 

assuming the target ontology is labelled in English and the source ontology is labelled 

in a natural language other than English. For an ontological resource in the source 

ontology, its English translation can be Ph.D. candidate, it can also be doctoral student. 

But which one of these candidate translations is more appropriate in the given mapping 

scenario? To answer this question, we would ideally like to know which candidate 

translation will lead to a successful mapping given that an equivalent semantic resource 

is presented in the target ontology. This translation selection process differs from 

traditional word sense disambiguation (WSD) in the context of natural language 

processing, as WSD is “the association of a given word in a text or discourse with a 

definition or meaning (sense) which is distinguishable from other meanings potentially 

attributable to that word” [Ide & Véronis, 1998]. In the context of translation-based 

CLOM, the outcome of the mapping process is conditioned on the translations selected 

for the given ontology resources. In order to generate quality mapping results, 

translations must be selected appropriately. This idea of using appropriately selected 

translations to assist MOM tools in the CLOM process is the focus of this thesis, and is 

validated in a series of experiments.  

1.3. Research Question  

This research investigates the extent to which machine translation (MT) and 

monolingual ontology mapping (MOM) techniques can be incorporated to support 

the generation of quality mapping results in the process of cross-lingual ontology 

mapping (CLOM).  
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As introduced earlier, CLOM refers to the process of establishing relationships 

among ontological resources from two or more independent ontologies where each 

ontology is labelled in a different natural language. To measure mapping quality, 

evaluation metrics such as precision, recall, f-measure, paired t-test, mean and standard 

deviation are used. Details of these metrics are presented in chapter 2, section 2.7. 

In computer science, Gruber’s definition of an ontology as “explicit specification 

of a conceptualisation” [Gruber, 1993] is widely accepted. Examples of ontologies 

include folksonomies, lexicon databases, directories, thesauri and formal ontologies, as 

discussed in [Euzenat & Shvaiko, 2007, p.29]. The focus of this Ph.D. is formally 

defined ontologies that follow the Resource Description Framework5 (RDF) schema or 

the Web Ontology Language6 (OWL) specification. The focus of the CLOM process 

presented in this thesis is the generation of correspondences between ontological 

resources in formally defined multilingual ontologies. In this thesis, multilingual 

ontologies refer to two (i.e. a pair of) or more (i.e. a group of) independent ontologies 

containing resources that do not share the use of a common natural language. It does 

not refer to ontologies that contain resources with multiple natural languages at once 

(such as the bilingual thesaurus presented in [Shimoji et al., 2008]). In addition, these 

ontologies have not been linguistically enriched (e.g. the ontological resources are 

associated with linguistic information as presented in [Pazienza & Stellato, 2006a]), nor 

do they have multiple multilingual natural language content associated with the same 

ontological resource (such as the example shown in figure 1-1). 

1.4. Objectives and Goals 

To address the research question discussed in section 1.3, the following objectives have 

been derived: 

• Conduct reviews on the state of the art in cross-lingual ontology mapping, 

machine translation, monolingual ontology mapping and current approaches 

to the evaluation of mapping results. 

• Design and develop a process specifically suited for translations carried out 

for the purpose of CLOM and implement a set of tools to support this 

translation process in order to achieve CLOM results via MOM techniques. 
                                                 
5 http://www.w3.org/TR/rdf-schema 
6 http://www.w3.org/TR/owl-features 
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• Evaluate the quality of the mappings generated using the set of tools in 

CLOM scenarios and demonstrate the use of the set of tools in a real-world 

application.  

1.5. Technical Approach  

A state of the art review (discussed in chapter 2) is conducted first in the field of cross-

lingual ontology mapping, and a popular approach is identified. This approach to 

CLOM uses machine translation as a means to turn a cross-lingual mapping problem 

into a monolingual mapping problem which can then be solved by monolingual 

ontology matching tools. Surveys are thus carried out on the state of the art in MT and 

MOM, where appropriate tools to assist the CLOM process are identified. A baseline 

system (discussed in chapter 3) is implemented based on this identified approach, and 

evaluated in a set of experiments involving ontologies labelled in Chinese and English. 

The findings from the experiments suggest that translation noise can have a negative 

impact on the subsequent monolingual matching step, which can lead to poor mapping 

quality as a result. 

Based on this finding, the concept of appropriate ontology label translation 

(AOLT) was developed to facilitate the translations carried out in the context of CLOM 

(discussed in chapter 4). To realise the proposed AOLT concept, the AOLT process is 

then developed. The outcome from the AOLT process is referred to in this thesis as the 

AOLT results. A definition of the AOLT concept is presented in chapter 4, section 4.2. 

The AOLT concept aims to select appropriate ontology label translations, where the 

appropriateness of a translation is determined by its likelihood to lead to a successful 

mapping (given that such a mapping exists in the given CLOM scenario). The goal is to 

select translations from a pool of candidate translations that are most likely to maximise 

the matching ability of the subsequent monolingual matching techniques. To 

demonstrate the AOLT concept in the process of achieving CLOM, the Semantic-

Oriented Cross-lingual Ontology Mapping (SOCOM) system is developed that 

generates CLOM results through the use of the AOLT process. Though there may be 

other ways to realise the AOLT concept (discussed in section 4.2), in this thesis, since 

the AOLT concept is realised through analysing the semantics (i.e. using translations 

and synonyms to illustrate the meaning of ontology labels, as well as analysing the 

semantic surroundings of nodes based on the ontological graph) of the ontologies 
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involved in the CLOM scenario, the prototypes (SOCOM and SOCOM++) presented in 

this thesis are thus considered as semantic-oriented cross-lingual ontology mapping 

systems. The goal of the SOCOM system is to support the use of MT and MOM 

techniques in CLOM processes by applying the AOLT process. SOCOM is evaluated in 

a set of CLOM experiments involving ontologies labelled in Chinese, English and 

French. The findings showed an improvement in matching quality when the AOLT 

process is applied in comparison to the baseline system. The applicability of SOCOM is 

also demonstrated in an ontology-based, adaptive customer support system case study 

(discussed in chapter 4, section 4.6). This case study aims to provide users with relevant 

information in more than one natural language. The application retrieves documents 

within the domain of Symantec’s home security product: Norton 3607. The underlying 

ontologies used by this application are labelled in English and German, and SOCOM is 

applied to achieve a composed presentation of the knowledge base through CLOM 

results. This case study aims to showcase the feasibility of SOCOM in a real-world 

application.  

Motivated by the positive findings from the initial CLOM prototype: SOCOM, an 

improved second prototype: SOCOM++ is designed and implemented (discussed in 

chapter 5). SOCOM++ implements a more sophisticated AOLT process, which takes 

configurable inputs during the AOLT process and in turn influences the CLOM 

outcome. The implementation investigates whether SOCOM++ can be adjusted to suit 

specific needs of a given CLOM setting in the generation of high quality mappings. A 

set of experiments have been carried out to evaluate this improved prototype with the 

same ontology pairs used in the SOCOM evaluations. The flexibility of the AOLT 

process was demonstrated in the experiments, and the findings show that a range of 

quality levels were achieved using varied configurations of SOCOM++. The scalability 

aspect (in terms of execution time) of SOCOM++ was also investigated in CLOM 

experiments involving large ontology pairs (taken from the OAEI 2008 contest) with 

thousands of ontological resources labelled in English and Japanese. The experiment 

results showed increased processing time with increased workload and increased 

complexity of the AOLT configuration. The benefit of the AOLT process and its ability 

to scale is demonstrated through SOCOM++’s ability to work with large ontologies.  

The approach undertaken by this research when evaluating CLOM results applies 

metrics (discussed in chapter 2, section 2.7) that are currently used in the state of the art 
                                                 
7 http://us.norton.com/360 
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for evaluating matches generated by MOM systems. These metrics are suitable for the 

CLOM result evaluation as the goal of the evaluation remains unchanged (whether it is 

a monolingual or multilingual mapping environment): measuring how correct and 

complete are a set of matches against a gold standard. In particular, precision is used to 

evaluate the correctness and recall is used to evaluate the completeness of a set of 

matches. F-measure is used to evaluate the overall quality of a set of matches as it 

accounts both precision and recall. Means and standard deviations are used to evaluate 

the confidence levels of the matches generated. In addition, paired t-tests are carried out 

to validate the statistical significance of the findings in each experiment. Finally, the 

scalability test (discussed in chapter 5, section 5.4.5) measures the execution time 

required in different CLOM scenarios (e.g. increased workload with larger ontologies to 

process). In particular, the execution time of a simpler (e.g. less inputs into the AOLT 

process) and a more complex (e.g. more inputs into the AOLT process) configuration of 

SOCOM++ are investigated. 

1.6. Contribution 

A major scientific contribution of this thesis is the concept of applying appropriate 

ontology label translations to improve the quality of results arising from a cross-lingual 

ontology mapping process. An appropriate ontology label translation (AOLT) in the 

context of cross-lingual ontology mapping is one that is most likely to maximize the 

success of the subsequent monolingual ontology mapping step. This is a novel concept 

in achieving ontology label translations that are carried out for the purpose of cross-

lingual ontology mapping. The proposed AOLT concept is successfully demonstrated 

and evaluated in this thesis. It is shown through the evaluations that appropriate 

ontology label translations are effective at improving cross-lingual ontology mapping 

quality. In addition, this thesis differentiates translation noise that occurs in the context 

of localisation and those that occur in the context of cross-lingual ontology mapping. 

Reducing translation noise in the context of localisation is centred on generating 

translations that are the same with/close to human translations, whereas reducing 

translation noise in the context of cross-lingual ontology mapping is centred on 

generating translations that lead to quality cross-lingual ontology mapping results via 

monolingual ontology mapping techniques. The impact of ontology label translations 

on the final mapping quality is examined in this thesis, which has not yet been 

investigated previously in the state of the art of cross-lingual ontology mapping. 
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A minor contribution of this thesis is the AOLT processes that have been 

implemented in two cross-lingual ontology mapping systems (SOCOM and SOCOM++) 

which realise the proposed AOLT concept. Although there may be other ways to realise 

the AOLT concept, the AOLT processes presented in this thesis are not an exhaustive 

list but rather example implementations. These AOLT processes are demonstrated and 

evaluated through a series of cross-lingual ontology mapping experiments. It is shown 

through the evaluations that the AOLT process is an effective procedure at improving 

mapping quality in cross-lingual ontology mapping scenarios.   

Five peer-reviewed scientific publications have derived from this research, 

including two full research papers at the 8th Extended Semantic Web Conference 

(ESWC 2011) and the 4th Asian Semantic Web Conference (ASWC 2009), one research 

poster at the 17th International Conference on Knowledge Engineering and Knowledge 

Management (EKAW 2010), two workshop papers at the 1st workshop on the 

Multilingual Semantic Web (MSW 2010) which was collocated at the 19th International 

World Wide Web conference (WWW 2010) and the workshop on Matching and 

Meaning (2009). Details of these publications can be found in chapter 6 (section 6.3). 

1.7. A Glossary of Terminologies 

For clarification purposes, this section presents a short glossary of terminologies used in 

this thesis.  

• AOLT concept refers to the abstract concept of appropriate ontology label 

translations whereby appropriateness is determined by whether a correct CLOM 

result is generated using the translation (given such a mapping exists in the 

given CLOM scenario).  

• AOLT process and AOLT selection process are used interchangeably in this 

thesis. Both refer to one realisation (among others) of the AOLT concept.   

• AOLT component refers to a system component that is an integrated AOLT 

process within the CLOM system such as SOCOM or SOCOM++. 

• Ontological resources and entities are used interchangeably in this thesis. Both 

refer to any formally defined conceptualisation that is identifiable with a unique 
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resource identifier (URI) in the give ontology. Ontological resources include 

classes, properties and individuals.  

• Ontology label translation refers to the translation of the natural language 

segment used to identify an ontological resource. For example, 

CommunityStatus in <owl:Class rdf:about= "http://swrc.ontoware.org/coin# 

CommunityStatus"/> would be translated in order to apply MOM techniques in 

the process of achieving CLOM. Note that the ontology label translation process 

does not translate the natural language content of RDFS vocabularies8 . For 

example, List from <rdfs:Class rdf:about ="http://www.w3.org/1999/02/22-rdf-

syntax-ns#List"> would not be translated since it is a syntax specification. 

1.8. Thesis Overview 

A DVD (digital versatile disc) is submitted along with this thesis, which contains the 

Java code used for the implementations of the baseline system, SOCOM and 

SOCOM++. Raw data collected from all the experiments shown in this thesis can also 

be found on this disk. A table of content for this DVD can be found in appendix A. This 

thesis contains East Asian and European characters, additional support packs9 may be 

required to display these languages correctly.  

The remainder of this thesis is organised as follows. Chapter 2 discusses the state 

of the art in cross-lingual ontology mapping, and presents some background knowledge 

on monolingual ontology mapping, machine translation and mapping evaluation metrics.  

Chapter 3 investigates a translation-based approach to cross-lingual ontology 

mapping that was identified in chapter 2. An implementation of this approach: the 

baseline system, is evaluated through a set of CLOM experiments (involving ontologies 

in Chinese and English).  

Motivated by the conclusions drawn from the experimental findings in chapter 3, 

chapter 4 proposes the AOLT concept, and the design, implementation, evaluation of 

the SOCOM system that implements a basic process to realise the AOLT concept. The 

evaluation carried out on SOCOM aims to validate the AOLT concept through two 

                                                 
8 For a list of RDFS vocabularies, see http://www.w3.org/TR/rdf-schema/rdfs-namespace 
9  For Microsoft Office Word service packs, please see http://office.microsoft.com/en-us/word-help/ 
CH006083250.aspx?CTT=97 
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CLOM experiments (involving ontologies in Chinese, English and French). In addition, 

the SOCOM system is applied in a cross-lingual personalised document retrieval 

system (involving ontologies in English and German) to showcase the potential 

application use of the SOCOM system. 

Motivated by the positive findings from the initial prototype, chapter 5 presents a 

second prototype: SOCOM++. SOCOM++ integrates a flexible AOLT process, with the 

purpose of adjusting its configurable inputs to influence the CLOM outcome. Six trials 

(involving ontologies in English, Chinese and French) and two scalability tests 

(involving ontologies in English and Japanese) of SOCOM++ (with different AOLT 

configurations) were carried out to demonstrate how appropriate translation selections 

can be adjusted for the same ontology pair in a CLOM scenario, and how execution 

time is affected given increased workload. The flexibility of the AOLT component is 

demonstrated through these trials, and the evaluation results on the mappings generated 

showed a range of quality achieved in experiments.  

Finally, chapter 6 concludes this thesis with a summary of the research objectives 

achieved and contributions of this research, and suggests several future research 

directions in the area of cross-lingual ontology mapping.  
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2 BACKGROUND AND STATE OF 

THE ART 

2.1. Chapter overview 

Related background and a state of the art review are presented in this chapter. The 

ontology mapping problem is first introduced and defined in section 2.2. As mentioned 

previously in chapter 1 (section 1.2), ontologies are not always authored in the same 

natural language, multilinguality in ontologies is thus discussed in section 2.3. Enabling 

semantic interoperability among multilingual ontologies is a major driver for the 

development of cross-lingual ontology mapping (CLOM). Section 2.4 presents a survey 

of the current approaches to CLOM. A popular approach to CLOM, namely translation-

based CLOM, is identified in this survey that integrates monolingual ontology matching 

(MOM) techniques and machine translation (MT) techniques. A brief overview on 

MOM techniques is thus followed in section 2.5, and a brief background on MT 

techniques is presented in section 2.6. Common evaluation methods currently used in 

ontology mapping research are discussed in section 2.7. Finally, section 2.8 concludes 

this chapter with a summary. 

2.2. The Ontology Mapping Problem 

The promise of the semantic web is that of a new way to organise, present and search 

information that is based on the meaning (i.e. semantics that can be manipulated by 

machines) and not just text (i.e. unstructured information designed for humans to 

process) [Berners-Lee et al., 2001]. To model meaning in a structured fashion, 

ontologies have gained increasing interest from the semantic web community [Maedche 
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& Staab, 2001]. However, in decentralised environments such as the semantic web, the 

heterogeneity issue occurs when ontologies are authored by different actors. This issue 

can be thought of in a similar manner to the database management problem, where 

database administrators use different terms to store the same information in different 

database systems. As mentioned in chapter 1 (section 1.3), ontologies are specifications 

of conceptualisations [Gruber, 1993], which implies that ontologies are subjectively 

constructed. This means that views on the same domains of interest will differ from one 

person to the next, depending on their conceptual model and background knowledge for 

example. To address the heterogeneity issue arising from ontologies on the semantic 

web, ontology mapping has become an important research field [De Bruijn et al., 2007].  

In the literature, ontology matching (e.g. [Euzenat & Shvaiko, 2008]), ontology 

mapping (e.g. [Kalfoglou & Schorlemmer, 2003]) and ontology alignment (e.g. [Ehrig, 

2007]) are used interchangeably to refer to the process of correspondence generation 

between ontologies. The concept of ontology matching and the concept of ontology 

mapping are differentiated in [O’Sullivan et al., 2007], whereby the former refers to the 

identification of candidate matches between ontologies and the latter refers to the 

establishment of actual correspondences between ontological resources based on 

candidate matches. Following the approach proposed by O’Sullivan et al., in this thesis, 

ontology mapping is viewed as a two-step process, whereby the first step involves the 

generation of candidate correspondences (i.e. pre-evaluation) and the second step 

involves the generation of validated correspondences (i.e. post-evaluation). The 

outcome from step one is referred to as candidate matches, and the outcome from step 

two is referred to as mappings in this thesis. The implemented prototypes: SOCOM and 

SOCOM++ presented in this thesis aim to provide support to the cross-lingual ontology 

mapping process by generating candidate matches through the matching process.  

The following definition for ontology matching is adopted by this thesis:  

“The matching process can be seen as a function f which, from a pair of 

ontologies to match o and o', an input alignment A, a set of parameters p and 

a set of oracles and resources r, returns an alignment A' between these 

ontologies: A' = f (o, o', A, p, r)” [Euzenat & Shvaiko, 2007 p.44] 

The goal of the mapping process is to generate correspondences between ontology 

resources, whereby the following definition for correspondence is adopted in this thesis: 
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“Given two ontologies o and o' with associated entity languages OL and QL', a 

set of alignment relations Θ and a confidence structure over Ξ, a 

correspondence is a 5-uple: 〈 id, e, e', r, n 〉 , such that id is a unique identifier 

of the given correspondence; e ∈ OL(o) and e' ∈ QL'(o'); r ∈Θ; n ∈Ξ. The 

correspondence 〈 id, e, e', r, n 〉  asserts that the relation r holds between the 

ontology entities e and e' with confidence n.” [Euzenat & Shvaiko, 2007 

p.46]10 

A set of alignment relations “correspond to set-theoretic relations between classes: 

equivalence (=); disjointness ( ⊥ ); more general ( ⊇ ) … relations can be of any type 

and are not restricted to relations present within the ontology language, such as fuzzy 

relations or probability distributions over a complete set of relations or similarity 

measures” [Euzenat & Shvaiko, 2007 p.45]. A confidence structure is “an ordered set 

of degrees 〈 Ξ, ≤ 〉 for which there exists a greatest element Τ  and a smallest element 

⊥ ” [Euzenat & Shvaiko, 2007 p.46]. In this thesis, MOM results are generated using 

the Alignment API (discussed in section 2.5.2) and CLOM results are generated based 

on these MOM results (more on this in section 2.5). In the experiments shown in this 

thesis, the Alignment API only generates equivalence relations, where correspondences 

are equivalent images of one another with confidence levels that range between 0.0 and 

1.0. Equivalent correspondences are currently the dominate relations that are generated 

by MOM tools - thus is the focus of this research - this is evidently shown by the 

participating MOM systems in the ontology alignment evaluation initiative (OAEI) 

contests since 200411.  

Ontologies are likely to be authored by different actors who not only have 

differing conceptualisations of the world but also different natural language preferences. 

Multilinguality is an inevitable characteristic of ontologies. A brief overview on recent 

research related to multilingual ontologies is discussed next. 

2.3. Ontologies and Multilinguality 

Ontologies are widely used in knowledge-based systems and the applications of 

ontologies traverse many disciplines. Five example use of ontologies in the field of 
                                                 
10 In this context, entity language refers to the ontology language, e.g. OWL, RDF, etc. In this thesis, 
natural language refers to linguistic languages possessed by humans.  
11 OAEI results since 2004 can be found at http://oaei.ontologymatching.org 
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agriculture, education, e-learning, finance and medicine are discussed here. In 

agriculture, the Food and Agriculture Organization 12  (FAO) provides reference 

standards for defining and structuring agricultural terminologies. Since all FAO official 

documents must be made available in five official languages including Arabic, Chinese, 

English, French and Spanish, a large amount of research has been carried out on the 

translations of large multilingual agricultural thesauri [Chang & Lu, 2002], mapping 

methodologies for them [Liang et al., 2005; Liang & Sini, 2006] and a definition of 

requirements to improve the interoperability of these multilingual information resources 

[Caracciolo et al., 2007]. In education, the Bologna declaration has introduced an 

ontology-based framework for qualification recognition [Vas, 2007] across the 

European Union (EU). In an effort to best match labour markets with employment 

opportunities, an ontology is used to support the recognition of degrees and 

qualifications within the EU (which consists of 27 member states and 23 official 

languages in 201113). In e-learning, educational ontologies are used to enhance learning 

experiences [Cui et al., 2004] and to empower system platforms with high adaptivity 

[Sosnovsky & Gavrilova, 2006]. In finance, ontologies are used to model knowledge in 

the stock market domain [Alonso et al., 2005] and portfolio management [Zhang et al., 

2000]. In medicine, ontologies are used to improve knowledge sharing and reuse, such 

as work presented by Fang et al. [Fang et al., 2006] which focuses on the creation of a 

traditional Chinese medicine ontology, and work presented by Tenenbaum et al. 

[Tenenbaum et al., 2011] which focuses on the development of the Biomedical 

Resource Ontology in biomedicine. A key observation from ontology-based 

applications such as those mentioned above is that the development of ontologies is 

closely associated with natural languages. Given the diversity of natural languages and 

the different conceptual models of ontology engineers, the heterogeneity issue is 

inevitable in the presence of ontologies that are built on different models of 

conceptualisations and varied natural languages. The very existence of ontologies in 

various natural languages provides an impetus to discover ways to support the 

necessary semantic interoperability for the purpose of knowledge sharing. 

                                                 
12 http://www.fao.org 
13 In 2011, EU member states include Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, 
Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, 
Malta, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden and United Kingdom. 
The official working natural languages of the EU include Bulgarian, Czech, Danish, Dutch, English, 
Estonian, Finnish, French, German, Greek, Hungarian, Irish, Italian, Latvian, Lithuanian, Maltese, Polish, 
Portuguese, Romanian, Slovak, Slovene, Spanish and Swedish.  
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Thesauri - often containing structured terms that are synonyms and antonyms of 

one another - can be considered as light weight ontologies. According to the Global 

WordNet Association14, at the time of this writing, there are more than forty thesauri in 

the world containing a collective set of over fifty different natural languages. These 

languages include Arabic (used in ArabicWordNet15); Bulgarian (used in BulNet16); 

Chinese (used in HowNet 17 ); Dutch, French, German, Italian, Spanish (used in 

EuroWordNet18); Irish (used in LSG19) and many others. Multilinguality is also evident 

in formally defined ontologies. According to the OntoSelect Ontology Library20, (at the 

time of this writing) more than 25% of indexed 1530 ontologies are written in natural 

languages other than English. With the rise of multilinguality in ontologies, research 

effort dedicated to supporting the generation of multilingual ontologies can be seen. For 

example, Lauser et al. [Lauser et al., 2002] introduce a semi-automatic framework in an 

attempt to reduce labour costs. Niwa et al. [Niwa et al., 1997] define a formula to 

extract word relations based on document frequency and conditional probability. 

Srinivasan [Srinivasan, 1992] conducted similar research and proposed an algorithm to 

generate hierarchies of words. Shimoji & Wada [Shimoji & Wada, 2008] propose a 

method that creates a hierarchy of words based on natural language contents from an 

English-Japanese dictionary, and shows that their method renders more refined 

hierarchy relationships than the previous two methods. These notable research projects 

highlight various support that is available for the creation of multilingual ontologies. 

However, not a lot of attention has been devoted to supporting the interoperability of 

multilingual ontologies. Research efforts to date that aim to tackle the cross-lingual 

ontology mapping issue are discussed next. 

2.4. Cross-Lingual Ontology Mapping 

This section presents the state of the art in CLOM. Five categories of CLOM 

approaches are discussed in section 2.4.1. A popular approach to CLOM, namely the 

translation-based approach to CLOM is identified through this review. An important 

note regarding the translation-based approach is the distinction between translations 

                                                 
14 http://www.globalwordnet.org 
15 http://www.globalwordnet.org/AWN 
16 http://dcl.bas.bg/BulNet/general_en.html 
17 http://www.keenage.com 
18 http://www.illc.uva.nl/EuroWordNet 
19 http://borel.slu.edu/lsg 
20 http://olp.dfki.de/ontoselect 
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that are carried out for the purpose of CLOM and translations that are carried out for the 

purpose of ontology localisation. This is discussed in section 2.4.2.  

2.4.1. Categories of CLOM Approaches  

Current approaches to CLOM can be grouped into five categories, namely: manual 

CLOM [Liang & Sini, 2006], corpus-based CLOM [Ngai et al., 2002], CLOM via 

linguistic enrichment [Pazienta & Stellato, 2005], CLOM via indirect alignment [Jung 

et al., 2009] and translation-based CLOM [Wang et al., 2009; Trojahn, 2008; Zhang et 

al., 2008]. Each category is discussed next.  

Manual CLOM refers to those approaches that rely solely on human experts 

whereby mappings are generated by hand. An example of manual CLOM is discussed 

in [Liang & Sini, 2006], where an English thesaurus: AGROVOC21 (developed by the 

FAO containing a set of agricultural vocabularies) is mapped to a Chinese thesaurus: 

CAT 22  (Chinese Agricultural Ontology, developed by the Chinese Academy of 

Agricultural Science) by hand. The thesauri are loaded in the Protégé editor, and 

segments of the thesauri are assigned to groups of terminologists to generate mappings. 

Finally, these manually generated mappings are reviewed and stored. Liang & Sini did 

not propose an evaluation method for their work. However, it can be understood that 

since mappings are generated by human experts and are reviewed, that they are 

effectively evaluated and are of good quality. The advantage of this approach is that the 

mappings generated are likely to be accurate and reliable. However, given large and 

complex ontologies, this can be a time-consuming and labour-intensive process.  

Corpus-based CLOM refers to those approaches that require the assistance of 

bilingual corpora when generating mappings. Such an example is presented in [Ngai et 

al., 2002]. Ngai et al. use a bilingual corpus to align WordNet (in English) and HowNet 

(in Chinese). The bilingual corpus is created using newspaper content (in English and 

Chinese) and term frequency analysis (i.e. vector-based co-occurrence studies of words 

that appear together in the corpus) are carried out to associate synsets23 in the given 

thesauri. Finally, the evaluation of their approach is conducted by a team of two domain 

                                                 
21 http://aims.fao.org/website/AGROVOC-Thesaurus/sub 
22 http://www.ciard.net/partners/labof-chinese-agricultural-ontology-services 
23 A synset is a synonym set, which can be defined as “a set of words that are interchangeable in some 

context without changing the truth value of the proposition in which they are embedded” ~ WordNet 
Reference Manual, Princeton University, at http://wordnet.princeton.edu/wordnet/documentation/ 
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experts. The advantage of this approach is that the corpora need not be parallel (unlike 

corpus-based statistical MT whereby parallel corpora are often required [Koehn, 2005]), 

which makes the construction process easier. However, a disadvantage of using corpora 

is that the construction overhead could be a costly process for domain-specific 

ontologies. In addition, Ngai et al.’s approach heavily relies on synsets, which is a 

requirement that can often be satisfied by thesauri, but not necessarily by formally 

defined ontologies in OWL or RDF.  

CLOM via linguistic enrichment: Pazienza & Stellato [Pazienta & Stellato, 

2005] propose a linguistically motivated mapping approach and urge linguistically 

motivated ontology development, whereby ontologies would contain human-readable 

linguistic resources that can offer strong evidence in the mapping process. To facilitate 

this process, the OntoLing plug-in [Pazienza & Stellato, 2006b] was developed for the 

Protégé editor. The plug-in presents an interface to the ontology engineer during the 

ontology development, whereby word senses (e.g. extracted from WordNet) can be 

associated to ontological resources. Lastly, precision, recall and f-measure (these 

measurements are discussed in detail in section 2.7) are used to measure Pazienta & 

Stellato’s system. Linguistic enrichment of ontological resources will offer strong 

evidence in the process of mapping generation. However, as already pointed out by the 

authors, this enrichment process is currently unstandardised. As a result, it can be 

difficult to build CLOM algorithms based upon these linguistically enriched ontologies.  

CLOM via indirect alignment can be classified as a form of mapping reuse. This 

is a concept that already exists in MOM as alignment reuse and repository of structures 

(see section 2.5, figure 2-1). In the context of CLOM, indirect alignment refers to the 

process of generating new CLOM results using pre-existing CLOM results. Such an 

example is given in [Jung et al., 2009]. Jung et al. present indirect alignment among 

ontologies in English, Korean and Swedish, given alignment A which is generated 

between ontology O1 (e.g. in Korean) and O2 (e.g. in English), and alignment A' which 

is generated between ontology O2 and O3 (e.g. in Swedish). Then mappings between O1 

and O3 can be generated by reusing alignment A and A' since they both concern one 

common ontology O2. An evaluation of Jung et al.’s proposal is presented in [Jung, 

2011] whereby precision and recall are used to measure mapping quality. Assuming the 

availability of A and A', this is an easy approach to achieve technically. However, as 

this technique requires the very existence of A and A' which currently remains a 

challenge in itself, it can be difficult to apply this approach in some CLOM settings.  
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Translation-based CLOM refers to the use of translation techniques (which can 

be achieved through the use of MT tools, bilingual/multilingual thesauri, dictionaries 

etc.) in the CLOM process. Typically in translation-based CLOM approaches, a CLOM 

problem is converted to a MOM problem first, which is then solved using MOM 

techniques next. Compared to previously discussed approaches, the translation-based 

CLOM is currently a very popular approach that is exercised by several researchers (see 

table 2-1), mostly due to its simplicity to execute and the vast number of readily 

available tools in MT and MOM. The translation-based CLOM approach is already 

shown to be feasible in the state of the art, however, the impact of translations on the 

final mapping outcome has not yet been investigated. This thesis aims to fill this 

research gap and provide better support for MT and MOM tools in the process of 

CLOM. In this thesis, the translation-based CLOM approach is referred to as the 

baseline approach, which serves as a basis in the evaluation of the proposed solution 

(discussed in chapter 4, section 4.2). Five examples of translation-based approach to 

CLOM are discussed next, including three test cases from the OAEI contests and two 

others from outside the OAEI community. Table 2-1 presents a summary of these 

translation-based CLOM approaches in the state of the art. 

Table  2-1. An Overview of Translation-Based CLOM Approaches 

Approach Translation Means Matching Means 

Zhang et al. Bilingual dictionary  The RiMOM tool 

Bouma  Multilingual thesaurus & bilingual encyclopedia  The GG2WW tool 

Nagy et al.  DBpedia  The DSSim tool 

Wang et al. GoogleTranslate online service Instance-based matching tool 

Trojahn et al. GoogleTranslate API The Alignment API 

The OAEI introduced its first ontology mapping test case involving different 

natural languages in 2008. The OAEI mldirectory test case24 consists of matching web 

site directories (including Dmoz, Licos and Yahoo) in different languages (i.e. English 

and Japanese). Zhang et al. [Zhang et al., 2008] used a Japanese-English dictionary to 

first translate the labels in the Japanese web directory into English. They then carried 

out monolingual matching procedures using the RiMOM25 tool. It should be noted that 

among 13 participants in 2008, only one contestant (i.e. RiMOM) submitted results 

from this test case. These results however were not evaluated by the OAEI26. The 

outcome from the mldirectory test case shows a lack of attention on CLOM from the 

                                                 
24 The data set is available at http://oaei.ontologymatching.org/2008/mldirectory  
25 RiMOM’s homepage can be found at http://keg.cs.tsinghua.edu.cn/project/RiMOM/ 
26  A record of the number of matches generated was published at http://oaei.ontologymatching. 
org/2008/results/mldirectory/. However, evaluations on these matches were never conducted.  
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ontology mapping community, and highlights the urgency of supporting ontology 

mappings that are carried out in the multilingual environment.  

OAEI 2009 introduced a VLCR (Very Large Cross-lingual Resources) track 

involving the mappings of thesauri in Dutch (GTAA – Thesaurus of the Netherlands 

Institute for Sound and Vision) and English (WordNet and DBpedia)27. Among 16 

participants, only 2 contestants submitted results. Bouma [Bouma, 2009] uses the 

multilingual EuroWordNet (which includes synsets in English and Dutch) and the 

Dutch Wikipedia to bridge between Dutch and English. Mappings between the GTAA 

thesaurus to WordNet and DBpedia are then generated using the GG2WW tool in the 

monolingual environment. Nagy et al. [Nagy et al., 2009] uses DBpedia itself to 

associate concepts in English and Dutch, since the articles and titles in DBpedia are 

often labelled in both natural languages. Mappings are finally generated using the 

DSSim tool in the monolingual environment. Partial evaluations on the matches 

generated from these two systems were conducted by the OAEI. More specifically, 

random sample matches (some 71-97 matches are randomly selected from 3663 

matches generated by GG2WW, and from 2405 matches generated by DSSim) are 

evaluated based on a partial gold standard (including 100 reference mappings) using 

precision and recall28. A greater recall was found in the GG2WW tool (around 0.6) 

comparing to the DSSim tool (around 0.2). However, precision of both systems varied 

greatly. The GG2WW system neglected specific matches such as mappings between 

GTAA locations to WordNet locations (leading to a range of precision scores between 

0.0 and 0.9). Though the DSSim tool did not neglect any specific types of match, 

however its precision scores ranged largely (between 0.1 to 0.8). Although the 

evaluation was only partially conducted, it nevertheless offers some insight into the 

quality of these matches. One key conclusion from this test case is that the quality of 

the matches is noticeably poorer than those generated in the monolingual environment. 

For example, in the benchmark data set of the same year (where mappings are carried 

out between English ontologies), the DSSim tool was able to generate matches yielding 

a much higher average precision (0.97) and recall (0.66). It is not known whether this 

was seen with the GG2WW tool, as it only took part in the VLCR test case. 

The VLCR test case was again included in the OAEI 2010 contest, where only 

one tool (RiMOM) took part among a total of 16 contestants. Wang et al. present a 

                                                 
27 The VLCR test case can be found at http://oaei.ontologymatching.org/2009/vlcr/ 
28 The evaluation results can be found at http://oaei.ontologymatching.org/2009/results/vlcr/ 
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record of the number of matches generated by RiMOM in [Wang et al., 2010] and 

describe an instance-based matching approach at a very high level (it is not clear 

whether the same translation technique presented in OAEI 2008 was used for this test 

case). However, these matches were never evaluated by the authors or by the OAEI. 

Although the VLCR homepage states matching samples are to be evaluated in the same 

fashion as in the previous year, the evaluation results have not been published29. At the 

time of this writing, OAEI 2011 is in its preparation stage. However, it is not known at 

present time, whether the final test cases will include multilingual data sets30. 

 There has been some effort outside the OAEI community that tackles the CLOM 

problem by applying translation techniques. In particular, work of Wang et al. [Wang et 

al., 2009] and Trojahn et al. [Trojahn, 2010] are discussed next. Wang et al. [Wang et 

al., 2009] use the GoogleTranslate service to translate digital library vocabularies 

before applying instance-based matching techniques to generate mappings among 

library subjects written in English, French and German. To evaluate the matches, a 

manually generated gold standard was used. However, only precision scores were 

calculated in the evaluation due to the incomplete gold standard (as it was still being 

created at the time). The partial evaluation showed the precision ranged between 0.4 

and 0.8. However, the recall of these results is unknown (without a complete gold 

standard). Wang et al.’s work presents a similar strategy to CLOM as those deployed in 

RiMOM, DSSim and GG2WW, whereby machine translation technique is applied 

instead of dictionaries or thesauri. For all of them, the goal is to convert a cross-lingual 

mapping issue into a monolingual mapping issue, which can then be solved with MOM 

techniques. A similar approach is presented by Trojahn et al. [Trojahn, 2010], which 

incorporates the work presented in [Fu et al., 2009; Jung et al., 2009]. CLOM is 

achieved by first applying the GoogleTranslate API to bridge between different natural 

languages which is then followed by MOM techniques. In addition, their tool is 

accompanied by a mapping reuse feature as presented in [Jung et al., 2009]. Trojahn et 

al.’s approach is evaluated using ontologies in English, French and Portuguese through 

the generation of precision, recall and f-measure scores. A range of precision (0.41-

0.86), recall (0.05-0.51) and f-measure scores (0.10-0.62) were achieved.  

                                                 
29 Detail data set description and evaluation strategies of the VLCR test case in 2010 can be found at 
http://oaei.ontologymatching.org/2010/vlcr/index.html 
30 An overview of OAEI 2011 test cases can be found at http://oaei.ontologymatching.org/2011/. At the 
time of this writing (July 2011), all published data sets (a total of seven tracks) involve just the English 
language.  
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A key common characteristic shared by translation-based CLOM approaches 

discussed above is that CLOM is achieved through two steps. Translations are first 

carried out to bridge between the natural languages in the given ontologies. This is then 

followed by MOM techniques next. What is evident from the state of the art is that 

existing research in CLOM has successfully demonstrated the feasibility of 

incorporating MT and MOM techniques. However, little effort is made to investigate 

whether there is a positive/negative impact from the translation process on the 

subsequent MOM process. So far, these research studies have shown that MT and 

MOM techniques can be applied in the CLOM process, however, it is not clear to what 

extent these techniques can be incorporated to support the generation of high quality 

CLOM results. This thesis aims to investigate this un-tackled issue. An important point 

to note is that the translations taken place in the context of CLOM differs from the 

translations taken place in the context of ontology localisation. This is discussed next. 

2.4.2. Translations in CLOM vs. Translations in Ontology 

Localisation  

Translations of natural language content presented in ontologies are studied in the field 

of ontology localisation31. Ontology localisation is defined as “the adaptation of an 

ontology to a particular language and culture” [Suárez-Figueroa & Gómez-Pérez, 2008]. 

This definition is further refined by Cimiano et al. as “the process of adapting a given 

ontology to the needs of a certain community, which can be characterised by a common 

language, a common culture or a certain geo-political environment” [Cimiano et al., 

2010]. Cimiano et al. point out that the ontology localisation process takes place at the 

lexical layer, the conceptualisation layer as well as the interaction between these layers 

(i.e. the changes in one layer may influence the changes in the other layer). In other 

words, the ontology localisation process goes beyond than simply localising the labels 

(i.e. at the lexical layer), but the structure of the ontologies may also be changed in 

order to adapt to the target community and its culture (i.e. at the conceptualisation 

layer). Note that translation is a step towards localisation but is not equal to localisation, 

                                                 
31 Note that ontology localisation differs from ontology translation. Ontology translation refers to “the 

translation of a dataset from one ontology to another… The translation problem arises when web-based 

agents try to exchange their datasets but they use different ontologies to describe them” [Dou et al., 
2004], e.g. translating an ontology formatted in DAML (DARPA Agent Markup Language) to OWL 
(Web Ontology Language). More details of ontology translation can be found in [Chalupsky, 2000].  
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since translation removes the natural language barrier but not necessarily the culture 

barrier. 

To facilitate the localisation of ontology labels (i.e. the identifiers of ontological 

resources that are in the natural language format), tools such as the LabelTranslator tool 

[Espinoza et al., 2008] has been developed. The LabelTranslator tool provides 

suggested candidate translations for labels of a given ontology (which are selected one 

at a time by the user) in one of three natural languages, English, Spanish and German. 

The goal of the LabelTranslator tool is to aid the user to better understand the semantics 

presented in the given ontology, as it presents a form of description of the ontological 

resources in the natural language that is preferred by the user.  

The work presented in this thesis, though it involves translations of ontology 

labels, however is different from the work presented by Espinoza et al.. First of all, the 

motivation for the LabelTranslator tool is ontology localisation, whereas the motivation 

for this thesis is cross-lingual ontology mapping whereby translations are merely an 

intermediate step to the actual goal of generating mappings between the given 

ontologies. The localisation of ontologies may involve rearranging the structures of the 

ontological resources [Cimiano et al., 2010] as well as editing the labels (although 

structural changes are not yet supported by the LabelTranslator tool at the time of this 

writing). It is useful to note that the approach presented in this research does not 

attempt changing the existing structures of ontologies. Secondly, given the different 

motivations, the perceived goals of this research and the LabelTranslator tool differ 

significantly. The LabelTranslator tool aims to suggest translations that adapt to the 

target communities, whereby the final translations are selected for the purpose of 

localisation. In contrast, this work aims to improve the quality of CLOM whereby the 

final translations are selected in a way to enable the generation of high quality CLOM 

results. Lastly, the LabelTranslator tool requires the involvement of users in the 

selection of the final localised labels; whereas the selection of translations is automated 

in the work presented in this thesis.  

As mentioned in chapter 1 (section 1.7), ontology labels in this thesis refer to the 

identifying labels of an ontological resource. In other words, these are strings that are 

used to name ontological resources in a formally defined ontology. For example, in 

<Class rdf:ID="Thing"/>, Thing is the ontology label of this defined class. Another 

example can be <owl:Class rdf:about="http://swrc.ontoware.org/ontology# 
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Person"/>, where http://swrc.ontoware.org/ontology# is the namespace 

declared for the class that has a label Person. It should not be confused with 

rdfs:label, whereby declarations such as <rdfs:label>Thing</rdfs:label> are 

often used to associate one named resource with additional labels. rdfs:label can be 

used to tag multiple (multilingual) natural language labels to a particular resource (as 

the example shown in chapter 1, figure 1-1), however, they cannot be used to identify a 

named resource. In this thesis, ontology label translation refers to the process of 

translating natural language content that is used to identify ontological resources.  

In summary, a key observation from the review on the state of the art in CLOM is 

that, it is evident from the OAEI contests and other related research efforts discussed 

above that the field of CLOM has not received much attention from the ontology 

mapping community. Although three tools have participated in multilingual test cases 

in OAEI to date, it is difficult to evaluate the success of these tools when they 

participate in different test cases and especially when their results have not been 

evaluated thoroughly. Using MT as a means to bridge the gap between natural 

languages is a feasible approach to achieve CLOM as shown in the literature. However, 

it is not yet a thoroughly examined method. How good are the translations returned 

from MT tools? Are these translations suitable for the MOM tools in the process of 

achieving CLOM? How will these translations impact on the final quality of the 

mappings? Can CLOM quality be improved given appropriate translations? These 

questions are currently unanswered in the state of the art, and with this thesis the aim is 

to contribute towards the answering of them. Next, some background on the related 

fields - namely MOM and MT - to achieve translation-based CLOM is discussed. 

2.5. Monolingual Ontology Mapping 

This section presents a brief background overview on MOM. Section 2.5.1 presents two 

ways to categorise current MOM techniques. Section 2.5.2 discusses the MOM tool, 

namely the Alignment API, that is used in this thesis. 

2.5.1. Categories of MOM Techniques  

Ontology mapping in the monolingual environment is a well-studied research field, 

where various matching tools (a survey of MOM tools is presented in [Euzenat & 
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Shvaiko, 2007a]) and interfaces (e.g. Optima [Kolli & Doshi, 2008], CogZ [Falconer & 

Storey, 2007]) have been developed to facilitate the mapping process. Since 2004, 

contests organised by the Ontology Alignment Evaluation Initiative32  (OAEI) have 

been held on an annual basis. The OAEI contests provide datasets and gold standards in 

an effort to evaluate and improve participating mapping systems. Some of these 

datasets are used for the evaluation of the research work presented in this thesis 

(discussed in chapter 4 and 5). Several surveys of current MOM tools and 

classifications of MOM techniques are available in the literature such as [Euzenat & 

Shvaiko, 2007; Shvaiko & Euzenat, 2008; Giunchiglia et al., 2007; Shvaiko & Euzenat, 

2005; Kalfoglou & Schorlemmer, 2003]. This section aims to provide a brief overview.  

Euzenat & Shvaiko present an extensive review on MOM techniques and systems 

in [Euzenat & Shvaiko, 2007]. One way to categorise MOM techniques is based on 

how input is interpreted and its granularity, whereby MOM techniques can be grouped 

into two broad categories: element-level and structure-level, as shown in figure 2-1. 

Each category is discussed next. 

 
Figure  2-1. Euzenat & Shvaiko's Classification of Matching Approaches [Euzenat & Shvaiko, 2007 

p.65] 

At the element level, matches are computed by “analysing entities or instances of 

those entities in isolation, ignoring their relations with other entities or their instances” 

[Euzenat & Shvaiko, 2007 p.64]. Examples of element-level matching techniques 

include those that are string-based, language-based or constraint-based and those that 

                                                 
32 http://oaei.ontologymatching.org 
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apply linguistic resources and reuse existing mappings. String-based techniques apply 

methods such as edit distance string comparison to conclude the similarity between two 

strings, whereby the smaller the number of edits required to turn one string into the 

other, the more similar these strings are to one another. Language-based techniques 

apply methods such as natural language processing procedures (e.g. extracting 

meanings of words from dictionaries) to conclude string similarities, whereby strings 

are treated as units of texts rather than sequences of character (as used in string-based 

techniques). Constraint-based techniques take internally defined restrictions on 

ontological resources (e.g. cardinality, range defined for a property with respect to a 

particular ontological class) in the process of concluding correspondences. Techniques 

that use linguistic resources often apply thesauri and lexicons (e.g. WordNet) in the 

process of establishing correspondences. Finally, matches can be generated based on 

previously concluded mappings (that are either partial fragments of a complete match 

set or entire set). Whether correspondences are concluded based on existing mappings, 

or based on comparisons made between sequences of characters or sequences of words, 

or from comparing constraints declared or linguistic evidence that is available for the 

given resources, the aforementioned techniques have one key attribute in common - is 

that they assume comparisons take place in the context of comparable natural languages. 

For example, string comparisons made between Conference and ConferenceVenue 

(both in English), or Conference and Konferenz (meaning “conference” in German) are 

likely to conclude that the two terms in the given pair are somewhat similar to each 

other. This is because these terms are in natural languages derived from the same 

language family or at least use the same graphemes (see footnote 4 in chapter 1). In this 

case, both English and German belong to the Germanic language family. Such 

comparison techniques however, do not apply to natural languages that do not share the 

same graphemes. For example, string-based techniques cannot compute similarity 

measures between Cheese and 奶酪 (meaning “cheese” in Chinese), even though they 

contain the same meaning. This limitation of MOM techniques clearly needs to be 

addressed in the context of cross-lingual ontology mapping.   

In contrast to element-level techniques, at the structural level, matches are 

computed by “analysing how entities or their instances appear together in a structure” 

[Euzenat & Shvaiko, 2007 p.64]. Examples of structure-level techniques include those 

that are graph-based, taxonomy-based, model-based or statistic-based and those that use 

repository of structures. Graph-based techniques analyse the positions of nodes in a 
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given ontological structure (which is considered as a graph) in the process of 

concluding correspondences, whereby methods such as maximum common directed 

subgraph [Bunke & Kandel, 2000] are applied. For example, to compare the semantics 

of two classes C1 (from ontology O1) and C2 (from ontology O2), the sub-classes of C1 

are compared to the sub-classes of C2. Taxonomy-based techniques also apply graph 

algorithms but only consider the is-a relations in the given ontologies in the process of 

concluding correspondences. The main reasoning behind taxonomy-based techniques is 

that if is-a relations already associate two resources, then the surrounding nodes of 

these resources should also be similar. Model-based techniques generate 

correspondences based on comparisons made on the semantic interpretations, which 

often require background knowledge such as topic ontologies with comprehensive 

coverage of the domains of interest. Such an example of external topic ontologies is the 

Suggested Upper Merged Ontology (SUMO) in [Niles & Pease, 2001]. Statistic-based 

techniques apply statistical methods to generalise regularities and discrepancies when 

concluding correspondences. For example, given class C1 (from ontology O1) and class 

C2 (from ontology O2), assuming they both contain a set of instances of their own, if 

statistical analysis suggests a large number of instances from the two sets are similar, 

then it is likely that their corresponding classes C1 and C2 are also similar. Finally, 

techniques that use repositories of structures make use of repositories that contain 

similarities between ontologies (not similarities between resources as in mapping reuse) 

in order to conclude correspondences. An example of such is presented in [Rahm et al., 

2004], where previously concluded similar fragments are used to denote similarities 

between new structures. A common characteristic among matching techniques that take 

structures into account during the mapping process is that, in order to compare sets of 

sub-classes, relations, or structure fragments, their associated labels (i.e. identifiers of 

these sub-classes, relations and structure fragments) – often in natural language form – 

need to be compared. This means that structure-level techniques often will require the 

assistance from element-level techniques. As discussed earlier, element-level 

techniques are commonly limited to mapping environments involving comparable 

natural languages. This implies that given multilingual mapping environment, structure-

level techniques will encounter difficulty considering they are effectively built upon 

conclusions from element-level techniques. In fact, this trend is shown through the 

evaluations presented in chapter 3.  
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Ehrig [Ehrig, 2007] presents another classification of MOM techniques, and 

concludes three layers of similarity in ontology mapping: the data layer, the ontology 

layer and the context layer, with an orthogonal dimension that represents specific 

domain knowledge at all layers, as shown in figure 2-2. At the data layer, comparisons 

are made by “considering data values of simple or complex datatypes such as integers 

and strings”. Techniques used at the data layer include edit distance string comparison 

and relative distance comparison (i.e. distance relative to a specified reference point). 

Matching strategies at this layer are similar to the aforementioned string-based 

techniques which are classified under element level by Euzenat & Shvaiko. At the 

ontology layer, “semantic relations between the entities” are compared, which range 

from the graph level (similar to the aforementioned graph-based techniques classified 

under structure-level in [Euzenat & Shvaiko, 2007 p.69]), to the description logics level 

(similar to the aforementioned taxonomy-based techniques classified under structure-

level in [Euzenat & Shvaiko, 2007 p.69]), then to the restriction level (similar to the 

aforementioned constraint-based techniques classified under element-level in [Euzenat 

& Shvaiko, 2007 p.67]) and finally to the rule level (where high level reasoning is 

conducted upon existing rules [Fürst & Trichet, 2005]). At the context layer, 

comparisons are made between resources based on their usages in external applications 

(this expands on Euzenat & Shvaiko’s classifications of techniques that uses linguistic 

resources and are language-based). Finally, the orthogonal dimension illustrates domain 

knowledge which can be inserted into any of the three layers. Ehrig’s view on domain 

knowledge is similar to the Euzenat & Shvaiko’s view on matching strategies that use 

external resources such as existing mappings (categorised as alignment reuse under 

element level techniques) and repositories of structures (categorised as repository of 

structures under structure level techniques). 

 
Figure  2-2. Ehrig's Similarity Layers [Ehrig, 2007 p.27] 

A key observation emerging from the work presented by Euzenat & Shvaiko and 

Ehrig is that there is a rich set of MOM techniques that are currently available. This 
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diversity of techniques highlight the extensive research in the field of MOM to date. 

This is also reflected in the development of MOM tools and systems. Choi et al. [Choi 

et al., 2006] surveyed nine MOM tools and compared them to one another based on 

input, output, interaction with the user, mapping strategy and whether external 

knowledge is used. Eleven tools were reviewed and summarised by Kalfoglou & 

Schorlemmer [Kalfoglou & Schorlemmer, 2003] which provided an analysis based on 

categories such as frameworks, surveys, examples, methods and tools. A 

comprehensive review on state of the art matching tools is presented in [Euzenat & 

Shvaiko, 2007 p.153] where comparisons are made based on the types of techniques 

(discussed earlier in this section) used in them. For a complete list of the tools 

mentioned above, see appendix B. Given such a large and diverse collection of MOM 

tools, it can be difficult to determine the right tools for a particular mapping need. In an 

effort to evaluate matching tools and systems, the OAEI has been organising contests 

and publishing results on an annual-basis since 2004. The OAEI contest examines the 

participating tools in a range of mapping tasks across several domains of interest. 

Though this continuous effort to improve MOM techniques is being made, it is however, 

difficult to identify a MOM tool that is a clear success based on the OAEI results for 

reasons discussed next. 

First of all, data sets introduced every year differ from those used in previous 

years. Secondly, the tools that participate in the contests vary each year (e.g. OAEI 

2010 contains 4 tracks and 6 data sets with 15 participants [Euzenat et al., 2010]; OAEI 

2009 contains 5 tracks and 11 data sets with 16 participants [Euzenat et al., 2009]; 

OAEI 2008 contains 4 tracks and 8 data sets with 13 participants [Caracciolo et al., 

2008]; OAEI 2007 contains 4 tracks and 7 data sets with 18 participants [Euzenat et al., 

2007]; OAEI 2006 contains 4 tracks and 6 data sets with 10 participants [Euzenat et al., 

2006]; OAEI 2005 contains 3 untracked data sets with 7 participants [Euzenat et al., 

2005]; OAEI 2004 contains 1 data set and 10 participants [Euzenat, 2004]). These 

changing data sets and participants show that the evaluation results generated are from a 

different sample population each year and in an inconsistent environment. A third factor 

contributing to the difficulty of identifying the best available MOM tool is that not all 

test cases are completed by all participants in that year. These variables make 

aggregated comparison across MOM tools rather difficult. As a result, comparisons of 

participants in OAEI contests are often made in the context of specific test cases. Given 

the reasons above, it is difficult to identify a clear winner. However, it is evident that 
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there is a vast array of MOM techniques currently available, which this thesis aims to 

build upon in the process of achieving CLOM. In particular, the Alignment API 

offering eight matching techniques is used in this thesis which is discussed next. 

2.5.2. The Alignment API 

As discussed in the research question (chapter 1, section 1.3), this thesis builds upon 

resources that are already available in the field of MOM and investigates how these 

techniques can be facilitated and incorporated in the process of achieving CLOM. In 

theory, any MOM tool that generates correspondences between formally defined 

ontologies can be incorporated in the SOCOM and SOCOM++ system. However, rather 

than seeking and applying the best MOM tool (which is difficult to identify), it is the 

interest of this thesis to investigate how different matching techniques (i.e. element-

level, structure-level matching strategies) can be supported to achieve CLOM. Thus, the 

Alignment API33 is implemented in the CLOM systems presented in this thesis as it 

offers a range of matching techniques. In particular, eight algorithms are offered by the 

Alignment API, which include the NameAndPropertyAlignment algorithm, the 

StrucSubsDistAlignment algorithm, the ClassStructAlignment algorithm, the NameEq-

Alignment algorithm, the SMOANameAlignment algorithm, the SubsDistName-

Alignment algorithm, the EditDistNameAlignment algorithm, the StringDistAlignment 

algorithm. A summary of their functions are presented in table 2-2, based on 

descriptions presented in the Java documents34 released with Alignment API version 

3.6. The first three algorithms presented in table 2-2 can be categorised as structure-

level techniques, which build upon element-level matching techniques and take 

ontology structures into consideration when generating correspondences. The remaining 

five algorithms presented in table 2-2 can be categorised as element-level matching 

techniques, whereby string-based techniques are used to generate correspondences 

independently from the ontology structures. Because these algorithms offer a good 

representation of matching techniques that are at the element-level and the structure-

level, this Alignment API is chosen to be incorporated by the SOCOM and SOCOM++ 

system in this thesis35. 

                                                 
33 http://alignapi.gforge.inria.fr 
34 A list of released APIs and javadocs can be found at 
https://gforge.inria.fr/frs/?group_id=117&release_id=4104 
35 For a list of other systems that integrates the Alignment API, see 
http://alignapi.gforge.inria.fr/impl.html 
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Table  2-2. Matching Algorithms in the Alignment API 

Matching Algorithm Function 

NameAndPropertyAlignment Compares resources based on their names and properties declared 

StrucSubsDistAlignment Compares resources based on substring distance of their names and 
aggregated these distances with property differences 

ClassStructAlignment Compares resources and the structures they contain  

NameEqAlignment Compares the equality of ontological resource names 

SMOANameAlignment Compares resources using edit distance measures 

SubsDistNameAlignment Compares resources using substring distance on names and properties 

EditDistNameAlignment Compares ontological resource names using Levenshtein distance 
[Levenshtein, 1966] 

StringDistAlignment Compares ontological resource names regardless of the resource type (i.e. 
class, property, individual) 

An example of the matches generated by the Alignment API using the 

SMOANameAlignment algorithm in the Alignment format36  is shown in figure 2-3. 

Each pair of matches (stored in the <Cell> element, where the first entity is contained 

in <entity1> and its correspondence is contained in <entity2>) generated is 

accompanied by a confidence level (stored in the <measure> element) that ranges 

between 0.0 (not confident) and 1.0 (confident). For a more detailed overview of the 

Alignment API, see [Euzenat & Shvaiko, 2007 p.239].  

… 
<map> 
    <Cell> 
      <entity1 rdf:resource='http://kdeg.cs.tcd.ie/CSWRC/translated#Lecturer'/> 
      <entity2 rdf:resource='http://annotation.semanticweb.org/2004/iswc#Lecturer'/> 
      <relation>=</relation> 
      <measure rdf:datatype='http://www.w3.org/2001/XMLSchema#float'>1.0</measure> 
    </Cell> 
</map> 
<map> 
    <Cell> 
      <entity1 rdf:resource='http://kdeg.cs.tcd.ie/CSWRC/translated#Pages'/> 
      <entity2 rdf:resource='http://annotation.semanticweb.org/2004/iswc#homepage'/> 
      <relation>=</relation> 
      <measure 
rdf:datatype='http://www.w3.org/2001/XMLSchema#float'>0.7481684981684982</measure> 
    </Cell> 
</map> 
<map> 
… 

Figure  2-3. An Example Output from the Alignment API 

2.6. Machine Translation  

This section presents a brief background on machine translation techniques.  

Machine translation is a well-researched field of study that has evolved 

tremendously over the years since its proposal in 1947 [Weaver & Wiener, 1947]. A 

brief history of MT is presented by Hutchins [Hutchins, 2004a] that documents the 

major trends in MT in recent years. Hutchins presents a summary of translation 

techniques before the 1990s that include direct, interlingua and transfer (which are now 

                                                 
36 http://alignapi.gforge.inria.fr/format.html 
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known as rule-based translation systems) in [Hutchins, 2004a], and the more recent 

techniques developed since the 1990s including example-based MT, statistical MT, 

hybrid approaches and spoken language MT in [Hutchins, 2004b]. The main concepts 

behind these techniques are summarised as the following (for a more detailed overview, 

see [Way, 2010]): 

• Direct translation techniques are often designed specifically for one particular 

pair of natural languages (the source natural language and the target natural 

language) with minimal syntactic or semantic analysis in the process of 

translating the source language to the target language.  

• Interlingua translation techniques involve a medium between the source and the 

target language, whereby the source language is converted to interlingua (which 

can be artificial languages or logics) and then matched from interlingua to the 

target language.  

• Transfer techniques convert both the source and the target language in abstract 

models, and complete the translation in three steps: convert source language into 

abstract forms; converts these abstract forms to other abstract representations 

which originated from the target language; finally convert these abstracts (now 

oriented by the target language) to the target language.  

• Example-based techniques match the source language to previously translated 

examples in order to determine its translation in the target language.  

• Statistical machine translation (SMT) techniques use parallel corpora and 

compute the probabilities of one word in the source language corresponding 

with another word in the target language. Types of SMT include word-based 

[Och & Ney, 2000] and phrase-based [Marcu & Wong, 2002; Koehn et al., 

2003].  

• Hybrid MT systems combine the above techniques for translations that may be 

more suited for particular techniques depending on the specific case.  

State of the art research in MT is currently led by statistical-based approaches, as 

seen with major system providers such as Google and Microsoft. Services such as the 

online GoogleTranslate site37 and the MicrosoftTranslator site38 provide free translation 

services to the general public for small scaled and open-domain requests. These 

                                                 
37 http://translate.google.com/#  
38 http://www.microsofttranslator.com/ 
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services meet the requirements for the ontology label translation requests made during 

this thesis research, as they cover the domains explored in the experiments during this 

research. APIs that are also provided by these services are integrated in the experiments 

presented in this thesis, as these tools are freely available and use leading SMT 

techniques which are the state of the art in MT. 

2.7. Evaluation Metrics for Ontology Mapping 

As this thesis is concerned with improving CLOM quality, the evaluations undertaken 

thus apply metrics that are used in the state of the art in ontology mapping evaluation. It 

should be noted that as SOCOM and SOCOM++ presented this thesis are not concerned 

with ontology localisation, evaluations that are concerned with localisation outcome 

(e.g. the BLEU score39 that is often used to measure the quality of the translations 

generated from a MT system) are not conducted. As already discussed (in section 2.4.2), 

the requirement for translation in the context of localisation differs from the 

requirement of translation in the context of CLOM. In the former, a good translation is 

one that is able to express an equivalent meaning in the culture of the target community. 

Whereas in the latter, a good translation is one that leads the subsequent MOM 

techniques to a correct mapping (given such a correct mapping exists in the given 

scenario). Given the reasons above, evaluations in this thesis apply measures used in the 

field of ontology mapping which include precision, recall and f-measure. Also, mean 

and standard deviation are used to evaluate confidence levels. In addition, statistical 

tests, i.e. two-tailed paired t-tests are used to validate the significance of the findings.  

Other ontology mapping evaluation approaches such as goal-oriented approach 

for ontology mapping is discussed in [Noy & Musen, 2002b; Hollink et al., 2008]. Noy 

& Musen argue the evaluation of ontology mapping tools should be user-centric and 

focus on how well a particular task is performed with the assistance of the tool. Hollink 

et al. propose an end-to-end evaluation approach whereby evaluations are carried out on 

the performance of the applications that consume the mappings produced by the 

matching tools. These two approaches focus on how well a particular goal is achieved 

through the usage of mappings. Though these are sound approaches, they can be 

difficult to exercise in practice. Systems and applications are often built with specific 

                                                 
39 The BLEU score [Papineni et al., 2002] aims to evaluate machine-generated translations against that of 
human-generated translations. It ranges between 0.0 (not close to the human translation) and 1.0 (same 
with the human translation).  



 

 34 

goals in mind. To measure how well these goals are met can involve a range of tests 

and studies over a period of time, which can be an costly process. Also results collected 

from such evaluations can be difficult to compare given that the evaluations have taken 

place in different application contexts and influenced by user subjectivity. 

The remainder of this section is organised as follows. Section 2.7.1 presents a 

tutorial on precision, recall, f-measure, mean, standard deviation and paired t-test. 

Section 2.7.2 discusses the rationale for using the specific metrics in this thesis. 

2.7.1. A Tutorial on Evaluation Metrics 

This section presents some background knowledge on precision, recall, f-measure, 

mean, standard deviation and paired t-test. Section 2.7.1.1 discusses precision, recall 

and f-measure. Section 2.7.1.2 discusses paired t-test. Section 2.7.1.3 discusses mean 

and standard deviation.  

2.7.1.1. Precision, Recall and F-Measure 

Originating from the field of information retrieval (IR) [van Rigsbergen, 1975], 

precision and recall are first introduced into mapping evaluation in [Do et al., 2002]. In 

the context of mapping evaluation, precision and recall can be understood as the 

following. Given the gold standard with R results40 and a set of matches with X results, 

among which N of them are correct according to the standard, then  

Precision = 
X

N  (2.1) 

Recall = 
R

N  (2.2) 

This is illustrated by figure 2-4. The gold standard R is represented by the gold 

circle and the set of matches to be evaluated X is represented by the purple circle. What 

they have in common is the correct matches N. Precision therefore is a measurement of 

correctness, and recall is a measurement of completeness. Both precision and recall 

range between the value of 0.0 and 1.0, where the lower the value, the poorer the 

correctness or completeness. 

                                                 
40 In this context, a result is a pair of matched entities E1 and E2 where E1 is defined in the source 
ontology O1 and E2 is defined in the target ontology O2.  
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Figure  2-4. Precision & Recall in Mapping Evaluation 

It is important to note that precision and recall each accounts for only one aspect 

of the matching quality (i.e. either correctness or completeness), neither of them alone 

is an accurate measurement of the matching quality. Precision can be increased at the 

expenses of recall, or vice versa. For example, table 2-3 shows two scenarios. In 

scenario i, given a total of 10 matches where all of them are correct, the precision yields 

1.00, however, with a total of 100 matches included in the gold standard R, the recall is 

only 0.10. In scenario ii, given a total of 100 matches to be evaluated and a gold 

standard R of 100 matches, the recall is 1.00. However, only 10 matches in X are 

correct, which leads to a low precision of 0.10. These examples demonstrate the 

importance of evaluating the overall quality of the matches generated which can take 

both precision and recall into account. To address this issue, f-measure (which too 

ranges between 0.0 and 1.0) is commonly used in mapping evaluations to illustrate the 

overall quality of matches, which is computed as: 

F-Measure = )(
2

recallprecision
recallprecision

+
××  (2.3) 

Given the f-measure, a much improved overview on the matching quality (i.e. considers 

both the correctness and completeness) is thus available. For instance, in the examples 

shown in table 2-3, both scenarios yield 0.1818 f-measure scores when taken both 

precision and recall into account. 

Table  2-3. Examples of Precision, Recall and F-Measure 

Scenario R X N Precision Recall F-Measure 

i 100 10 10 1.00 0.10 0.1818 

ii 100 100 10 0.10 1.00 0.1818 
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2.7.1.2. Paired T-Test 

The paired t-test is used in hypothesis testing which involves comparisons made upon 

two related populations. Paired t-tests are often used when “analysing differences 

between twins, differences in before-and-after measurements on the same subject and 

differences between two treatments given to the same subject” [Minitab StatGuide, 

2007]. For example, the following scenario can be tested with paired t-test: a group of 

hypertension patients have been treated with a new drug over a period of time, their 

blood pressures are recorded before and after the treatment. Let x be the records before 

the treatment and y be the records after the treatment, it is the difference between x and 

y that is of interest and examined in paired t-test. As x and y are collected from the same 

group of people, we say x and y are related or paired. Weiss [Weiss, 2010] define the 

following procedures in a paired t-test for two population means µ1 and µ2 as: 

“Step 1: the null hypothesis is H0: µ1 = µ2, and the alternative hypothesis is 

Ha: µ1 ≠  µ2 (two tailed) or Ha: µ1 < µ2 (left tailed) or Ha: µ1 > µ2 (right 

tailed);  

Step 2: decide on the significance level α; 

Step 3: compute the value of the test statistic t = 
nS

d

d

and denote value t0. 

Step 4: the t-statistic has df = n-1, compute p-value; 

Step 5: if p ≤α, reject H0; otherwise, do not reject H0.” 

Figure 2-5 illustrates the two tailed (figure 2-5-a), left tailed (figure 2-5-b) and 

right tailed (figure 2-5-c) paired t-tests. Paired t-tests are interested in the difference 

between two samples, in the case of one tailed t-tests (left tailed or right tailed) the 

direction of the difference (either µ1 < µ2 or µ1 > µ2) is examined. In the case of a two 

tailed t-test, the particular direction of the difference is not of concern, but rather 

establishing whether a difference exists between two samples or these samples are in 

fact from the same population. 
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Figure  2-5. Two Tailed and One Tailed Paired T-Test [Weiss, 2010 p.481] 

The significance level α ranges between 0.0 and 1.0, and is the maximum 

acceptable level of risk for rejecting the null hypothesis. The most commonly 

used α level is 0.05, whereby the chance of finding an effect that does not exist is 

only 5%. The reason for this being:  

“The value for which P=0.05, or 1 in 20, is 1.96 or nearly 2; it is 

convenient to take this point as a limit in judging whether a deviation 

ought to be considered significant or not. Deviations exceeding twice 

the standard deviation are thus formally regarded as significant. 

Using this criterion we should be led to follow up a false indication 

only once in 22 trials, even if the statistics were the only guide 

available. Small effects will still escape notice if the data are 

insufficiently numerous to bring them out, but no lowering of the 

standard of significance would meet this difficulty.” [Fisher, 1958 p.44] 
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The p-value ranges between 0.0 and 1.0 and is used to determine the 

appropriateness of rejecting the null hypothesis. The smaller it is, the smaller the 

probability that rejecting the null hypothesis is a mistake. If the p-value is less than or 

equal to the α level, it can be said that there is good evidence against the null hypothesis; 

if it is greater than the α level, it can be said that there is not enough good evidence to 

reject the null hypothesis.   

2.7.1.3. Mean and Standard Deviation  

As mentioned in section 2.5.2 (figure 2-3), the matches generated are accompanied by 

confidence levels that range between 0.0 and 1.0. These levels are generated by the 

Alignment API and are used to indicate the tool’s confidence in a match made, where 

the higher they are, the more confident the matches are. To evaluate these confidence 

measures, mean and standard deviation are calculated. This section discusses mean and 

standard deviation in detail.  

Given a set of matches X and their accompanying confidence levels, mean is the 

average confidence level found in the correct matches N. It is a measure of centre (i.e. 

most typical value of a data set), and is calculated as the sum of all confidence levels 

divided by the sum of matches. In other words, the confidence mean is simply the 

average confidence level found in a set of correct matches N. The higher the mean, the 

more confident are the matches. In this thesis, means are calculated in the evaluation to 

indicate one aspect of the matching quality: the confidence of the matches generated.   

Standard deviation is a measure of variation. It indicates how far, on average, the 

observations (in this case, the confidence levels) are from the mean. For a data set with 

a large amount of variation, the observations will on average be far from the mean, 

which implies that the standard deviations will be large. Similarly, for a data set with a 

small amount of variation, the observations will on average be close to the mean, 

indicated by a small standard deviation. 

2.7.2. Evaluation Metrics used in This Thesis 

This section presents the rationale for applying the evaluation metrics discussed in 

section 2.7.1 in this thesis.  
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In recent years, using metrics that originated from the field of information 

retrieval (IR) such as precision, recall and f-measure have become widely adopted as a 

less expensive and more comparable means of evaluating ontology mapping systems, 

which focuses on evaluating the general functionality rather than evaluating the system 

in particular application contexts. This approach measures a set of machine-generated 

mappings against a gold standard that had been generated by human experts. The 

quality of the machine-generated mappings is measured as how closely (via precision, 

recall and f-measure scores, discussed in section 2.7.1.1) the mappings correspond to 

those gold standard that had been generated by humans independent of application 

context. The closer the mappings are to the gold standard, the higher the quality.  

This IR-inspired evaluation approach is recommended by [Euzenat & Shvaiko, 

2007 Chapter 7 p.193]. Euzenat & Shvaiko point out that the evaluation procedure 

should be a reproducible and continuous process with pre-defined rules and published 

results that include not only the evaluation results but also the actual mappings 

themselves. Guided by this principle, in practice, a widely accepted approach (that has 

been enforced in the OAEI contests since 2004) is to use a benchmark in the ontology 

mapping evaluation, which is considered as the gold standard of mappings between a 

particular ontology pair. Evaluations of mappings generated by other systems are then 

compared against this gold standard. A gold standard is “used repeatedly for (i) testing 

the improvement or degradation of a system with certainty, (ii) situating a system 

among others” [Euzenat & Shvaiko, 2007 p.194]. This evaluation approach using gold 

standards is thus adopted in this thesis for their comparable nature and ease of use.   

 When calculating f-measure, weights can be assigned to precision and recall to 

illustrate their perceived importance. Do et al. [Do et al., 2002] define the weighted f-

measure as F-Measure = 
recallaprecisiona

recallprecision

×+×−

×

)1(
 where 0 ≤α≤ 1. When α=1, no 

importance is assigned to recall; when α=0, no importance is assigned to precision. The 

higher the α, the more importance is given to precision. This use of weighted f-measure 

is demonstrated by Kaza & Chen [Kaza & Chen, 2007], where precision is considered 

twice as important as recall (i.e. α=0. 6 ). However, a value of 0.5 is commonly assigned 

to the weight α (as seen in OAEI contests41), so that precision and recall are considered 

equally as important as each other. In other words, when α=0.5: 

                                                 
41 OAEI 2010 results can be found at http://oaei.ontologymatching.org/2010/results/oaei2010.pdf; OAEI 
2009 results can be found at http://oaei.ontologymatching.org/2009/results/oaei2009.pdf; OAEI 2008 
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F-Measure = 
recallaprecisiona

recallprecision

×+×−

×

)1(
= )(

2
recallprecision

recallprecision
+

××  

as shown in formula (2.3) previously (see section 2.7.1.1). This thesis uses the formulas 

(2.1), (2.2) and (2.3) where precision and recall have equal weight in the evaluations.  

Melnik et al. [Melnik et al., 2002] introduce overall as a measurement for the 

effort required to correct the errors in a set of mappings, which is defined as Overall = 






 −×

precision
recall 12 . Overall scores range between the value of -1.0 and 1.0, and 

are always lower than f-measure scores. Unlike precision, recall and f-measure, overall 

is not commonly used in the OAEI contests. As this thesis is concerned with the quality 

of the mappings and measuring improvement (if there is any) in the matching quality 

(through the values of precision, recall and f-measure), but not quantifying the post-

mapping editing efforts involved, overall scores are not generated in this thesis.  

Given a gold standard R, a set of matches X with N correct matches, the fallout 

can also be calculated as: Fallout = ( )
X

NX − . Fallout quantifies the incorrect matches 

found in a set of matches X, and ranges between 0.0 and 1.0 where the higher it is, the 

more incorrect matches there are in X. Since precision + fallout = 
X

N + ( )
X

NX − = 1, 

in other words, fallout = 1 – precision, where the higher the fallout the lower the 

precision and vice versa, in this thesis, fallout is considered to be redundant data since it 

does not offer more insight into the mapping quality and thus is not generated.   

Precision and recall have been criticised in [Ehrig & Euzenat, 2005; Euzenat, 

2007] for (1) their inability to distinguish matches that are almost correct and those that 

are completely wrong, (2) as well as their limitations to evaluate narrow-broad and 

broad-narrow matches. To address these shortcomings, generalised (aimed to improve 

the first limitation) and semantic precision and recall (aimed to improve the second 

limitation) have been proposed. Generalised precision and recall are proposed in [Ehrig 

& Euzenat, 2005], where the proximity of ω(X, R) is measured instead of strictly 

looking for the overlap |XI R|. However, this thesis does not differentiate matches that 

are almost correct from matches that are complete misses. They are viewed as two 
                                                                                                                                               
results can be found at http://oaei.ontologymatching.org/2008/results/oaei2008v11.pdf; OAEI 2007 
results can be found at http://oaei.ontologymatching.org/doc/Proceedings-OM-2007.pdf; OAEI 2006 
results can be found at http://oaei.ontologymatching.org/doc/Proceedings-OM-2006.pdf; OAEI 2005 
results can be found at http://oaei.ontologymatching.org/doc/intont2005proceedings.pdf; OAEI 2004 
results can be found at http://oaei.ontologymatching.org/2004/Contest/results 
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facets of the same type - being incorrect matches. Although one could argue that an 

almost correct match may require less effort to correct than a match that is a total miss. 

However, they are nevertheless both incorrect and require further correction. Whether a 

great deal of effort or less is involved is not of concern. In other words, it is not of 

interest to measure the extent of their incorrectness, thus generalised precision and 

recall are not applied in this thesis. Semantic precision and recall are proposed in 

[Euzenat, 2007], where narrow-broad (e.g. book ≤  publication) and broad-narrow (e.g. 

publication ≥  book) matches are taken into account in the evaluation in addition to 

equal-equal (e.g. lecturer = lecturer) matches. In this thesis, however, the matching tool 

(i.e. the Alignment API discussed in section 2.5.2) incorporated into the CLOM 

systems only generate equal-equal matches in the experiments, since narrow-broad and 

broad-narrow matches do not exist, semantic precision and recall are thus not applied in 

the evaluation used in this thesis.  

In addition to comparing precision, recall and f-measure, this thesis applies two 

tailed paired t-tests to test the statistical difference between the proposed CLOM 

approach and the baseline approach. A working example is presented next. Given a pair 

of ontologies that are labelled in different natural languages O1 and O2, O1 is mapped to 

O2 using two CLOM systems: the baseline system and the SOCOM system, generating 

mappings M1 and M2 respectively. Eight different matching algorithms are applied in 

the mapping process, which lead to eight sets of matches in M1 and M2 each. Based on 

the gold standard, M1 and M2 are evaluated using precision, recall and f-measure. The 

f-measure scores are considered as indicators of the overall matching quality (since 

they take both precision and recall scores into account), and the f-measure generated 

from M1 and the f-measure generated from M2 are compared. Since these f-measure 

scores are generated from mappings conducted on the same ontology pair using the 

same set of matching algorithms, they are therefore paired with each other. To test 

whether a difference exists between the overall quality found in M1 and M2, two-tailed 

paired t-test is carried out on the f-measure scores. The null hypothesis is: 

H0: M1 = M2 (there is no difference between the matching quality in M1 and M2); 

And the alternative hypothesis is: 

Ha: M1 ≠ M2 (there is a difference between the matching quality in M1 and M2); 
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Table 2-4 contains results taken from the evaluation of SOCOM++ in trial five 

(discussed in chapter 5, section 5.4.3.2, experiment one). Using Minitab 1542 (all paired 

t-tests shown in this thesis are carried out using Minitab), at the 5% significance level, 

paired t-test results are computed and are shown in figure 2-6. As shown in figure 2-6, 

the t-value generated is -3.40 (using the formula earlier from [Weiss, 2010]) which 

corresponds to a p-value of 0.011. The t-test also shows that a 95% confidence interval 

for the difference between M1 and M2 is from -0.2170 to -0.0389.  

Table  2-4. Paired T-Test on F-Measure 

F-Measure 
Matching Technique 

M1 M2 

1 NameAndPropertyAlignment 0.3297 0.3509 

2 StrucSubsDistAlignment 0.3244 0.3882 

3 ClassStructAlignment 0.3244 0.4025 

4 NameEqAlignment 0.5021 0.7797 

5 SMOANameAlignment 0.3625 0.4025 

6 SubsDistNameAlignment 0.3412 0.4074 

7 EditDistNameAilgnment 0.3391 0.5385 

8 StringDistAlignment 0.5021 0.7797 

 
Paired T for M1 - M2 

 

            N     Mean   StDev  SE Mean 

M1          8   0.3782  0.0774   0.0274 

M2          8   0.5062  0.1772   0.0627 

Difference  8  -0.1280  0.1065   0.0377 

 

 

95% CI for mean difference: (-0.2170, -0.0389) 

T-Test of mean difference = 0 (vs not = 0): T-Value = -3.40  P-Value = 0.011 

 

Figure  2-6. Paired T-Test for M1 and M2 

The direction of the difference between M1 and M2 is known since we already 

know higher f-measure indicates higher matching quality. Thus two-tailed paired t-tests 

are applied in this thesis, since it is our interest to find out whether the f-measure scores 

collected from two systems are from two different populations or indeed from the same 

population. Using the hypothesis test such as the paired t-test adds statistical power to 

the findings concluded from the evaluation, which helps the author to conclude with 

confidence in this thesis.  

In this thesis, standard deviations are used to indicate the dispersion of confidence 

levels found in a set of correct matches. The higher the standard deviations, the more 

dispersed are the confidence levels. For example, in the evaluation of SOCOM++ trial 

one (discussed in chapter 5, section 5.4.2.1, experiment one), the confidence mean 

found in the baseline system is 0.8830 with a standard deviation of 0.1391. This 

                                                 
42 http://www.minitab.com/en-US/default.aspx 
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indicates that on average, the values in the data set (i.e. all the confidence levels found 

in the correct matches that have been generated using the baseline system) tend to differ 

from the mean by ± 0.1391. In contrast, the mean found in SOCOM is 0.9646 with a 

standard deviation of 0.0613. This indicates that on average, the values in this data set 

(i.e. all the confidence levels found in the correct matches that have been generated 

using SOCOM) tend to differ from the mean by ± 0.0613. In other words, the correct 

matches found in SOCOM are not only more confident but also less dispersed. 

2.8. Summary  

This chapter presents related background and a state of the art review on CLOM. A 

survey of how CLOM is achieved to date is presented in this chapter, whereby a 

translation-based approach to CLOM is identified as the most advanced work in CLOM. 

The translation-based approach converts a cross-lingual mapping problem into a 

monolingual mapping problem, whereby translation techniques such as MT tools are 

used to overcome natural language barriers and MOM tools are applied subsequently. 

Related background reviews on MT and MOM are thus also included in this chapter.  

Finally, evaluation metrics applied in this thesis are introduced and discussed.  

Arising from the review on state of the art in CLOM, this thesis asks an important 

question regarding the current translation-based approach to CLOM: it is shown in the 

literature that translations can serve as a means to the completion of CLOM, but just 

how suitable are these translations in the matching sense (i.e. correct mappings are 

generated) as opposed to the linguistic sense (i.e. correctly localised)? This question is 

investigated next. 
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3 THE CHALLENGE OF 

TRANSLATION IN CROSS-

LINGUAL ONTOLOGY MAPPING  

3.1. Chapter Overview  

This chapter presents the building process behind the appropriate ontology label 

translation (AOLT) concept upon which this research is grounded. In particular, the 

baseline approach to CLOM as identified in the state of the art (discussed in chapter 2, 

section 2.4) is examined in two experiments involving ontologies labelled in Chinese 

and English. The effectiveness of the baseline approach is investigated and the findings 

from the evaluation motivated and inspired the creation and the development of the 

AOLT process. In particular, the experiments aim to identify the limitations and 

challenges faced by the baseline approach to CLOM, which this thesis aims to address.  

This chapter is organised as follows. The motivation of the experiments presented 

in this chapter is discussed in section 3.2. An overview of the baseline approach, 

including its architecture and an implementation are presented and discussed in section 

3.3. Two experiments designed to investigate the effectiveness of the integrated 

baseline system in CLOM scenarios, together with their experimental setup, findings 

and conclusions are discussed in section 3.4. Finally, section 3.5 presents a summary of 

this chapter. The baseline system to CLOM (presented in section 3.3), the two 

experiments and their evaluation results (presented in section 3.4) have been published 

in the paper titled Cross-Lingual Ontology Mapping - An Investigation of the Impact of 

Machine Translation, at the 4th Annual Asian Semantic Web Conference (ASWC 2009), 

LNCS 5926, pp. 1-15, in December 2009. 
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3.2. Experimental Motivation  

As discussed in chapter 2, a popular approach to CLOM is to use MT techniques to turn 

a cross-lingual mapping problem into a monolingual mapping problem first which can 

then be solved by existing MOM tools next. However, the quality of the translated 

resource labels and the impact of the translation process on the mappings subsequently 

generated using this approach has not yet been investigated.  

The goal of the experiments presented in this chapter is to investigate how the 

translation of labels may affect the mapping quality. In this chapter, emphasis is placed 

on the quality of the machine translated ontology labels and how they may impact on 

the effectiveness of the baseline approach to CLOM. The evaluation of the baseline 

implementation is composed of two experiments. The first experiment investigates the 

quality of the machine translated resource labels and how appropriate they are in the 

given mapping context. The second experiment investigates the quality of the mappings 

that were generated using the baseline system. 

3.3. The Baseline Approach  

The review presented in the previous chapter (section 2.4) has identified the baseline 

approach as the current state of the art in CLOM. This approach uses translation as a 

means to convert a cross-lingual mapping problem into a monolingual mapping 

problem, which is then solved by MOM tools. However, little attention has been paid to 

the effectiveness of this approach. More specifically, the quality of the mappings 

generated using such an approach have not yet been evaluated. To investigate this 

matter further, an implementation of the baseline approach to CLOM is examined 

through two experiments in this chapter. The architecture of the baseline approach is 

outlined in section 3.3.1. The technologies used to implement this baseline system are 

discussed in section 3.3.2.    

3.3.1. Architecture Overview  

As identified in chapter 2 (section 2.4), the baseline approach employs a two-tier 

strategy to achieve CLOM. First, resource labels in one ontology are translated into the 

natural language used by the other ontology(ies). Secondly, monolingual ontology 
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matching techniques are applied to generate matches. The workflow of this approach 

can be illustrated by figure 3-1. 

 
 Figure  3-1. An Architecture of the Baseline Approach to CLOM  

Given ontologies O1 and O2 that are labelled in different natural languages, O1 is 

first transformed to O1' through the ontology rendition process, so that O1' contains the 

same semantics as O1 except its resources are labelled in the target natural language 

used by O2. Ontology rendition can be defined as a process in the ontology 

development that consists of two roles, converting and interpreting [Zhao et al., 2003]. 

The converting role is the transformation of an ontology where the output has “formally 

different but theoretically equivalent” semantics, e.g. translating ontologies from OWL 

to RDF via Web-PDDL [Dou et al., 2004]. The interpreting role renders formally 

specified commitments, which is the aim of the ontology rendition shown in figure 3-1. 

More specifically, the same semantics can be found in O1' as one would find in O1. In 

addition, these semantics are defined using the same formal language (i.e. RDF, OWL 

etc.). The difference between O1 and O1' is the natural language of the labels used by 

their respective resources. In contrast to O1, the labels of the resources in O1' are 

labelled in the natural language used by O2.  

An example of the input and the output from ontology rendition is shown in figure 

3-2. In this example, the source ontology: O1 is labelled in English and the target 

ontology: O2 is labelled in Chinese. The rendered ontology: O1' is thus labelled in 

Chinese. Note that new namespace declarations are assigned to resources in the 

rendered ontology. This is because the base URI is the unique identifier for an ontology 

and the resources within, which means that the identifiers in O1' should not point to the 

original resources in O1. As discussed in chapter 1 (section 1.2), the same resource 
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(with one unique identifier) can have multiple tags (such as the use of <rdfs:label> in 

figure 1-1) that illustrate the given ontology label in various natural languages. 

However, as O1' needs to be self-contained (i.e. a formal ontology on its own that can 

be processed by machines) so that it can be matched to O2, the resources within need to 

be well-formed (i.e. resources in O1' need to have unique identifiers that are not to be 

confused with the resources in O1). Therefore, as shown in figure 3-2, new namespace 

declarations are assigned to the translated labels in the rendered ontology. This 

ontology rendition process is necessary in order to apply existing MOM techniques.  

 
Figure  3-2. An Example of Ontology Rendition 

Given that O1' is in the same natural language as O2, a range of existing MOM 

techniques (discussed in chapter 2, section 2.4) can be applied to generate matches 

between O1' and O2 via the monolingual ontology matching process. These matches are 

considered as correspondences between O1 and O2 as O1' contains the same semantics 

as O1. To investigate the effectiveness of this baseline approach, an implementation of 

it is developed using off-the-shelf MT and MOM tools. This is discussed next.  

3.3.2. Implementation  

A Java implementation of the baseline approach to CLOM is developed. The Java code 

for the baseline system can be found at root/Baseline/src/, and the Jar files required 
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to run the system can be found at root/Baseline/bin/ on the DVD. Figure 3-3 

presents a deployment diagram that shows the components of the implemented system 

and how they are related. The dashed boxes outline the two main steps of the baseline 

system, namely the ontology rendition and the ontology matching process. 

 
Figure  3-3. An Implementation of the Baseline Approach to CLOM - Deployment Diagram 
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To render O1', labels of the ontological resources (i.e. classes, datatype properties, 

object properties and individuals) from O1 are extracted first using the Jena 

Framework43, version 2.5.5. These labels are then passed onto the MT tools to generate 

translations in the target natural language. Two MT tools have been used in the 

implementation of the baseline system: the GoogleTranslate API44 version 0.4 provided 

by Google Inc. and the FreeTranslation45 online translator which is provided by SDL46. 

These tools are chosen as they are representative of the state of the art techniques in MT 

(discussed in chapter 2, section 2.6). Given the structure of O1, the translated resource 

labels are arranged accordingly to generate O1' using the Jena Framework. This process 

can be illustrated by the sequence diagram shown in figure 3-4. Code snippets for this 

rendition process using the GoogleTranslate API can be found in appendix C, section 

C.2, figure C-1. 

Figure 3-4 shows the lifelines of eleven objects: JenaFramework, OntModel, 

OntClass, DatatypeProperty, ObjectProperty, Individual, LabelReconstruc-

tion, MT, AOLTRecord, CollisionResolution and O
1
'.  To run the application, the 

user first sets the input: O1 (i.e. locate the ontology). Using the JenaFramework, O1’s 

OntModel (an interface supported by the Jena Framework) is generated next which 

presents a syntax for accessing the data contained in O1. The application then accesses 

the declared resources via this OntModel of O1. A copy of this OntModel is also 

generated at this stage which will eventually contain data for O1'. For a resource R in O1,  

• R’s label is extracted via the OntClass (for a class), DatatypeProperty (for a 

datatype property), ObjectProperty (for an object property) or the Individual 

(for an individual) interface. These interfaces are supported by the Jena 

Framework; 

• if R’s label is concatenated, it needs to be converted in a way that it can be 

processed by MT tools (i.e. in the label’s natural language format, more details 

are discussed next) via the LabelReconstruction object; 

• Translation for R is obtained next from the MT object;  

                                                 
43 http://jena.sourceforge.net 
44 http://code.google.com/p/google-api-translate-java Note: The GoogleTranslate API has been officially 
deprecated as of May 26, 2011, and will be shut off completely on December 1, 2011. 
45 http://www.freetranslation.com 
46 SDL provides information management solutions for its clients. More information can be found at 
http://www.sdl.com 
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JenaFramework

userSetO1()

OntModel

create()

OntClass

listOntClass()

getLabel()

returnAOLT()

MTDatatypeProperty ObjectProperty Individual

listDatatypeProperty()

listObjectProperty()

getLabel()

getLabel()

listIndividual()

getLabel()

O1'

createNewOntClass()

createNewDatatypeProperty()

createNewObjectProperty()

createNewIndividual()

LabelReconstruction

getTranslation()

getTranslation()

getTranslation()

getTranslation()

URI friendly translation

copyOntModel()

URI friendly translation

URI friendly translation

URI friendly translation

AOLTRecord CollisionResolution

checkCollision()

solveCollision()

alt

[Collision = false]

[Collision = true]
returnUncollidedAOLT()

loop

[ClassList.size()]

loop

[DatatypePropertyList.size()]

checkCollision()

returnAOLT()

solveCollision()

alt

[Collision = false]

[Collision = true]
returnUncollidedAOLT()

loop

[ObjectPropertyList.size()]

checkCollision()

returnAOLT()

solveCollision()

alt

[Collision = false]

[Collision = true]

returnUncollidedAOLT()

loop

[IndividualList.size()]

checkCollision()

returnAOLT()

solveCollision()

alt

[Collision = false]

[Collision = true]

returnUncollidedAOLT()

 
Figure  3-4. Ontology Rendition - UML Sequence Diagram 

• This translation is stored in the AOLTRecord object. A translation can only be 

considered as the AOLT result if it is free of collision.  

• If a collision is found (i.e. the AOLT result at hand is the same with a previously 

stored translation in the AOLTRecord), the CollisionResolution object is 

called to resolve collisions (discussed next).  

• The collision-free AOLT result is then converted to be URI friendly (i.e. white 

spaces are removed as they are not allowed in unique resource identifiers) via 

the LabelReconstruction object. 
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• Finally, a new resource (i.e. a semantic equivalent of R that is labelled in the 

target natural language) is created in O1' via the OntModel.  

The process above is repeated for each resource in O1. Ontology labels are often 

concatenated to create well-formed Unique Resource Identifiers (URIs) since white 

spaces are not allowed in the naming convention. For example, a class resource 

research project can be labelled in the ontology as (among others):  

<owl:Class rdf:about="http://swrc.ontoware.org/ontology#Research_Project"/> 

or 

<owl:Class rdf:about="http://swrc.ontoware.org/ontology#ResearchProject"/> 

As the integrated MT tools cannot process such concatenated labels, these labels are 

split into sequences of their constituent words in natural language format before being 

passed to the MT tools, as shown in figure 3-4 as the LabelReconstruction lifeline. 

This is achieved by recognising concatenation patterns. In the first example shown 

above, underscores are replaced by white spaces. A code snippet of this is presented in 

appendix C, section C.2, figure C-2. In the second example shown above, white spaces 

are inserted before each capital letter found other than the first one. A code snippet of 

this is presented in appendix C, section C.2, figure C-3. Though other ways to 

concatenate labels are possible, only these two types of concatenations are handled by 

the implementation. This is because only these types of concatenations exist in the 

ontologies which this thesis has experimented with. Note that concatenated words differ 

from compound words or portmanteau words. A compound word consists of two or 

more free morphemes which are standalone on their own. For example, football is a 

compound word that is composed of foot and ball, where both foot and ball are 

standalone words. A portmanteau word blends parts of two or more words which are 

not always standalone free morphemes. For example, brunch is a portmanteau word 

that blends br from breakfast and unch from lunch, where by neither br nor unch are 

standalone words. Neither compound words nor portmanteau words present an issue for 

the system implementation because they can be translated using the integrated MT tools. 

In contrast, concatenated words are constructed in a way to comply with ontology 

resource naming standards. These concatenations present an issue for the baseline 

system as they are unrecognisable natural language context to the MT tools, which is 

why they are reconstructed to their constituent words as discussed earlier. 



 

 52 

Both integrated MT tools return one and only one translation for a given label at a 

time, however, translation collisions can happen when a MT tool returns the same result 

for several labels in O1. For instance, in the Semantic Web Research Community 

(SWRC) ontology47, using the GoogleTranslate API version 0.4, the class Conference 

and the class Meeting are both translated to 会议 (meaning “meeting” in Chinese). To 

resolve such collisions, the baseline system checks whether a translation already exists 

in the O1' ontology or not. If so, an integer (that is checked to be free of collision) is 

assigned to the translated label which is under consideration. In the aforementioned 

example, as 会议 already exists as the class label: Conference’s translation, for the 

collided class: Meeting, its translated label becomes 会议 0 in O1'. This ensures that 

both resources will have well-formed (i.e. unique) URIs. These numbers are selected at 

random with the intent of avoiding the introduction of any kind of patterns into the 

translation selection process. This translation collision issue is not mentioned in any of 

the translation-based approaches to CLOM to date and it is not clear how collisions are 

solved in the papers discussed in chapter 2, section 2.4. In the implementation presented 

in this thesis, adding random numbers to solve collisions is a way to overcome 

disruptions to the execution of the system. Ideally, human experts are present to resolve 

collisions. However, this may not always be possible. The baseline implementation 

shown in this thesis allows the system to automatically resolve collisions without the 

assistance of a human. Lastly, it should be noted that when structuring the translated 

labels, white spaces are removed from the translations returned by the MT tools in order 

to generate well-formed URIs in O1', as the LabelReconstruction timeline illustrates 

in figure 3-4. Label reconstruction concatenates the translated labels in the same way as 

the original ontology, i.e. white spaces are either removed or replaced by underscores. 

Once the source ontology is labelled in the natural language used by O2, the 

Alignment API48, version 2.5 is applied to generate matches as shown in figure 3-3. The 

code snippet shown in appendix C, section C.2, figure C-4 demonstrates how the 

Alignment API is integrated into the baseline system. An example output from the 

Alignment API can be found in chapter 2, section 2.5.2, figure 2-3. Though two or 

more algorithms of the Alignment API can be combined to generate matches, however, 

as it is of interest to investigate how each algorithm behave given the same mapping 

context, all eight algorithms are executed independently. Knowing the matches between 

                                                 
47 http://ontoware.org/swrc/swrc/SWRCOWL/swrc_v0.3.owl 
48 http://alignapi.gforge.inria.fr 
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O1' and O2, as well as how the labels in O1 have been translated (i.e. which resources in 

O1' corresponds to the resources in O1), the match reconstruction process rearranges the 

MOM matches to finally generate the CLOM matches (between O1 and O2). Note that 

although the diagram in figure 3-3 shows a rendered O1' that is matched to O2, the 

baseline system is applicable to reversed source and target ontology, i.e. O2 can be 

rendered to O2' which can then be matched to O1.  

The baseline system is representative of the current translation-based approach to 

CLOM (see [Zhang et al., 2008; Wang et al., 2010; Wang et al., 2009; Trojahn, 2010] , 

this is discussed in chapter 2, section 2.4). Though it may be argued that the matching 

outcome is conditioned upon the specific MT and MOM tools used in the 

implementation, however, the typical (i.e. turn a CLOM problem to a MOM problem 

through translations) process to achieve CLOM in the baseline system is nevertheless 

representative and thus serves as a reference point for this thesis49. The effectiveness of 

the baseline system is investigated next. Particularly, how the translated ontology labels 

impact on the mapping quality is examined. 

3.4. Experiments  

In this section, two experiments are discussed. Experiment one aims to investigate the 

appropriateness (from the mapping view point) of the translations in the rendered 

ontology. Experiment two evaluates the quality of the matches generated using the 

baseline system. The ontologies used in the experiments include the SWRC ontology50 

(in English, developed by Ontoware51) and the ISWC ontology52 (in English, developed 

by Semantic Web, Annotation & Authoring 53 ). These ontologies contain general 

concepts that are often seen in the research domain. The SWRC ontology contains 54 

classes, 30 datatype properties, 44 object properties and no individuals - a total of 128 

resources. The ISWC ontology is of a similar size, containing 33 classes, 17 datatype 

properties, 18 object properties and 50 individuals - a total of 118 resources. Figure 3-5 

presents partial views of these ontologies in the Protégé54 editor. The SWRC and the 

                                                 
49 In the later chapters of this thesis, evaluations will show that the matching quality can be improved by 
the proposed AOLT process even though the same MT and MOM tools used in the baseline system are 
implemented in SOCOM and SOCOM++. 
50 The SWRC ontology can be downloaded at http://ontoware.org/swrc/swrc/SWRCOWL/swrc_v0.3.owl 
51 http://www.ontoware.org/index.html 
52 The ISWC ontology can be downloaded at http://annotation.semanticweb.org/ontologies/iswc.owl 
53 http://annotation.semanticweb.org/portal_url/portal_url 
54 http://protege.stanford.edu/ 
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ISWC ontology are chosen for mainly three reasons. Firstly, they are both developed by 

third parties (i.e. free of interference from this author). Secondly, they contain 

overlapping domains and different structures, which are examples of ontologies 

typically presented in mapping scenarios. Thirdly, the domain of these ontologies is 

familiar to the author of this thesis, whereby investigations on the appropriateness of 

the translations can be carried out with ease.   

(a) The SWRC Ontology 
 

(b) The ISWC Ontology 
 

 

Figure  3-5. Partial Views of the SWRC and the ISWC Ontology in Protégé 

The remainder of section 3.4 is organised as follows. Section 3.4.1 presents the 

experimental setup, the findings and analysis of the first experiment. Section 3.4.2 

presents the experimental setup, findings and analysis of the second experiment. Finally, 

conclusions drawn from the two experiments are presented in section 3.4.3.  

For raw data collected from these experiments, see the accompanying DVD:  

• The rendered ontologies from experiment one can be found at 

root/BaselineExperiments/Experiment1/RenderedOntologies/  
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• The matches generated from experiment one can be found at 

root/BaselineExperiments/Experiment1/Matches/  

• The evaluation (in spreadsheet format) from experiment one can be found at 

root/BaselineExperiments/Experiment1/Evaluation/ 

• The rendered ontologies from experiment two can be found at 

root/BaselineExperiments/Experiment2/RenderedOntologies/  

• The matches generated from experiment two can be found at 

root/BaselineExperiments/Experiment2/Matches/  

• The evaluation (in spreadsheet format) from experiment two can be found at 

root/BaselineExperiments/Experiment2/Evaluation/ 

3.4.1. Experiment One 

Experiment one aims to examine the appropriateness of translations from a mapping 

point of view during the ontology rendition process. The experimental setup is outlined 

in section 3.4.1.1, followed by the findings and analysis in section 3.4.1.2.  

3.4.1.1. Experimental Setup 

The goal of experiment one is to investigate whether there are side effects of translating 

ontology labels during ontology rendition. Three renditions of the same ontology are 

generated and then mapped to one another. Assuming appropriate translations are 

generated for all the labels in the given ontology, then the translated labels in all three 

renditions should be highly similar. This implies that the mappings from any pair of 

renditions of the same ontology should therefore be highly similar to one another. 

Whether this assumption is true or false is examined.  

In this experiment, the SWRC ontology is converted from the original English 

version to its Chinese renditions using two approaches: the baseline system and a 

human expert (being the author of this thesis). Three versions of the SWRC ontology 

are created as shown in figure 3-6: 

• the FSWRC ontology is generated using the baseline system utilising the 

FreeTranslation online translator as the MT component;  

• the GSWRC ontology is generated using the baseline system utilising the 

GoogleTranslate API as the MT component; 
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• and the HSWRC ontology is manually generated by the author of this thesis 

using the Protégé55 ontology editor.  

 
Figure  3-6. Experiment One Overview 

Though it may be argued that the HSWRC ontology may bias the findings since it 

was created by the author of this thesis, however, as the goal of the experiment is to 

examine how different translations (i.e. different renditions of the same ontology) will 

impact on the mapping quality, the HSWRC ontology simply serves as one possible 

rendition of the SWRC ontology.  

Figure 3-6 illustrates the experimental steps undertaken and the mappings are 

conducted as follows: (1) the SWRC ontology is mapped to itself using each algorithm 

from the Alignment API (recall there are a total of eight algorithms as discussed 

previously in chapter 2, section 2.5.2) to generate a gold standard as M1, with matches 

in English. (2) The HSWRC ontology is then mapped to itself using the same 

algorithms to generate: MA - containing matches in Chinese. MA is then compared to M1 

manually (by the author of this thesis). If exactly the same pairs of matches are 

validated in MA as those found in M1, then MA is essentially the Chinese gold standard 

for this experiment. (3) Next, the GSWRC ontology and the FSWRC ontology are each 

mapped to the HSWRC ontology to create the mappings MB and MC respectively (using 

the same eight algorithms from the Alignment API), both containing matches in 

Chinese. (4) Finally, MB and MC are evaluated against MA. Note that M1, MA, MB and 
                                                 
55 http://protege.stanford.edu 
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MC each contain eight sets of matches, as it is of interest to investigate how different 

matching algorithms are affected by the ontology rendition process. 

One possible experimental outcome is that MB and MC show the same set of 

matches as MA (assuming MA is validated as a reliable gold standard in Chinese by the 

author of this thesis). This would mean that the translation of ontology labels did not 

have any side effects on the ontology rendition process. Since no matter who translated 

these labels, the renditions led to the same matching outcome when the rendered 

ontologies were mapped to one another. Another possible outcome is that MB and MC 

are shown to be of poor quality (i.e. low precision, recall and f-measure) when 

evaluated against MA, it would mean that the translation of ontology labels has 

introduced noise into the ontology rendition process. This second outcome was later 

found to be the case by the experimental findings. This is presented and discussed next. 

3.4.1.2. Findings and Analysis  

Regardless of the matching algorithms used, the exact same sets of matches generated 

in M1 were found in MA, where each resource matches to itself, i.e. a total of 128 

matches was generated in MA. It is thus with confidence that MA can be considered as 

the gold standard in Chinese. Based on comparisons made to MA, the precision, recall 

and f-measure of MB and MC are generated as shown in figure 3-7. The matches 

generated by the eight matching algorithms56 in MB and MC are presented on the x-axis.  

The values on the y-axis range between 0.0 and 1.0. Precision scores are illustrated by 

blue bars, recall scores are illustrated by red bars and the f-measure scores are 

illustrated by green bars. For example, the StringDistAlignment algorithm (numbered 8 

on the x-axis) generated 1.0 precision (blue bars), over 0.25 recall (red bars) and 

approximately 0.50 f-measure (green bars) in MB and MC. Note that in this evaluation, a 

match is considered correct as long as it is included in the gold standard regardless of 

its confidence level. Such an evaluation approach aims to measure the maximum 

precision, recall and f-measure scores that can be achieved in this experimental setting. 

                                                 
56 In all the experiments presented in this chapter, the ClassStructAlignment algorithm is accompanied by 
the StringDistAlignment algorithm because it can only be executed with another algorithm from the API.  
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Legend:   Precision  Recall  F-Measure 
 

1 NameAndPropertyAlignment 5 SMOANameAlignment 
2 StrucSubsDistAlignment 6 SubsDistNameAlignment 
3 ClassStructAlignment 7 EditDistNameAlignment 
4 NameEqAlignment 8 StringDistAlignment 

Figure  3-7. Experiment One Evaluation Results 

It is clear from figure 3-7, that two string-based matching algorithms, namely 

NameEqAlignment and StringDistAlignment had the highest precision score of 1.00. 

However, no particular matching algorithm was able to generate remarkably high recall 

scores, including the aforementioned two algorithms. As a result, only less than 0.5 of 

the f-measure scores were achieved across eight matching algorithms. This means that 

only less than half of the matches were regenerated (post the ontology rendition 

process), which is rather low. A noticeable trend in figure 3-7 is that, generally, 

lexicon-based matching algorithms (i.e. NameEqAlignment, SMOANameAlignment, 

SubsDistNameAlignment, EditDistNameAlignment and StringDistAlignment) had higher 

precision, recall and hence f-measure scores compared to structure-based matching 

algorithms (i.e. NameAndPropertyAlignment, ClassStructAlignment and StrucSubsDist-

Alignment). As structure-based techniques build upon the outcome of lexicon-based 

techniques, in the case of the latter performing poorly it interrupts the matching 

effectiveness of the former, as is shown in this experiment. 

In both MB and MC, regardless of the matching algorithms used, the precision 

score is always higher than its corresponding recall score. This suggests that a 

considerable number of correct matches are found (and in some cases, 100% of the 

matches generated are correct, i.e. in the case of the NameEqAlignment and the 

StringDistAlignment algorithm), however, they are always an incomplete set compared 
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to the gold standard. The average f-measure achieved in MB is 0.4272, and the average 

f-measure achieved in MC is 0.3992. This finding suggests that translations returned 

from the GoogleTranslate API are of a slightly higher quality (i.e. closer to the human 

translations) than those returned from the FreeTranslation online translator in this 

experiment. However, with all results having an f-measure of below 0.5, it is clear that 

translation noise has been introduced during the ontology rendition process.  

The findings from experiment one show that the ontology label translation process 

has introduced noise for the subsequent matching step. Translation noise is evident in 

the matching outcome, since different renditions of the same ontology did not generate 

the same matching results when mapped to one another. Though one could argue that 

the ontology label translations in the HSWRC ontology may be biased (i.e. labels were 

translated in a way that they would not generate matches with the FSWRC ontology or 

the GSWRC ontology) since the author of this thesis was involved in its construction. 

However, as the goal of this experiment is to investigate the impact from the act of 

translation on the mapping outcome, the HSWRC ontology should be considered as one 

example of many other possible renditions. Also, since it was generated prior to any 

knowledge of the matching outcome, possible bias is minimised. To further investigate 

the impact of ontology label translations on the mapping process, a second experiment 

is conducted. This is discussed next. 

3.4.2. Experiment Two 

The goal of experiment two is to investigate how differing translations will affect 

mapping outcome when the same ontologies were mapped to each other before and 

after the ontology rendition process. The experimental setup is outlined in section 

3.4.2.1, and the findings are presented in section 3.4.2.2. 

3.4.2.1. Experimental Setup 

An overview of the experimental setup is shown in figure 3-8. Two renditions of the 

SWRC ontology (in Chinese) and another two renditions of the ISWC ontology (also in 

Chinese) are generated through the ontology rendition process. The GSWRC and the 

GISWC ontology are created using the GoogleTranslate API. The FSWRC and the 

FISWC ontology are created using the FreeTranslation online translator. 
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Figure  3-8. Experiment Two Overview 

The mapping procedures carried out are as follows: (1) the original English 

SWRC ontology is mapped to the original English ISWC ontology to generate M2 (in 

English). M2 contains eight sets of matches that are generated using the eight different 

matching algorithms. (2) The GSWRC ontology is mapped to the GISWC ontology 

(again using eight matching algorithms) to generate MB' (in Chinese). (3) Similarly, the 

FSWRC ontology is mapped to the FISWC ontology to generated MC' (in Chinese). 

Note that each MB' and MC' contain eight set of matches (since eight different matching 

algorithms were applied). (4) To evaluate the quality of MB' and MC', they are compared 

against M2. Since M2 contains matched resources in English, the labels of these 

resources were translated manually to Chinese by the author of this thesis as MA'. MA' 

(in Chinese with a total of 57 matches) is then regarded as the reference standard for the 

evaluations of MB' and MC'. Note that M2 is not a validated gold standard per se (it is 

generated by MOM techniques without verifications from human experts) in this 

experiment, it should be regarded as a reference for matches generated before ontology 

rendition. In other words, this experimental setup examines whether the MOM 

techniques is able to re-generate the same set of matches after the translations of 

ontology labels take place. Also note that although MA' is created by this author, 
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however, this process does not introduce bias into the reference standard. Because from 

M2 to MA', it is a simple case of establishing which pair of resources were matched to 

each other. When MB' and MC' are compared to MA', whether the same pairs of matches 

were generated post ontology rendition is investigated. 

3.4.2.2. Findings and Analysis  

The same evaluation metrics are used in the second experiment as used in the first 

experiment, where a pair of matched resources is considered correct as long as it is 

found in the reference standard regardless of its confidence level. Each match set (in 

MB' and MC') that was generated using a specific matching algorithm is always 

evaluated against the gold standard that used the same matching algorithm (in MA'). The 

evaluation results of MB' and MC' are shown in figure 3-9. 
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Legend:   Precision  Recall  F-Measure 

 

1 NameAndPropertyAlignment 5 SMOANameAlignment 
2 StrucSubsDistAlignment 6 SubsDistNameAlignment 
3 ClassStructAlignment 7 EditDistNameAlignment 
4 NameEqAlignment 8 StringDistAlignment 

Figure  3-9. Experiment Two Evaluation Results 

The StringDistAlignment algorithm had the highest precision and recall in this 

experiment, thus yielding the highest f-measure in both MB' and MC'. Similar to the 

findings from experiment one, lexicon-based matching algorithms generally had higher 

precision, recall and hence f-measure scores compared to structure-based matching 

algorithms. The mean f-measure in MB' is 0.2927 and 0.3054 in MC', which suggests 

that the FreeTranslation online translator had a slightly better performance than the 



 

 62 

Google Translate API in this experiment. Nevertheless, the low f-measure scores found 

in this experiment indicate that the mappings generated are of rather poor quality. It is 

clear from experiment two that the MOM techniques were unable to simply re-generate 

the same set of matches between the same ontology pair post ontology rendition. These 

findings further confirm what was previously shown in experiment one: it is difficult 

for MOM algorithms to generate high quality matches when the ontology labels have 

been translated during the ontology rendition process. Conclusions drawn from the two 

experiments are discussed next. 

3.4.3. Conclusions  

It is shown through the experiments presented in this chapter that translation noise is 

introduced during the ontology rendition process, which have had a negative impact on 

the quality of the mappings subsequently generated using MOM techniques. Translation 

noise in the context of CLOM differs from the traditional sense. Traditionally, noise in 

the context of localisation can be understood as translations that do not meet the 

requirements of the target community. In the context of CLOM however, translation 

noise can be understood as translations that lead to incorrect matches or neglect correct 

matches (the scale of the translation noise problem is shown through the below 1.0 

precision, recall and f-measure in both experiments). Also note that this difference 

means that reducing translation noise in CLOM is primarily concerned with selecting 

translations that will ensure the success of the subsequent MOM step. It does not 

concern selecting translations from a linguistic view point that is motivated by 

localisation. Translation noise (in the context of CLOM) exists as long as ontology 

labels are translated (for MOM techniques), it is not a result from the use of MT tools, it 

is in fact a result from the simple act of (ontology label) translation. It may be argued 

that since the experiments presented in this chapter only concern two ontologies, the 

conclusions drawn are not representative. It is thus important to note that the ontologies 

used in the experiments are not designed to be an exhaustive list, but rather examples of 

mapping scenarios. These example scenarios present this research with a ground for 

investigating translations that take place in the context of CLOM.    

The author of this thesis manually examined the translations conducted in both 

experiments, and categorised three main types of translation noise. Table 3-1 gives an 

overview of the translation noise presented during the ontology rendition process in 



 

 63 

both experiments. The percentages shown in table 3-1 are calculated as: the sum of a 

particular type of translations divided by the sum of the labels to be translated. For 

example, in the case of the GSWRC ontology, the total number of inadequate 

translations presented is 19, the total of labels to be translated is 128, hence the 

percentage is 14.84% (i.e. 19/128).  

Table  3-1. Translation Noise during Ontology Rendition 

Translation Type 
Renditions Noise 

Inadequate Translations Synonymic Translations Incorrect Translations 

Count 19 26 15 
GSWRC 

% 14.84% 20.31% 11.72% 

Count 14 35 11 
FSWRC 

% 10.94% 27.34% 8.59% 

Count 0 29 0 
HSWRC 

% 0 22.66% 0 

Count 12 16 5 
GISWC 

% 10.17% 13.56% 4.24% 

Count 16 16 2 
FISWC 

% 13.56% 13.56% 1.69% 

Translation noise encountered in the experiments can be categorised as:  

• Inadequate translations. These are translations that fail to adequately capture 

the concept of a resource label in a given CLOM context. These translations 

often grasp a general idea of the concept at hand, but fail to illustrate the exact 

terminology that is most suitable given the mapping tasks at hand. For example, 

as discussed in section 3.3.2, class labels Conference and Meeting were both 

translated to the same term that means “meeting” in Chinese. However, since 

conference is a specified type of meeting, the translation from MT was not 

adequate enough to capture the intended concept presented in the original 

ontology. This type of translations can lead to mismatches or prevent the 

generation of otherwise valid matches in the subsequent ontology matching step. 

In the aforementioned example, the source resource labelled as Conference is 

incorrectly mapped to the target resource labelled as Meeting in the target 

ontology as exact matches, whereas the source resource Meeting should have 

been matched instead. Such mismatches could be avoided if the MOM 

algorithms were presented with an adequate translation. One way to achieve this 

is to account the context of use for the labels in the source ontology. 

• Synonymic translations. These are translations that capture the intended 

meaning of the given resource labels in the source ontology, but differ lexically 

from the labels presented in the target ontology. Such translations may not be 

considered as semantic issues per se, however they do present challenges for 

MOM techniques that rely on lexicon comparisons in the process of generating 
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matches. For instance, synonymic translations can cause the absence of correct 

matches in the subsequent monolingual ontology matching step. A simple 

example can be: assuming there is a source and a target resource both 

illustrating the concept of rain. The target resource is labelled as shower, 

whereas the translation for the source resource is rain. An absence of a match 

between the two can occur given lexicon-based MOM techniques as the two 

labels have little in common with one another. Such cases can be improved if 

the ontology rendition process accounts for the semantics (i.e. the labels already 

used by the target ontology) in the target ontology, e.g. select translations that 

are lexically similar to what are presented in the target ontology in order to 

conclude good matches.  

• Incorrect translations. These are translations which do not reflect the meaning 

of the given concept in any way. Incorrect translations can lead to mismatches 

or the absences of correct matches in situations similar to the scenarios 

presented above. Such situations can be improved or avoided if a pool of 

candidate translations are available and the contexts of use (i.e. other labels that 

surround the to-be-translated label) are known to the ontology rendition process.  

To improve the quality of CLOM results generated using the baseline approach, it 

is clear from the experimentation that ontology label translations need to take the 

mapping context into account. An improved CLOM approach needs to recognise which 

translations are appropriate in the given mapping scenario. A translation is appropriate 

if it successfully leads the MOM techniques to generate the correct mapping (given 

such a correct mapping exists). As the goal of CLOM is to generate quality mappings 

between ontologies that are labelled in different natural languages, the translations of 

the ontology labels merely serve as a means to an end whereby it should supply the 

MOM techniques with rendered ontologies that are likely to lead to good matches. In 

other words, the translations of ontology labels should be purposely conducted 

depending on the specific CLOM scenario. To achieve this, ontology labels should not 

be translated in isolation from the ontologies involved in a given CLOM scenario, the 

translations should centre on the semantics that are already embedded in these 

ontologies. Hence arising from the results of the experimentation conducted and 

described in this chapter, the novel concept of appropriate ontology label translation 

(AOLT) for CLOM is defined by the author. An appropriate ontology label translation 
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(AOLT) in the context of cross-lingual ontology mapping is defined as one that is most 

likely to maximize the success of the subsequent monolingual ontology matching step.  

This idea should not be confused with generating translations with the purpose of 

localisation, for example, in the context of ontology localisation (discussed in chapter 2, 

section 2.4.2). The goal of ontology localisation is to generate ontologies that are 

adapted “to a particular language and culture” [Suárez-Figueroa & Gómez-Pérez, 2008], 

whereby the translations of ontology labels is a form of natural language processing. In 

contrast, the AOLT concept is concerned with searching for appropriate translations 

(from a mapping point of view) that are believed to be the ones most likely to enhance 

the matching ability of the subsequent MOM step, but not necessarily the most 

linguistically correct translations (from a localisation point of view). 

3.5. Summary  

In this chapter, an implementation of the baseline approach to CLOM is presented. The 

effectiveness of the baseline approach system in CLOM scenarios, particularly the 

ontology rendition process, is examined in two experiments. It is shown with evidence 

that translation noise can have a negative impact on the subsequent MOM step in the 

baseline system. Based on the conclusions drawn from these experiments, the concept 

of AOLT is proposed. Methods to achieve AOLT for the purpose of improving CLOM 

quality, as well as the evaluations of their effectiveness form the basis for the rest of the 

work presented in this thesis.  
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4 PROTOTYPE ONE: SOCOM 

4.1. Chapter Overview 

This chapter discusses the AOLT concept in detail and presents an initial CLOM 

prototype: SOCOM to realise the proposed concept. The design, implementation and 

evaluation of SOCOM are also presented. In addition, a case study of SOCOM in a 

cross-lingual adaptive retrieval and composition system is presented in this chapter. 

This chapter is organised as follows. Section 4.2 discusses the concept of AOLT. 

Section 4.3 presents the design of the SOCOM system that integrates an AOLT process 

to achieve cross-lingual ontology mapping. Section 4.4 discusses the implementation of 

SOCOM. Section 4.5 presents the evaluation of SOCOM in two CLOM experiments 

involving ontologies of the research and bibliography domain in Chinese, English and 

French. Section 4.6 demonstrates SOCOM in a case study whereby cross-lingual 

information retrieval (CLIR) is achieved through the use of cross-lingual ontology 

mapping. Finally, section 4.7 concludes the chapter with a summary.  

The initial proposal of the SOCOM system (discussed in section 4.3) has been 

published in the paper titled Multilingual Ontology Mapping: Challenges and a 

Proposed Framework at the Symposium on Matching and Meaning (AISB 2009 

Convention), ISBN 1902956842, pp. 32-35, in April 2009. The evaluation approach of 

the SOCOM system (discussed in section 4.5) has been published in a poster titled 

Evaluation of a Semantic-Oriented Approach to Cross-Lingual Ontology Mapping at 

Knowledge Engineering and Knowledge Management by the Masses (EKAW 2010), 

CEUR-WS Vol. 674, in October 2010. Findings from experiment one (discussed in 

section 4.5.1) and the case study (discussed in section 4.6) have been published in a 

paper titled Cross-Lingual Ontology Mapping and Its Use on the Multilingual Semantic 
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Web at the 1st Workshop on the Multilingual Semantic Web collocated at the 19th World 

Wide Web conference (WWW 2010), CEUR-WS Vol. 571, pp. 13-20 in April 2010. 

4.2. The Concept of Appropriate Ontology Label Translation  

The concept of appropriate ontology label translation (AOLT) was first introduced in 

chapter 3 (section 3.4.3). The basis of the AOLT concept is that it is useful to 

differentiate between translations that take place in the context of ontology localisation 

and translations that occur in the context of cross-lingual ontology mapping. In 

ontology localisation, the translation of labels aims to adapt the ontology to a particular 

language and culture. In cross-lingual ontology mapping, the translation of labels aims 

to adapt to the needs of the subsequent monolingual matching process in an effort to 

generate high quality cross-lingual ontology mapping results. As shown in the 

experiments presented in chapter 3 (section 3.4), translation noise (i.e. translations that 

neglect correct mappings or lead to incorrect mappings) can be introduced during 

ontology rendition which subsequently lead to poor matching quality. To improve this 

situation, the concept of AOLT can be applied. An appropriate ontology label 

translation (AOLT) in the context of cross-lingual ontology mapping is one that is most 

likely to maximize the success of the subsequent monolingual ontology matching step. 

The core idea of the AOLT concept is: translations that take place in the context 

of CLOM should be mapping-oriented as these translations should facilitate MOM 

techniques in the generation of quality mappings. There can be various ways to realise 

the AOLT concept. For instance, human CLOM experts specialising in certain domains 

and familiar with specific natural language pairs can manually select AOLT results in a 

given CLOM scenario. Another example to achieve AOLT results can be rule-based, 

e.g. CLOM results can be aggregated over time to help determining which translations 

are appropriate in the given domain and specific natural language pair. This effectively 

creates a translation memory57  specifically for CLOM scenarios involving specific 

domains and natural languages, which can be used for future translations carried out in 

the same CLOM context. This thesis however, focuses on realising the AOLT concept 

without the involvement of a user or translation memories that are likely to require the 

maintenance of a user. In other words, this thesis aims to select AOLT results based on 

                                                 
57 A translation memory is “an archive of existing translations, structured in such a way as to promote 
translation re-use” [Macklovitch et al., 2000].  
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information drawn from the ontologies involved in a CLOM scenario. To better 

understand the AOLT concept, an example is shown in figure 4-1, where the source 

ontology is labelled in Chinese and is mapped to an English target ontology. To achieve 

cross-lingual ontology mapping, the AOLT process is performed to first translate the 

labels in the Chinese ontology into English. The source class 摘要 (meaning “abstract” 

or “summary”) has candidate translations abstract and summary. To determine the most 

appropriate translation (underlined in figure 4-1), consider three scenarios. 

 
(a) Scenario One 

  
(b) Scenario Two 

 

 
(c) Scenario Three 

Figure  4-1. Examples of AOLT in the Context of CLOM 

Figure 4-1-a demonstrates a situation where a class labelled as Abstract exists in 

the target ontology. In this case, Abstract would be a more appropriate translation than 

summary, since it is more likely for MOM techniques to generate a match.  
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Figure 4-1-b illustrates another scenario where the target ontology contains a class 

labelled Outline. From a thesaurus or dictionary, it can be determined that Outline is a 

synonym of the candidate translation summary, therefore, instead of using either 

abstract or summary, Outline is chosen as the appropriate translation since it is the 

exact label used by the target ontology.  

Figure 4-1-c shows a third scenario where both Abstract and Summary exist in the 

target ontology, the appropriate translation is then concluded by analysing the semantic 

surroundings. In this thesis, the semantic surrounding of an entity refers to the labels 

that are used by the immediate surrounding nodes of this entity. For a class entity C, its 

surrounding nodes include its immediate associated node(s) that is one level higher 

and/or lower to C in the given ontological hierarchy. For a property entity P (either 

datatype or object), its surrounding is defined as the entity or entities which P restricts. 

For an individual (or instance) entity I, its surrounding node is defined as the class 

entity or entities which I belongs to. It is recognised that the semantic surrounding of an 

entity can include a broader range of nodes than just the immediate associates. At the 

broadest extreme for example, all the semantics that are contained in the given ontology 

can be considered as the semantic surrounding of a node. However, as the range 

increases, the overlap of semantic surroundings between entity E1 and entity E2 

increases. This increased overlap will narrow the distinctions between the semantic 

surroundings among entities. In this thesis, in order to maintain a distinctive 

representation for a given entity from another entity in the same ontology, the semantic 

surroundings thus only concern the immediate associated nodes. In the third scenario, 

the source class 摘要 has a super-class 出版物 (with candidate translations publication 

and printing), two sibling-classes 章节 (with candidate translations chapter and section) 

and 书籍 (with candidate translations book and literature). Its semantic surrounding 

therefore include: {publication, printing, chapter, section, book, literature}. Similarly, 

in the target ontology, the semantic surrounding of the class Abstract can be collected 

as: {Mathematics, Applied}, and the semantic surrounding of the class Summary would 

include: {BookChapter, Reference}. Using string comparison techniques such as edit 

distances, it can be determined that the strings in the surrounding of the target class 

Summary are more similar to those of the source class. Summary therefore would be the 

appropriate translation in this case.  
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Given a pair of ontologies in a mapping scenario, one immediate improvement on 

the selection of the translations is to take into account the semantics embedded in both 

ontologies during the label translation process. Given ontologies O1 and O2 in a CLOM 

scenario, the minimum semantics that can be taken into account by the AOLT process 

is the data already coded in these ontologies. In other words, a basic AOLT process 

focuses on what is always available in any CLOM scenario, i.e. a source and a target 

ontology and the semantics within them to influence the selection of appropriate 

translations. For example, the semantic surrounding of an O1 entity illustrates its 

context-of-use in the source ontology, and the entity labels in O2 present the AOLT 

process with selection criteria, as the example shown in figure 4-1. This minimum 

intake of ontology semantics can be considered as a basic modelling of the AOLT 

process. Prototype one: SOCOM aims to investigate whether such a basic AOLT 

process can improve the CLOM quality, through the implementation (section 4.4) and 

the evaluation (section 4.5) of this prototype. The design of SOCOM is discussed next. 

4.3. SOCOM Design 

An initial Java-based prototype of the Semantic-Oriented Cross-lingual Ontology 

Mapping (SOCOM) system is designed to incorporate the basic model of the AOLT 

process (discussed in previous section) to achieve CLOM. This section presents the 

design of the SOCOM system.  

SOCOM allows a user to generate mapping results between ontologies that are 

labelled in different natural languages. The flowchart in figure 4-2 illustrates the 

workflow of SOCOM.  To achieve cross-lingual ontology mapping, SOCOM carries 

out seven steps including ontology parsing, label translation, synonym generation, 

AOLT selection, ontology rendition, MOM and match reconstruction, as follows.  

• The ontology parsing step is responsible for extracting the labels and the 

semantic surroundings from a given ontology, which is performed on both the 

source and the target ontology.  

• The label translation step is responsible for generating the candidate 

translations for the labels in the source ontology.  

• The synonym generation step is responsible for generating the synonyms for the 

labels in the target ontology.  
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Figure  4-2. Workflow in SOCOM 
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• The AOLT selection step is responsible for generating AOLT results from the 

available translations and synonyms based on comparisons made between the 

source and the target semantic surroundings. Translation collisions are also 

resolved during this process before an AOLT result is stored.  

• The ontology rendition step is responsible for generating a version of the source 

ontology that is labelled in that target natural language, using the AOLT results 

concluded during the AOLT selection step.  

• The MOM step is responsible for generating matches between the rendered 

ontology (i.e. a converted source ontology with labels in the target natural 

language) and the target ontology.  

• Finally, the match reconstruction step is responsible for generating matches 

between the source ontology and the target ontology, based on matches 

generated between the rendered ontology and the target ontology, and the 

AOLT results selected for source ontology labels.  

The MOM step and the match reconstruction step in SOCOM are the same as in 

the baseline system described in chapter 3 (section 3.3.2). The innovative difference 

between SOCOM and the baseline system is the rendition of O1'. More specifically, the 

difference lies in the translations of the O1 labels during the rendition process. In the 

baseline system, translations of O1 labels are achieved by MT tools independently of 

the mapping scenario. In other words, the baseline system ignores the ontologies that 

are involved in a mapping scenario, and conducts the label translations in isolation. In 

contrast, SOCOM aims to achieve appropriate translations for O1 labels, whereby the 

translations are motivated by supporting the subsequent MOM process. The translation 

of ontology labels in SOCOM is not conducted in isolation of the ontologies involved 

in a mapping scenario. The semantics from the target ontology (i.e. the labels used by 

target entities and their semantic surroundings) are used to influence the translation 

outcome of the labels in the source ontology.  

Note that the translations resulting from the AOLT process related to the same 

ontology: O1 will differ depending on the given target ontology: O2 in a mapping 

scenario, since the semantic data in O2 will influence the selections of the AOLT results 

for O1 labels. The rendered ontology O1' should not be considered as a localised O1, but 

simply an intermediate step in the cross-lingual ontology mapping process. More details 

on achieving AOLT results in SOCOM are discussed next.  
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Given ontologies O1 and O2 that are labelled in different natural languages, the 

semantics (i.e. labels and semantic surroundings) from both ontologies are extracted 

through the ontology parsing step (see figure 4-2). The resource labels from O1 are sent 

to the label translation step to generate candidate translations in the natural language 

used by O2, and later stored in the translation repository. The synonyms of the resource 

labels in O2 are generated through the synonym generation step, and later stored in the 

lexicon repository. Knowing the location of a node in a given ontology, the semantic 

surrounding of this node can be collected as discussed in section 4.2. The output from 

this process is shown as O1 semantic surroundings and O2 semantic surroundings in 

figure 4-2, which include the semantic surroundings for all the classes, properties and 

individuals in an ontology. Note that the surroundings of resources in O1 are labelled in 

the original source natural language. In order to compare the semantic surroundings of a 

source entity to that of a target entity, these semantic surroundings need to be labelled 

in the target natural language. Hence, in figure 4-2, the O1 semantic surroundings are 

generated with three inputs including: the O1 labels, the O1 structure and the translation 

repository. This differs from the generation of the O2 semantic surroundings, which 

requires two inputs only: the O2 labels and the O2 structure.    

Figure 4-3 illustrates how a candidate AOLT (i.e. before verifying this AOLT 

result is collision-free) is selected for a label L1 in the source ontology O1. For each 

candidate translation of L1 (stored in the translation repository in figure 4-2), it is 

compared to the target labels and their synonyms (stored in the lexicon repository in 

figure 4-2) using string comparison techniques. Three possible outcomes (shown in 

figure 4-3, the decision point of candidate translation = O2 Label/Synonym has two 

possible outcomes: yes or no, with yes further refined to either one-to-many or one-to-

one match) can derive from this comparison process as follows: 

• If a one-to-one match (i.e. the candidate translation is the same with a 

target resource label, or a synonym of a target resource label) is found, the 

target label or the matched synonym’s corresponding target label is 

selected as the candidate AOLT. A match in this context refers to two 

character strings with edit distance of zero. This string comparison 

technique is further explained in section 4.4. 

• If one-to-many matches (i.e. multiple target labels and/or synonyms in the 

lexicon repository are the same with a given candidate translation) are 

found, the semantic surroundings of the corresponding target labels are 
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collected and compared to the semantic surrounding of the source label in 

question. The target label with semantic surroundings that are most similar 

(i.e. with lowest aggregated edit distance) to those of the source resource is 

chosen as the AOLT.  

 
Figure  4-3. The AOLT Process in SOCOM 

• If no match is found in the lexicon repository, for each candidate 

translation, a set of interpretative keywords are generated to illustrate the 

meaning of this candidate. The candidate with keywords that are most 

similar (i.e. having lowest aggregated edit distance score) to the source 

label’s semantic surrounding is deemed as the AOLT result. Interpretative 

keywords can be generated from resources such as dictionaries and 
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encyclopaedias. In SOCOM, interpretative keywords for candidate 

translations are generated using Wikipedia. Implementation details of the 

keyword generation process are discussed in section 4.4. 

After a candidate AOLT result is generated for a label in O1, it needs to be 

collision-free (i.e. no two or more labels have the same AOLT result) to be considered 

as the actual AOLT result. Collisions can occur during the AOLT selection process and 

need to be resolved in order to generate O1'. For example, the candidate AOLT for 

several labels in O1 may lead to the same target label, or the same synonym of a target 

label, or different synonyms but all corresponding to the same target label. These 

situations are effectively a result of many-to-one matches (not included in the bullets 

above, as the above cases concern the possible outcomes regarding one and only one 

candidate translation at a time), and are referred to as translation collisions in this thesis. 

Such collisions must be resolved in order to generate well-formed URIs in O1'. How 

translation collisions are resolved and the technologies used to realise the AOLT 

selection process described thus far are presented next.   

4.4. SOCOM Implementation 

This section discusses the techniques and technologies used in the implementation of 

the first prototype: SOCOM to achieve the processes shown in figure 4-2. The complete 

Java code of SOCOM can be found at root/SOCOM/src/, and the Jar files required to 

run SOCOM can be found at root/SOCOM/bin/ on the DVD. 

Ontology parsing: SOCOM uses the Jena Framework version 2.5.5 to parse the 

formally defined ontologies. The Jena Framework was chosen because it is open source 

and supports the reading and writing of both RDF and OWL ontologies (which is the 

focus of this thesis). A code snippet using the Jena Framework to load a locally stored 

ontology, iterate through the classes from within and extract the class labels is 

presented in appendix C, section C.3, figure C-5. The Jena Framework is also used to 

generate the semantic surroundings of a given ontological entity. Figure C-6 in 

appendix C, section C.3 presents a code snippet of the generation of semantic 

surrounding for an ontology class.  
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Translating O1 labels: to collect candidate translations for ontology labels in O1, 

the GoogleTranslate API version 0.5 and the WindowsLive58 translator are used. These 

MT tools were chosen for SOCOM as they represent the state of the art in statistical 

MT (discussed in chapter 2, section 2.6). In the same way as the baseline system 

(discussed in chapter 3, section 3.3.2), concatenated ontology labels are split to their 

constituent words in natural language format before passed onto the integrated MT 

tools (as illustrated in appendix C, figure C-2 and figure C-3). Figure C-7 in appendix C, 

section C.3 presents a code snippet of how the candidate translations are achieved. 

Generating synonyms for O2 labels: English synonyms of the ontology labels in 

O2 (required for experiment one discussed later in section 4.5.1) are generated by 

querying the WordNet59 thesaurus, version 2.0 via the RiTaWN60 API as well as the 

Dictionary.com API61. These thesauri are chosen since there are readily available Java 

APIs that offer easy access to their content. French synonyms of the ontology labels in 

O2 (required for experiment two discussed later in section 4.5.2) are generated by 

querying synonyms-fr.com62 . The synonyms returned from this website are parsed 

using the HTML Parser63 version 2.0. The synonyms-fr.com was chosen because it 

provides French synonyms in a nested fashion that can be parsed by readily available 

Java libraries such as the HTML Parser. Figure C-8 in appendix C, section C.3 presents 

a code snippet of the generation of synonyms for a target individual label.  

Generating the translation repository & the lexicon repository: as mentioned 

in the previous section, the translation repository contains the labels used in the source 

ontology and their corresponding candidate translations, and the lexicon repository 

contains the target labels and their respective synonyms. Both repositories are formatted 

in XML and stored in the eXist DB64 version 1.0rc. The eXist database was chosen 

because it is open source, it supports XML data management and features efficient 

XQuery 65  and XPath 66  processing. Figure 4-4 gives an example of the translation 

repository generated for a source ontology labelled in Chinese. The Document Type 

                                                 
58 http://www.windowslivetranslator.com/Default.aspx  
59 http://wordnet.princeton.edu 
60 http://www.rednoise.org/rita 
61 http://developer.dictionary.com/products 
62 http://www.synonyms-fr.com/ 
63 http://htmlparser.sourceforge.net/ 
64 http://exist.sourceforge.net 
65 XQuery is a functional programming language that is designed to query collections of XML data. More 
on XQuery can be found at http://www.w3schools.com/xquery/default.asp 
66 XPath is a query language for navigating through elements and attributes in an XML document. More 
on XPath can be found at http://www.w3schools.com/xpath/ 
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Definition (DTD) declared for the translation repository can be found in appendix D, 

section D.2, figure D-1. Figure 4-5 presents an example of the lexicon repository 

generated for a target ontology labelled in English. The DTD used by the lexicon 

repository can be found in appendix D, section D.2, figure D-2. 

<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE TranslationRepository SYSTEM "TranslationRepository.dtd"> 
<TranslationRepository> 

… 
<Result> 

<SourceID>SC1</SourceID> 

<SourceValue>院所</SourceValue> 
<CandidateCollection> 

<Candidate> 
<CandidateID>STC1-SC1</CandidateID> 
<CandidateValue>Institutions</CandidateValue> 

</Candidate> 
<Candidate> 

<CandidateID>STC2-SC1</CandidateID> 
<CandidateValue>Institutes</CandidateValue> 

</Candidate> 
</CandidateCollection> 

</Result> 
… 
<Result> 

<SourceID>SC14</SourceID> 

<SourceValue>管理人员</SourceValue> 
<CandidateCollection> 

<Candidate> 
<CandidateID>STC27-SC14</CandidateID> 
<CandidateValue>Managers</CandidateValue> 

</Candidate> 
<Candidate> 

<CandidateID>STC28-SC14</CandidateID> 
<CandidateValue>Management staff</CandidateValue> 

</Candidate> 
</CandidateCollection> 

</Result> 
… 

</TranslationRepository> 

Figure  4-4. An Example of the Translation Repository 

<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE LexiconRepository SYSTEM "LexiconRepository.dtd"> 
<LexiconRepository> 

… 
<Result> 

<TargetID>TC3</TargetID> 
<TargetValue>Student</TargetValue> 
<SynonymCollection> 

<Synonym> 
<SynonymID>TSN21-TC3</SynonymID> 
<SynonymValue>apprentice</SynonymValue> 

</Synonym> 
<Synonym> 

<SynonymID>TSN22-TC3</SynonymID> 
<SynonymValue>auditor</SynonymValue> 

</Synonym> 
<Synonym> 

<SynonymID>TSN23-TC3</SynonymID> 
<SynonymValue>junior</SynonymValue> 

</Synonym> 
<Synonym> 

<SynonymID>TSN24-TC3</SynonymID> 
<SynonymValue>learner</SynonymValue> 

</Synonym> 
<Synonym> 

<SynonymID>TSN25-TC3</SynonymID> 
<SynonymValue>decoder</SynonymValue> 

</Synonym> 
<Synonym> 

<SynonymID>TSN26-TC3</SynonymID> 
<SynonymValue>observer</SynonymValue> 

</Synonym> 
<Synonym> 

<SynonymID>TSN27-TC3</SynonymID> 
<SynonymValue>graduate</SynonymValue> 

</Synonym> 
<Synonym> 

<SynonymID>TSN28-TC3</SynonymID> 
<SynonymValue>novice</SynonymValue> 
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</Synonym> 
<Synonym> 

<SynonymID>TSN29-TC3</SynonymID> 
<SynonymValue>pupil</SynonymValue> 

</Synonym> 
<Synonym> 

<SynonymID>TSN30-TC3</SynonymID> 
<SynonymValue>valedictorian</SynonymValue> 

</Synonym> 
</SynonymCollection> 

</Result> 
… 

</LexiconRepository> 

Figure  4-5. An Example of the Lexicon Repository 

The AOLT selection process invokes the repositories in the eXist database via 

the XML:DB67 1.0 API, to compare each candidate translation of a given source label 

to what is stored in the lexicon repository. This process is discussed earlier in section 

4.3. If a one-to-one match (note that the match found in the lexicon repository can be 

either a target label used in O2, or a synonym of a target label that is used in O2) is 

found, the (matched target label or the matched synonym’s corresponding) target label 

is selected as the AOLT. If one-to-many matches (i.e. when several target labels and/or 

synonyms in the lexicon repository are matched) are found, the semantic surroundings 

of the matched target labels are collected and compared to the semantic surroundings of 

the source label in question. If no match is found in the lexicon repository, for each 

candidate translation, a set of interpretative keywords are generated to illustrate the 

meaning of this candidate. This is achieved by querying Wikipedia68 via the Yahoo 

Term Extraction Tool 69 . The code snippet in appendix C, section C.3, figure C-9 

illustrates this process. An example output from term extraction is shown in figure 4-6, 

where key words are extracted for conference based on its definition from Wikipedia.  

… 
<Result>verbal interaction</Result> 
<Result>gatherings</Result> 
<Result>exhibition</Result> 
<Result>presentation seminar</Result> 
<Result>demonstration</Result> 
… 

Figure  4-6. An Example Output from Term Extraction 

String comparison technique: edit distance is often used to compare the 

similarity between strings. “Given two character strings S1 and S2, the edit distance 

between them is the minimum number of edit operations required to transform S1 into 

S2” [Manning et al., 2008, p. 58]. Edit operations include insertion, deletion or 

replacement of a character in the given string. More details of edit distance can be 

found in [Manning et al., 2008]. In SOCOM, a space/case-insensitive edit distance 

                                                 
67 http://xmldb-org.sourceforge.net/index.html 
68 http://www.wikipedia.org 
69 http://developer.yahoo.com/search/content/V1/ termExtraction.html 
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string comparison algorithm based on Nerbonne et al.’s method [Nerbonne et al., 1999] 

is used to compare labels (e.g. comparing a candidate translation to a target label) and 

collections of labels (e.g. comparing a set of interpretative keywords for a candidate 

translation to its corresponding source label’s semantic surrounding) via the LingPipe 

API70 version 3.8.0. This comparison algorithm used between two character strings is 

demonstrated in a code snippet shown in appendix C, section C.3, figure C-10. The 

comparison algorithm implemented for semantic surroundings (i.e. comparisons made 

between two collections of character strings) is demonstrated in a code snippet shown 

in appendix C, section C.3, figure C-11.  

Translation collisions are resolved upon the conclusion of a final AOLT result. A 

summary of the resolution strategies used in SOCOM is shown in table 4-1. Translation 

collisions can occur between two or more source entity labels, however, the system 

only needs to be concerned with two entities at a time as collisions need to be solved 

immediately upon detection. For a given source label, if its AOLT is determined based 

on a match made to a target label or the synonym of a target label in the lexicon 

repository, the origin of this AOLT is categorised as derived from target ontology. In all 

other cases, the origins of the AOLT results are categorised as derived without target 

ontology. When a translation collision is detected between a pair of source entities E1 

and E2, the origins of their AOLT results are verified. The entity with the AOLT that 

was derived from the target ontology keeps the collided term as its AOLT, and the other 

entity will search for an alternative translation as its AOLT, as shown in table 4-1, 

scenario i and iv. If both entities used the same strategy to determine their AOLT result, 

the latter entity will seek alternative translation as shown in table 4-1, scenario ii and iii. 

To seek alternative translation, if the initial AOLT was derived with the help of 

the target ontology (i.e. a match made to a target label, or a synonym of a target label), 

the system searches among available synonyms (of a target label) until one is found that 

does not cause further collisions. If for the entity that is seeking an alternative 

translation, its AOLT result was derived without the help of the target ontology (i.e. 

based on keyword comparison made to the source resource surrounding), the system 

searches among the available keywords generated (for the candidate translation) until 

one is found that does not cause further collisions.  However, it is possible that an 

alternative translation no longer exists when all the available candidate translations are 

deemed to be unsuitable (i.e. they cause further collisions). In such situations, the 
                                                 
70 http://alias-i.com/lingpipe 
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system employs the same techniques as described in chapter 3 (section 3.3.2), whereby 

a unique integer is added to the end of the collided AOLT for the entity with no suitable 

alternatives. The code snippet shown in appendix C, section C.3, figure C-12 illustrates 

the main steps involved in the collision resolution process.  

Table  4-1. Collision Resolution in SOCOM 

AOLT Origin Collision 
Scenario E1 E2 

Solution 

i 
derived with help from 

target ontology 
derived without help from 

target ontology 

ii 
derived with help from 

target ontology 
derived with help from 

target ontology 

iii 
derived without help from 

target ontology 
derived without help from 

target ontology 

E1 keeps collided AOLT; E2 
seeks alternative 

iv 
derived without help from 

target ontology 
derived with help from 

target ontology 
E2 keeps collided AOLT; E1 

seeks alternative 

Generating O1' and CLOM results: once AOLT results are identified for each 

resource label in O1, O1' is generated using the Jena Framework based on the original 

source ontology structure, as discussed previously in chapter 3 (section 3.3.2, also 

demonstrated by the code snippets shown in appendix C, section C.1, figure C-1, figure 

C-2 and figure C-3). Finally, O1' is matched to O2 to generate candidate MOM matches 

via the Alignment API version 3.6. The CLOM results are finally generated based on 

the MOM results and the translations for labels in O1. This match reconstruction 

process is the same with the baseline system.  

Summary: the implementation discussed thus far in this section is illustrated by 

the class diagram shown in figure 4-7. The class SourceAnalysis is responsible for 

extracting the labels from a given source ontology, populating and storing their 

corresponding candidate translations by calling the TranslationService class which 

breaks up concatenated labels via the LabelReconstruction class, and generates the 

semantic surrounding for a given source entity upon requests from the AOLTResult- 

Selection class when translation collisions are detected. The TargetAnalysis class is 

responsible for extracting the labels in the given target ontology, generating and storing 

their corresponding synonyms by calling the LexiconService class which splits 

concatenated labels into natural language formats, as well as generating the semantic 

surroundings upon requests from the AOLTSelection class when solving translation 

collisions. The AOLT results are then selected by the AOLTSelection class, and 

translation collisions are solved before the storing of these AOLT results. The 

AOLTSelection class also initiates the KeywordGeneration class when collisions must 

be solved by using interpretive keywords, and the RankingService class when semantic 
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surrounding similarities need to be calculated. The CasePuncuationDistance class is 

responsible for comparing string similarities by invoking the WeightedEditDistance 

class. O1' is generated by the OntologyRendition class which also concatenates the 

labels by calling the LabelReconstruction class. Finally, the MatchingService generates 

matches using various MOM algorithms and reconstructing these MOM matches based 

on the known AOLT results to create the final CLOM results. 

 
Figure  4-7. UML Class Diagram of SOCOM 

4.5. SOCOM Evaluation 

The basic AOLT process is evaluated through the evaluation of the cross-lingual 

ontology matching results generated by SOCOM. Two CLOM experiments were 

carried out in the evaluation. CLOM evaluations rely on multilingual ontologies and 
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accompanying gold standards. Although multilingual ontologies are easy to come by, 

however, complete (as opposed to partial gold standards, discussed in chapter 2, section 

2.4.1) and readily available gold standards are difficult to find. As a result, in this 

section, one experiment (discussed in section 4.5.2) uses third party developed 

multilingual ontologies and gold standard, whereas the other experiment (discussed in 

section 4.5.1) uses a manually generated ontology and gold standard. Section 4.5.1 

presents the setup and the findings of the first experiment involving ontologies labelled 

in Chinese and English. These ontologies in experiment one contain overlapping 

domains regarding the research community, and differ greatly in structure. The natural 

languages in them are examples of natural language pairs from different natural 

language families (i.e. the Chinese language is of the Sino-Tibetan language family, the 

English language is a Germanic language which is a subdivision of the Indo-European 

language family). Section 4.5.2 presents the setup and the findings of a second 

experiment involving ontologies labelled in English and French. The ontologies in 

experiment two concern the bibliography domain, and are much more similar to each 

other in comparison to the ontologies in experiment one. They not only contain highly 

similar domain coverage and structures, the natural languages in them are examples of 

natural languages from the same language family (i.e. the English language is a 

Germanic language and the French language is a Romance, which  are subdivisions of 

the same natural language family: Indo-European languages).  

In the CLOM experiments presented in this chapter, SOCOM is evaluated and 

compared to the baseline system. The baseline system (discussed in chapter 3, section 

3.3) uses the GoogleTranslate API to achieve ontology label translations during 

ontology rendition, and the Alignment API to generate MOM results (between the 

rendered ontology and the target ontology) which are finally reconstructed to CLOM 

results (based on the ontology label translations and the MOM results). SOCOM 

(discusses previously in section 4.4) draws from within (e.g. semantic surroundings of 

the ontological resources at hand) and background information (e.g. synonyms of target 

ontology labels) to achieve appropriate ontology label translations during ontology 

rendition, and uses the same API and technique to generate the final CLOM results. As 

the only difference between these two systems is the ontology label translation, the 

experiments thus evaluate the proposed basic AOLT process exclusively. Such an 

experimental setup eliminates other contributors (such as both systems were 

implemented by the thesis author) that may potentially bias the evaluation findings, 

since the only variable is how the translations were achieved. The metrics used in the 
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evaluations presented in this chapter consist of the measures identified in chapter 2 

(section 2.7). Precision, recall and f-measure scores are generated as indicators of the 

quality of the matches created by the baseline system and SOCOM. Means and standard 

deviations are used to evaluate the confidence levels of the matches generated. 

Additionally, statistical analysis in the form of two-tailed paired t-tests is carried out on 

the f-measure scores collected to validate the statistical significance of the findings. 

4.5.1. Experiment One 

This section presents the experimental setup and the findings from a CLOM scenario 

involving ontologies labelled in Chinese and English, which are examples of ontologies 

with natural languages from different language families and containing overlapping 

domains of interest. SOCOM is compared against the baseline system through the 

evaluation on the matches generated by both systems. The remainder of this section is 

organised as follows. Section 4.5.1.1 presents the setup of the CLOM experiment and 

section 4.5.1.2 presents the findings and analysis from this evaluation.  

4.5.1.1. Experimental Setup 

The goal of this experiment is to evaluate and compare the mapping quality of the two 

CLOM systems in a scenario involving ontologies with natural languages from different 

language families, overlapping domains and different structures. This experiment uses 

the CSWRC (in Chinese, created based on the SWRC ontology) and the ISWC 

ontology (in English) describing the domain of the research community.  

The SWRC and the ISWC ontology were first introduced in chapter 3 (section 

3.4) which are both labelled in English. Based on the SWRC ontology, a team of 

domain experts (excluding the author of this thesis) manually developed the CSWRC71 

ontology using the Protégé editor. Note that the CSWRC ontology differs from the 

HSWRC ontology (discussed in chapter 3, section 3.4.1.1) which was generated by the 

author of this thesis. The CSWRC ontology is used here (as opposed to the HSWRC 

ontology) because it is generated independent of this author and is free from author 

intervention. The experiment presented in this section requires the CSWRC ontology to 

be a reliable version of the SWRC ontology (as opposed to just one rendition of the 

                                                 
71 http://www.scss.tcd.ie/~bofu/SOCOMExperimentJuly2009/Ontologies/CSWRC.owl 
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SWRC ontology as in the case of the HSWRC ontology), as the gold standard is 

generated (by a separate group of experts) based on mappings from the SWRC ontology 

to the ISWC ontology (discussed later in this section). The CSWRC ontology is 

essentially the SWRC ontology that has been re-labelled in Chinese while retaining the 

same structure. There are 54 classes, 44 object properties and 30 data type properties in 

the CSWRC ontology. The creators of the CSWRC ontology are two full-time 

computer science researchers, one holds a doctoral degree in computer science and the 

other is a Ph.D. candidate in computer science. Both have knowledge and experience of 

ontologies and are native speakers of Chinese. As they are both researchers, they were 

familiar with the concepts in the domain that the SWRC ontology covers, and so there 

can be confidence in their translations. The process of creating the CSWRC ontology 

and is illustrated in figure 4-8. 

As shown in figure 4-8, each expert was given a copy of the English SWRC 

ontology, which was then loaded into the Protégé editor. Each expert independently 

worked through the ontological entities shown in the editor and renamed them in 

Chinese. In order to keep a record of the renamed terms for later discussion, entities 

were renamed with their original English labels attached with Chinese labels. For 

instance, a class originally labelled as Department in the SWRC ontology is renamed as 

Department_部门 . After each expert had independently completed this renaming 

process, further discussions were carried out by the team concerning the entities that 

had been given differing labels until both experts came to a consensus on the most 

suitable choice for all the renamed labels in the ontology. This discussion was 

facilitated by the author but the author did not participate. Finally, the CSWRC 

ontology was generated using new namespaces and the set of agreed Chinese labels for 

the named entities in the ontology. The CSWRC ontology contains the same semantics 

(i.e. structured conceptualisations in the same way) as the SWRC ontology, except that 

all of its entities are labelled in Chinese. The CSWRC ontology can be found at 

root/SOCOMExperiments/ExperimentOne/Ontologies on the DVD. 
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Identify Disagreements

Discuss & Agree on All Labels

The ESWC Ontology (English)

Expert 1 Expert 2

Expert 1's Re-labelled Ontology 

(English & Chinese)

Expert 2's Re-labelled Ontology 

(English & Chinese)

The CSWRC Ontology (Chinese)

 
Figure  4-8. The Creation Process of the CSWRC Ontology 

The evaluation of the two CLOM systems relies on the availability of a set of 

reliable mappings between the Chinese and English ontologies, i.e. a gold standard. The 

CSWRC ontology is viewed as a semantic equivelant of the SWRC ontology in the 

experiments since the conceptualisations are structured in the same way (although 

different natural languages are used for the labelling of the concepts), so that the gold 

standard between the SWRC ontology and the ISWC ontology is in fact also the gold 

standard between the CSWRC ontology and the ISWC ontology. To minimuse bias, the 

group of experts who created the CSWRC ontology is different with the groups of 

experts who established the gold standard between the SWRC ontology and the ISWC 

ontology. As the translations were recorded for the original SWRC concepts, the gold 
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standard between the SWRC ontology and the ISWC otnology can thus be referred to 

the corresponding concepts in the CSWRC ontology. 

The gold standard between the SWRC ontology and the ISWC ontology was 

created as follows. A total of seven ontology mapping experts (excluding the creators of 

the CSWRC ontology) were selected to validate the mapping standard in order to 

minimise any partial judgment. Among these experts, two hold Ph.D.s in computer 

science, and the others are Ph.D. candidates including the author of this thesis. A first 

version of the mapping standard was created (by the author of this thesis) between the 

SWRC ontology and the ISWC ontology, which was then passed onto each of the six 

remaining members. Each expert then independently examined the tentative mappings 

and highlighted the doubtful mappings for further discussion. Finally, a meeting was 

held to discuss the matches that were questionable until an agreed set of mappings for 

the gold standard was concluded. As the alignment API only generated one-to-one 

exact matches in the experiments, the experts concentrated on the validation of exact 

matches for the gold standard (i.e. resources that contain semantically equivalent labels 

with the same domain and range specifications should they be declared) between the 

SWRC ontology and the ISWC ontology in the meeting. The final gold standard 

(between Chinese entities in the CSWRC ontology and English entities in the ISWC 

ontology) includes 41 exact matches between the CSWRC ontology and the ISWC 

ontology, which can be found at root/SOCOMExperiments/ExperimentOne/ 

GoldStandard/ on the DVD. The mapping procedures carried out in the experiment 

can be illustrated by figure 4-9. 

M MP1

Prototype 1: 

SOCOM

MB

Baseline

CSWRC 

(Chinese)

ISWC 

(English)

CSWRC 

(Chinese)

CSWRC 

(Chinese)

ISWC 

(English)

ISWC 

(English)

MB Evaluated Against M

MP1 Evaluated Against M  
Figure  4-9. Experiment One Overview 
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As shown in figure 4-9, the gold standard when mapping the CSWRC ontology to 

the ISWC ontology is M, which was generated by a group of experts. Two CLOM 

systems, namely the baseline system and SOCOM are each executed to generate 

mappings between these ontologies as MB and MP1 respectively. The quality (in terms 

of precision, recall and f-measure) of MB and MP1 are finally calculated with respect to 

M to determine their precision, recall and f-measure. Eight MOM algorithms (supported 

by the Alignment API) are applied in both CLOM systems, which means eight sets of 

matches (as each MOM algorithm creates its own set of matches) are included in MB 

(see root/SOCOMExperiments/ExperimentOne/Mappings/MB/ on the DVD), and 

another eight sets of matches are included in MP1 (see root/SOCOMExperiments/ 

ExperimentOne/Mappings/MP1/ on the DVD). Recall findings shown in chapter 3 

(section 3.4): different mapping outcome (i.e. varied precision, recall and f-measure) 

were generated depending on the actual MOM algorithm applied in the baseline system, 

it is thus of interest to apply the same algorithms and investigate whether they will 

improve given the SOCOM system with the AOLT process. 

4.5.1.2. Findings and Analysis 

This section presents the findings and analysis of experiment one. In particular, the 

precision, recall and f-measure of MB and MP1 are calculated and compared against 

each other. In addition, confidence levels of the matches in them are examined and 

compared. Lastly, paired t-test is used to validate the statistical significance of the 

results. Raw data from this experiment can be found at root/SOCOMExperiments/ 

ExperimentOne/Evaluation/ on the DVD.  

The precision (figure 4-10-a), recall (figure 4-10-b) and f-measure (figure 4-10-c) 

found for MB and MP1 are shown in figure 4-10. These results are calculated on the 

basis that a match is considered correct as long as it is included in the gold standard M, 

regardless of its confidence level. The x-axis in figure 4-10-a presents the sets of 

matches generated by the eight MOM algorithms, and the y-axis presents the precision 

found for these match sets. For example, when applying the EditDistNameAlignment 

algorithm, MB generated less than 0.25 precision while MP1 generated just below 0.38 

precision. Similarly, the x-axis in figure 4-10-b illustrates sets of matches generated and 

the y-axis illustrates the recall found in them. Finally, f-measure scores are shown in 

figure 4-10-c with the x-axis illustrating sets of matches generated and the y-axis 

illustrating the f-measure. The charts in figure 4-10 also include precision, recall and f-
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measure means for both MB and MP1, which visually illustrate the averages (across 

eight algorithms in terms of precision, recall and f-measure) found in both systems and 

present an overview for the improvements gained by SOCOM. 
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(c) F-Measure 
 

Legend: 1 NameAndPropertyAlignment 5 SMOANameAlignment 
2 StrucSubsDistAlignment 6 SubsDistNameAlignment 
3 ClassStructAlignment 7 EditDistNameAlignment 
4 NameEqAlignment 8 StringDistAlignment 

Figure  4-10. Experiment One Precision, Recall and F-Measure Results 
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Figure 4-10-a shows that all eight matching algorithms indicate equal (in the case 

of the StrucSubsDistAlignment algorithm, the ClassStructAlignment
72 algorithm and the 

SubsDistNameAlignment algorithm) or higher (in the case of the NameAndProperty-

Alignment algorithm, the NameEqAlignment algorithm, SMOANameAlignment 

algorithm, the EditDistNameAlignment algorithm and the StringDistAlignment 

algorithm) precision when using SOCOM than when using the baseline system. This 

finding demonstrates that SOCOM was able to generate at least the same number of 

correct matches if not more than the baseline system. A precision mean of 0.4367 is 

found in MP1, whereas a mean of 0.3793 is found in MB. This is an average 

improvement of 15.13% on precision, which indicates that overall, SOCOM generated 

more correct matches than the baseline system in this experiment.  

Figure 4-10-b shows a similar trend for the recall achieved in MB and MP1. The 

matching techniques used generated equal (in the case of the StrucSubsDistAlignment 

algorithm, the ClassStructAlignment algorithm and the SubsDistNameAlignment 

algorithm) or higher (in the case of the NameAndPropertyAlignment algorithm, the 

NameEqAlignment algorithm, SMOANameAlignment algorithm, the EditDistName-

Alignment algorithm and the StringDistAlignment algorithm) recall when using 

SOCOM than when using the baseline system. This finding suggests that the matches 

generated by SOCOM were at least as complete as the ones generated by the baseline 

system. The mean of recall scores at 0.5854 was found in MP1, whereas a lower recall 

mean of 0.5640 was found in MB. This is an average improvement of 3.79% on the 

completeness of the matches generated when using SOCOM.  

Taking both precision (i.e. the correctness of the matches generated) and recall 

(i.e. the completeness of the matches generated) into account, figure 4-10-c 

demonstrates the overall quality of the matches found in MB and MP1 through the 

derived f-measure scores. Equal (in the case of the StrucSubsDistAlignment algorithm, 

the ClassStruct-Alignment algorithm and the SubsDistNameAlignment algorithm) or 

higher (in the case of the NameAndPropertyAlignment algorithm, the 

NameEqAlignment algorithm, SMOANameAlignment algorithm, the 

EditDistNameAlignment algorithm and the StringDistAlignment algorithm) f-measure 

scores are found when using SOCOM in comparison to the baseline system, which 

suggests SOCOM is able to generate matches of at least equal quality if not higher than 

                                                 
72 In all experiments shown in this chapter, the ClassStructAlignment algorithm is accompanied by the 
SMOANameAlignment algorithm to generate matches as it only works with another algorithm.  
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the baseline system. A mean f-measure score of 0.4146 was found in MP1, and a lower 

mean f-measure was found in MB as 0.3782. This is an average improvement of 9.62% 

on the f-measure, suggesting that the matches are of a higher quality when using 

SOCOM than when using the baseline system.  

It may be argued that since the differences of the f-measure shown in figure 4-10-

c between the baseline system and SOCOM are moderately small, it may be insufficient 

to conclude a difference between the two systems. To validate the statistical 

significance of the findings, paired t-tests were carried out on the f-measure scores 

collected across eight matching algorithms, where a p-value of 0.007 was found. The 

null hypothesis of this paired t-test is that there is no difference between the baseline 

system and SOCOM, at a significance level of α=0.05, the p-value rejects the null 

hypothesis. This result supports what has been indicated by the findings: the matches 

generated by SOCOM is of higher quality.  

To evaluate the confidence levels of the matches generated, the means and the 

standard deviations of the confidence levels accompanying the matches in MB and MP1 

are examined. Figure 4-11 presents a scattered plot of the data collected in table 4-2, 

which aims to provide visual assist with the understanding of these data. The standard 

deviations are presented by the x-axis and the confidence means are presented by the y-

axis. Higher quality matches are those dotted in the area of the top left corner on the 

graph (i.e. high confidence mean and low deviation) as opposed to those dotted at the 

bottom right corner (i.e. low confidence mean and high deviation). 
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Figure  4-11. Evaluation on Confidence Levels - Experiment One 
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Table  4-2. Experiment One Confidence Data 

Baseline SOCOM  
Matching Algorithm 

St. Dev. Mean St. Dev. Mean 

1 NameAndPropertyAlignment 0.1014 0.9374 0.0718 0.9638 

2 StrucSubsDistAlignment 0.2505 0.7505 0.2298 0.7682 

3 ClassStructAlignment 0.2505 0.7505 0.2298 0.7630 

5 SMOANameAlignment 0.0582 0.9649 0.0525 0.9723 

6 SubsDistNameAlignment 0.1618 0.9041 0.1473 0.9133 

7 EditDistNameAlignment  0.0123 0.9909 0.0119 0.9914 
Avg.  0.1391 0.8830 0.1239 0.8962 

In figure 4-10, the orange triangles are data collected from the baseline system 

and the green triangles are data collected from SOCOM. Note that not all matching 

algorithms generate matches with varied confidence levels, for instance, the 

NameEqAlignment algorithm and the StringDistAlignment algorithm only created 

matches that have a confidence level of 1.0 in this experiment, hence they are not 

included in figure 4-10. As shown in table 4-2, for every matching algorithm that did 

generate matches with varied confidence, the mean has been increased when using 

SOCOM. In addition, the standard deviations of all confidence levels have been found 

to be decreased when using SOCOM. The mean (i.e. a point with average standard 

deviation on x-axis and average confidence mean on y-axis for each system) for the 

baseline system is presented by an orange dot, and the average dot for SOCOM is 

represented by a green dot in figure 4-10. It is visibly shown that the green dot is of 

higher mean and lower standard deviation. On average, there is an improvement of 

1.49% on the confidence mean and a reduction by 10.93% on the standard deviation 

when comparing SOCOM to the baseline system. This finding consistently indicates 

that matches generated using SOCOM are of higher quality than those generated using 

the baseline system, because they are not only more confident but also less dispersed. 

The findings from the first experiment have been positive. However, as the 

ontologies used in this experiment contain overlapping domains and unrelated natural 

language families. It may be argued that this is a scenario where the AOLT process is 

most likely to be beneficial, which raises the question of how well will SOCOM work 

with ontologies containing highly similar semantics and closely related natural 

languages. This is investigated in a second experiment, discussed next.  

4.5.2. Experiment Two 

This section presents the experimental setup and the findings from a second CLOM 

scenario involving SOCOM. The ontologies used in the second experiment are labelled 
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in English and French, of the bibliography domain and with highly similar structures. In 

contrast to the first experiment, this second experiment concerns ontologies that not 

only contain highly similar semantics (i.e. structured conceptualisations) but also 

involve natural languages of the same family. The remainder of this section is organised 

as follows. Section 4.5.2.1 presents the setup of the experiment and section 4.5.2.2 

presents the findings and analysis from this evaluation.  

4.5.2.1. Experimental Setup 

Figure 4-11 gives an overview of the experimental process. The ontologies (shown as 

ontology 10173 and ontology 20674) and the evaluation gold standard75 (shown as M') 

used in this experiment are taken from the Benchmark datasets from the Ontology 

Alignment Evaluation Initiative (OAEI) 2009 campaign. The 101 ontology is labelled 

in English, consists of 36 classes, 24 object properties, 46 data type properties and 137 

instances. Ontology 206 contains almost the same semantics (i.e. conceptualisations and 

how they are structured), except it has one less object property and is labelled in French. 

More specifically, ontology 206 is in French, consists of 36 classes, 23 object properties, 

46 data type properties and 137 instances. The gold standard (between English entities 

in the 101 ontology and French entities in the 206 ontology) provided by the OAEI 

contains 97 exact matches between the 101 and the 206 ontology. The benchmark 

dataset and the gold standard were one of the first introduced by OAEI since its 

establishment in 2004. Over the years, variations of the datasets were introduced and 

the gold standards had been updated accordingly. These gold standards were generated 

by the OAEI organisers who are experts on ontology mapping.  

In the second experiment, the baseline system and SOCOM are each applied to 

generate mappings (shown as MB' and MP1' in figure 4-12; MB' can be found at 

root/SOCOMExperiments/ExperimentTwo/Mappings/MBPrime/ and MP1' can be 

found at root/SOCOMExperiment/ExperimentTwo/Mappings/MP1Prime/ on the DVD) 

between the 101 and the 206 ontology, and the quality of the mappings are evaluated 

against the gold standard M'. The goal of this experiment is to further investigate the 

effectiveness of the AOLT process when working with ontologies that are very similar 

to each other. 

                                                 
73 http://oaei.ontologymatching.org/2009/benchmarks/101/onto.rdf 
74 http://oaei.ontologymatching.org/2009/benchmarks/206/onto.rdf 
75 http://oaei.ontologymatching.org/2009/benchmarks/206/refalign.rdf 
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Figure  4-12. Experiment Two Overview 

The original OAEI test case aims to assess the effectiveness of structure-based 

MOM techniques, since the 101 and the 206 ontology are highly similar in structure and 

contain almost identical domain knowledge. Note that translations of ontology labels 

were not included in the original OAEI test case. Nevertheless, this scenario satisfies 

the requirement for a second CLOM experiment, considering ontologies with similar 

semantics and natural languages from are presented with a reliable gold standard. 

4.5.2.2. Findings and Analysis  

The precision (figure 4-13-a), recall (figure 4-13-b) and f-measure (figure 4-13-c) 

scores found in MB' and MP1' are shown in figure 4-13.  These results are calculated 

based on comparisons made to M', and a correct match is one that is included in M' 

regardless of its confidence level. Raw data can be found at root/SOCOMExperiments/ 

ExperimentTwo/Evaluation/ on the DVD.  
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(b) Recall 
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(c) F-Measure 

 
 

Legend: 1 NameAndPropertyAlignment 5 SMOANameAlignment 
2 StrucSubsDistAlignment 6 SubsDistNameAlignment 
3 ClassStructAlignment 7 EditDistNameAlignment 
4 NameEqAlignment 8 StringDistAlignment 

Figure  4-13. Experiment Two Precision, Recall and F-Measure Results 

Figure 4-13-a shows improved precision scores for all matching algorithms when 

SOCOM is applied, indicating that a greater number of correct matches were found 

when using SOCOM than using the baseline system. An average precision of 0.6918 

was found in MB', whereas 0.7084 was found in MP1'. This is an average improvement 

of 2.40% on precision. Greater improvements can also be seen on the recall of the 

matches generated when using SOCOM. As figure 4-13-b shows, more completed 

matches were found in every matching technique that was accompanied by SOCOM. 

An average recall of 0.6057 was found in MB', whereas 0.6353 was found in MP1'. This 

is an average improvement of 4.89% on the recall of the matches generated. With 

improved precision and recall, the f-measure of MP1' for each matching algorithm are 

increased as shown in figure 4-13-c. An average f-measure of 0.6347 was found in MB', 

whereas 0.6621 was found in MP1'. This is an average improvement of 4.32% on the 

overall quality of the matches generated when applying SOCOM. 
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Compared to the improvements shown in the first experiment, the improvements 

on precision, recall and f-measure scores appear smaller in the second experiment. To 

validate the statistical significance of the difference (if there is a difference) between 

the two systems in the second experiment, paired t-test was carried out on the f-measure 

scores, and a p-value of 0.008 was found. At a significance level of α=0.05, this finding 

supports the hypothesis of there being a difference between the baseline system and 

SOCOM in this experiment. This further indicates with confidence that SOCOM 

generated higher quality matches than the baseline approach in this second experiment.   
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Legend:  Baseline  SOCOM   Baseline Avg.   SOCOM Avg. 

Figure  4-14. Evaluation on Confidence Levels - Experiment Two 

Table  4-3. Experiment Two Confidence Data 

Baseline SOCOM P.1 
Matching Technique 

St. Dev. Mean St. Dev. Mean 

1 NameAndPropertyAlignment 0.0909 0.9674 0.0659 0.9832 

2 StrucSubsDistAlignment 0.1509 0.9059 0.1454 0.9311 

3 ClassStructAlignment 0.1545 0.9440 0.1543 0.9557 

5 SMOANameAlignment 0.1556 0.9431 0.1554 0.9551 

6 SubsDistNameAlignment 0.1541 0.9372 0.1344 0.9621 

7 EditDistNameAlignment 0.0179 0.9913 0.0108 0.9968 
Avg.  0.1207 0.9481 0.1110 0.9640 

 
Figure 4-14 shows the confidence means and standard deviations of the matches 

in MB' (in orange) and MP1' (in green). The data used to generate the plot in figure 4-14 

is shown in table 4-3. The subjects for this study are those correct matches with varied 

confidence levels, which excludes those algorithms that only generate matches with 1.0 

confidence levels (this is the same with experiment one). On average, the standard 

deviation of the confidence levels in MB' is 0.1207 and the confidence mean is 0.9481. 

This result is improved in MP1', with an 8.04% decrease on standard deviation (at 

0.1110) and a 1.68% increase on confidence mean (at 0.9640). This improvement is 
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shown visibly in figure 4-14 from the positioning of the orange (the MB' mean) and the 

green (the MP1' mean) dots. This finding supports previous evidence and further 

demonstrates that the matching quality is higher when the AOLT process is deployed. 

4.5.3. Conclusions 

SOCOM was evaluated against the baseline system in two CLOM experiments. The 

first experiment concerned ontologies with natural languages from different language 

families, different structures and overlapping domains. The second experiment involved 

ontologies of the same domain with natural languages from the same language family, 

as well as highly similar concepts and structures. The evaluation results from both 

experiments show improvements in matching quality when SOCOM was applied. A 

summary of the average improvements found in the two experiments is presented in 

table 4-4. The improvement shown in this thesis is calculated as follows. Given systems 

A and B, and their results RA and RB respectively, the improvement of B with respect to 

A is (RB-RA)/RA. In table 4-4, these improvements are shown as percentage, which can 

be + (i.e. an increase) or – (i.e. a decrease). It can be arugued that when synonyms are 

generated, additional ambiguity may be introduced to the translation selection process. 

However, it is not of interest to measure ambiguity during the translation process as this 

research is an investigation of the quality of the matching results that were generated 

using translation-based cross-lingual matching processes.  

Table  4-4. Key Findings in Experiment One and Two 

Findings Baseline SOCOM  Improvement (%) 

Precision 0.3793 0.4367 15.13 

Recall 0.5640 0.5854 3.79 

F-Measure 0.3782 0.4146 9.62 

Confidence Level Mean 0.8830 0.8962 1.49 

Exp. 1 

Confidence Level St.Dev. 0.1391 0.1239 -10.93 

Precision 0.6918 0.7084 2.40 

Recall 0.6057 0.6353 4.89 

F-Measure 0.6347 0.6621 4.32 

Confidence Level Mean 0.9481 0.9640 1.68 

Exp. 2 

Confidence Level St.Dev. 0.1207 0.1110 -8.04 

Proportionally speaking, precision has been improved by a greater extent in 

experiment one than in experiment two, whereas the opposite is found on the 

improvement regarding recall. This finding suggests that, when dealing with ontologies 

with diverse characteristics (i.e. natural languages from different language families, 

varied structures and overlapping domains), the improvement on the precision may be 

more visible than the improvement on the recall when applying the AOLT process. On 
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the other hand, when dealing with ontologies with very similar characteristics (i.e. 

natural languages from the same language family, similar structures and domains), the 

improvement on the recall may be more evident than the precision when applying the 

AOLT process. In both experiments, the improvements on the matching confidence (see 

standard deviation and mean scores in table 4-4) have been relatively similar, 

suggesting more confident and less dispersed matches can be generated using the 

AOLT process despite vast variance in ontology characteristics.  

The evaluation presented in this section is somewhat limited in its number of 

ontologies and the natural language pairs experimented with. However, these 

experiments are representative of CLOM scenarios that involve distinct and similar 

ontology characteristics as well as natural languages, thus offer this research with a 

preliminary finding: there is a noticeable potential of the AOLT-based cross-lingual 

ontology mapping. In particular, the experimental findings successfully validate the 

soundness of the AOLT concept. Since a basic implementation of the AOLT process 

has been proven to be effective, it is motivating to investigate whether a more 

sophisticated AOLT process would be more effective at improving CLOM quality. For 

instance, the AOLT result pool can be increased (e.g. by generating synonyms of the 

candidate translations of the O1 labels) to allow more candidate AOLT results to be 

selected for a given O1 label. This could also increase the number of available 

alternative AOLT results should the initial AOLT result cause collision. It is shown 

through the evaluations of SOCOM that depending on the translations selected for the 

source labels, the mapping quality consequently differ (i.e. higher precision, recall and 

f-measure were found in SOCOM than in the baseline system). Given various candidate 

AOLT results, one way to influence the mapping outcome is to alter the AOLT results 

for the labels in the given source ontology. Incorporating additional inputs to influence 

the AOLT outcome motivates the key research direction for the second prototype: 

SOCOM++ (discussed in chapter 5).  

4.6. Case Study 

Motivated by the positive preliminary findings from the evaluation of SOCOM, and 

particularly its support for generating mappings that are carried out in the multilingual 

environment, the author of this thesis was encouraged to apply the SOCOM system to a 

wider application that could potentially benefit from the use of CLOM techniques.  
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Such an opportunity arose within the context of Science Foundation Ireland76 

funded the Centre for Next Generation Localisation77  (CNGL) project. SOCOM is 

applied to the Adaptive Retrieval and Composition of Heterogeneous Information 

sources for personalised hypertext Generation (ARCHING) system [Steichen et al., 

2011] in this case study. The ARCHING system is a cross-lingual information retrieval 

(CLIR) system specialising in the customer support domain for Norton 36078 - a home 

security product from one of CNGL industrial partners: Symantec79.  

A vast amount of customer support documents – structured (e.g. enterprise 

technical documentations in XML, RDF, etc.) and unstructured (e.g. user generated 

content such as online forum posts in plain text form) – are often available in English 

but not in other natural languages such as German. It is thus of interest to seek ways to 

support information sharing across natural language barriers, so that the information in 

English can be accessed by German speakers (who also understands English) through 

the ARCHING system. The novelty of this case study is the application of cross-lingual 

ontology mapping techniques such as the SOCOM system in a CLIR system. The 

remainder of this section is organised as follows. Section 4.6.1 discusses the objectives 

and scopes of the case study. Section 4.6.2 presents some related background. The 

technical approaches undertaken in this study are discussed in section 4.6.3. Finally, 

section 4.6.4 discusses the significance of the study. 

4.6.1. Objectives and Scope of the Case Study 

This section presents the objectives and scope of the case study. The objective of the 

case study is to apply cross-lingual ontology mapping techniques for the purpose of 

cross-lingual information retrieval. In particular, there are two specific objectives: 

• demonstrate the feasibility of SOCOM in a real world application: ARCHING; 

• investigate the potential benefits and drawbacks from using CLOM techniques 

for the purpose of CLIR.  

                                                 
76  Science Foundation Ireland is the statutory body in Ireland responsible for funding academic 
researchers and research teams for the purpose of strategic scientific research. More information can be 
found at http://www.sfi.ie/ 
77  The CNGL is an SFI funded academia-industry partnership with over one hundred researchers 
developing novel technologies addressing the key challenges in localisation and personalisation. More 
information can be found at http://www.cngl.ie/index.html 
78 http://www.norton.com 
79 http://www.symantec.com/index.jsp 
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This case study concerns ontologies of the Norton 360 domain (i.e. 

conceptualisations related to product features and how-tos that are specific to the 

Norton 360 product). The natural languages of these ontologies include English and 

German. This study is not designed to be an exhaustive list of CLIR scenarios, but 

rather an example of CLIR that is achieved through the use of cross-lingual ontology 

mapping. This is a proof-of-concept study, aiming to validate the possibility of applying 

cross-lingual ontology mapping techniques in the context of CLIR. 

4.6.2. Background of the Case Study 

This section presents some related background regarding the application of ontology 

mapping techniques in information retrieval (IR) systems. The concept of using 

conceptual frameworks such as thesauri and ontologies in search systems [De Luca & 

Eul, 2007; Castells et al., 2007] for improved information access [Shuang et al., 2004] 

and enhanced user experiences [Stamou & Ntoulas, 2009] is well researched in the IR 

community. However, the use of ontology mapping as a technique to aid the search 

functions in IR has been relatively limited. The most advanced work of using ontology 

alignment in cross-lingual information retrieval (CLIR), to the best of this author’s 

knowledge, is Zhang et al.’s statistical approach [Zhang et al., 2004] which does not 

involve translations of ontology labels. Instead, statistical approaches including latent 

semantic indexing80 , singular value decomposition81 , directed acyclic graphs82  and 

maximal common subgraph83 on document collections are applied. In order to apply 

Zhang et al.’s approach, parallel corpora must be generated beforehand so that 

statistical analysis can be carried out. However, this requirement can be a costly process: 

generating parallel corpora may not be possible or is computationally infeasible. In 

addition, statistical techniques (are applied to parallel corpora and) do not make use of 

                                                 
80 Latent semantic analysis (LSA) is a theory and method for extracting and representing the contextual-
usage meaning of words by statistical computations applied to a large corpus of text. [Landauer & 
Dumais, 1997] For an introduction on LSA, see [Landauer et al., 1998].  
81 Suppose M is an m×n matrix whose entries come from the field K, which is either the field of real 
numbers or the field of complex numbers. Then there exists a factorization of the form M=U•V*, where U 
is an m×m unitary matrix over K, the matrix • is an m×n diagonal matrix with nonnegative real numbers 
on the diagonal, and V*, an n×n unitary matrix over K, denotes the conjugate transpose of V. Such a 
factorization is called the singular value decomposition (SVD) of M. For more information on SVD, see 
[Trefethen & Bau, 1997].  
82 A directed acyclic graph (DAG) is a directed graph with no directed cycles. See [Thulasiraman & 
Swamy, 1992] for more information.  
83 Given graphs and the objects within, to determine the degree and composition of the similarity between 
these objects, graph matching techniques are often applied. Graph matching can be formulated as a 
problem involving the maximum common subgraph (MCS) between the collection of graphs being 
considered [Raymond & Willett, 2002]. For more on MCS, see [Willett, 1999].  
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the existing semantic knowledge (e.g. the entities in the ontologies, how they are 

structured and related to one another) in the multilingual ontologies that are presented 

in an IR scenario. It is the view of this author that a novel approach to enable CLIR 

involving multilingual ontologies is to use cross-lingual ontology mapping techniques 

(e.g. the SOCOM system), whereby parallel corpora are not required and the embedded 

ontological semantics are accounted for. The core idea behind CLOM-enabled CLIR 

systems is illustrated by figure 4-15.  

 
Figure  4-15. CLOM-Enabled CLIR 

As shown in figure 4-15, given a bilingual or multilingual user of an IR system 

and a set of relevant documents in various natural languages, ontologies can be 

constructed through user modelling and domain modelling as structured models of the 

user and the resources pre-runtime. The user model (shown as user knowledge in figure 

4-15) may contain information such as the user’s interests and natural language 

preferences. The domain models (shown as domain knowledge in figure 4-15) in 

various natural languages may contain structured concepts of interests with associated 

documents as instances. To bridge between the user model and the domain models that 

are in a different natural language, SOCOM can be applied to generate mappings 

among these models (stored in the mapping store as shown in figure 4-15). At runtime, 
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a query is issued by the user which can be associated to concept(s) in the user model 

(for example, by extracting keywords from the query). These query concepts can be 

searched in the mapping store, to find matching concepts in other natural languages 

which the user model indicates are also suitable. Once these multilingual concepts are 

obtained, their associated document instances can be retrieved and returned to the user. 

To achieve CLIR, a similar process to the above is used in the case study when 

applying SOCOM to the ARCHING system. This is discussed next.  

4.6.3. Design, Implementation and Execution 

This section discusses how the matching results generated by SOCOM are consumed 

by the ARCHING system in the process of achieving CLIR. In particular, this section 

presents the generation of multilingual ontologies using structured data sources; the 

generation of CLOM results between them using SOCOM; and the retrieval of 

documents based on the CLOM results. As mentioned previously, the ARCHING 

system [Steichen et al., 2011] returns personalised information to a user by adaptively 

composing and presenting relevant results from structured and unstructured data. 

Structured data refers to enterprise documentations, and unstructured data refers to user 

generated content. The retrieval of structured data by ARCHING (using the CLOM 

results generated by SOCOM) is the focus of this case study. For more information on 

the retrieval of unstructured data, adaptive composition and presentation that is beyond 

the scope of this thesis, see [Steichen et al., 2011]. 

The structured data used in this case study include: real world product manuals (in 

German) and enterprise technical documentations (in English). These data are provided 

by Symantec, both describe the home security product: Norton 360. However, they 

differ in terms of domain coverage and terminology. The German product manual 

covers a smaller domain, and is written in less technical terms since it is aimed at the 

general public. The English technical documentation covers a broader domain, and is 

written for the Symantec employees, hence is more technical. To realise CLOM-

enabled CLIR, ontologies were generated by teams of experts (discussed next): an 

English ontology was generated based on the technical documentations in English and a 

German ontology was created based on the product manuals in German.  

 

(a) The Technical Documentation Ontology  (b) The Product Manual Ontology  
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(English) (German) 

 

 

Figure  4-16. The Ontologies in the Case Study 

The technical documentations on Norton 360 are available in English and 

formatted in XML using the DocBook DTD84, containing elements such as chapter, 

section, paragraph and table. Blocks of text are modelled as instances of paragraph 

in the ontology. Paragraphs are modelled as sub-classes of sections, and each section is 

modelled as a child class of a chapter or a child class of another section (i.e. in the case 

of sections containing sub-sections). These classes are classified under topics of interest. 

These topics of interest are controlled vocabularies that derived manually by a team of 

experts that consists of two CNGL members (excluding the author of this thesis). These 

controlled vocabularies were generated in Protégé by hand using OWL. Finally, the 

controlled vocabularies were annotated with classes and instances that were 

automatically extracted from the technical documentation. This extraction process is 

discussed in [Şah & Wade, 2010]. The final English ontology contains 128 classes, 109 

object properties, 36 data type properties and 7523 instances. A partial screenshot of 

this technical documentation ontology (in English) in Protégé is shown in figure 4-16-a. 

The German ontology was generated manually by this author and another Ph.D. 

candidate who is a native German speaker, using the Protégé editor and the Norton 360 

product manuals (PDF files written in English and German). Although the same product 

                                                 
84 http://www.docbook.org/xml/5.0/dtd/docbook.dtd 
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manual is available in both English85 and German86, as this study aims to demonstrate 

SOCOM in a CLOM-enabled CLIR system, ontologies in different natural languages 

are required. As these manuals cover a restricted scope of Norton 360 related topics, it 

highlights a need to bridge them to the technical documentation ontology that covers a 

broader scope. There were two steps to the generation of the German ontology: (1) an 

ontology (in English) was first created manually by this author based on the English 

product manual; (2) as the German product manual is a direct translation of the English 

manual (this is confirmed by the native German speaker and a Symantec employee who 

is collaborating with CNGL), the author-generated ontology is then converted to 

German by using terminologies from the German version of the same product manual 

(assisted by the native German speaker). The final product manual ontology in German 

contains 77 classes, 4 object properties, 4 data type properties and 4 instances. A partial 

screenshot of this ontology is shown in figure 4-16-b. The ontologies shown in figure 4-

16 can be found at root/SOCOMExperiments/CaseStudy/Ontologies/ on the DVD. 

SOCOM was used to generate mappings between the ontologies in English and 

German. These mappings can be found at root/SOCOMExperiments/CaseStudy/ 

Mappings/ on the DVD. An overview of how these mappings are used in the 

ARCHING system is shown in figure 4-17. The German ontology (created from the 

product manual) and the English ontology (generated from technical documentations 

where some documents are linked to the entities in the English ontology) are both 

stored in the eXist database. The mappings between these ontologies are also stored in 

this database. At runtime, when a query is issued in German, the ARCHING system 

matches the query to the concept(s) in the German ontology using string comparison 

techniques. Its matched English concept(s) are then identified by simply searching the 

mappings that were generated pre-runtime. The identified concept(s) in English is 

effectively the translation of the original query. The technical contents that are 

annotated with this English concept(s) are retrieved next. If such readily annotated 

content is not available (i.e. a mapping does not exist), a text search of the identified 

English concept(s) in the technical documentation is conducted using the Apache 

Lucene87 API. Finally, these contents in English are composed and presented to the user.   

                                                 
85 ftp://ftp.symantec.com/public/english_us_canada/products/norton_360/ 
86 ftp://ftp.symantec.com/public/deutsch/produkten/norton_360/ 
87 http://lucene.apache.org/java/docs/index.html 
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Figure  4-17. SOCOM in CLIR 

Figure 4-18 shows the screenshots from the ARCHING system that retrieves 

documents using the CLOM results generated by SOCOM. Figure 4-18-a shows the 

homepage of the system, where a user specifies the attributes in the user model: state 

(e.g. getting started with Norton 360, or reacting to a problem), query (i.e. the search 

query), query intent (is the query a what question or a how question, where the former 

focuses on explanations and the latter focuses on instructions) and language (e.g. 
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German). These attributes influence the order of the grouped results shown in figure 4-

18-b. When a group is selected by the user, the most relevant technical content (in 

English) is displayed with its branches in the ontology already expanded in the 

navigation list (see figure 4-18-c). For more information on how groups are constructed, 

ranked and how they are adapted to the user model which is outside the scope of this 

thesis, see [Steichen & Wade, 2010]. 

 
(a) Homepage 

 

(b) Result Grouping 
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(c) Result Presentation 

Figure  4-18. Screenshots from the ARCHING System 

4.6.4. Significance of the Case Study 

This section presents the objectives met and the significance of the case study. 

Objective (1): demonstrate the feasibility of SOCOM in a real world application: 

ARCHING is met through the successful application of CLOM results (generated by 

SOCOM) in the process of achieving cross-lingual document retrieval (through the 

ARCHING system). The study shows the potential of the SOCOM system to solve a 

real world problem. The strategy undertaken in the study (i.e. using CLOM techniques 

to achieve CLIR) is a novel approach to achieve cross-lingual information retrieval. The 

study leverages relevant resources that are available in different natural languages to the 

multilingual user using CLOM results, and serves as a proof of concept for the 

application of the SOCOM in CLIR systems.  

Objective (2): investigate the potential benefits and drawbacks from using CLOM 

techniques for the purpose of CLIR. The ontologies involved in the case study concern 

new domains and natural language pairs (in addition to what was shown in section 4.5), 

which successfully shows the SOCOM’s ability to work with ontologies outside the 

laboratory experiments discussed in section 4.5. The generation of the multilingual 
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ontologies (in English and German) took four weeks collectively, as it required 

discussions (in the case of the German ontology) and systems to process the structured 

technical documentations (in the case of the English ontology). The generation of the 

CLOM results (between the English and the German ontology) took two working days 

as the English ontology was relatively large. Once these CLOM results are stored in the 

database, the retrieval at runtime took seconds. The benefits of using CLOM techniques 

for the purpose of CLIR can be summarised as: 

• SOCOM is able to work with ontologies and natural languages outside the 

laboratory experiments shown (in section 4.5); 

• the effort required to generate the CLOM results using SOCOM is 

relatively small (e.g. a small configuration in SOCOM was necessary for 

the MT tools so that the source natural language is set to German, and the 

target natural language is set to English).  

However, there are some drawbacks to applying CLOM techniques to CLIR, including: 

• ontology construction overhead can be time-consuming (as seen in the 

case study, the generation of the German and the English ontology took 

the most time);  

• errors (i.e. incorrect mappings) can occur in the CLOM results generated 

by SOCOM, which can lead to poor documents presented to the user.  For 

example, PC_Optimierung (from the product manual ontology, meaning 

“personal computer optimisation” in German) was matched to 

Disk_Optimization (from the technical documentation ontology in English) 

when using the SubsDistNameAlignment algorithm (see the file located at 

root/SOCOMExperiments/CaseStudy/Mapping/SubsDistName.rdf on 

the DVD), which led the system to incorrectly retrieve documents related 

to disk optimisation instead of PC optimisation.  

• not all entities in the German ontology are mapped to the entities in the 

English ontology since the two contain overlapping concepts. When 

mappings simply do not exist, the system fails to associate German 

queries with English concepts and needs to rely on text search on the web. 

Though the case study shows some drawbacks of applying CLOM techniques in 

CLIR, however, the significance of the study is undiminished. Using CLOM results is a 
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novel approach to overcome natural language barriers in IR systems. This study 

validates the soundness of the approach while presenting alternative avenues for future 

research in cross-lingual information retrieval. 

4.7. Summary 

Based on the findings presented in chapter 3, this chapter presents the appropriate 

ontology label translation (AOLT) concept in the context of CLOM. In addition, an 

initial prototype: the Semantic-Oriented Cross-lingual Ontology Mapping (SOCOM) 

system is designed and developed to assist the AOLT selection process in an effort to 

improve CLOM quality. SOCOM integrates a basic implementation of the AOLT 

component that makes use of a minimum set of ontological semantics in order to select 

AOLT results in the process of generating CLOM results. This prototype serves as a 

proof of concept for the use of the AOLT process in CLOM. The goal of SOCOM is to 

apply appropriately selected translations in order to improve mapping quality. The 

evaluation of SOCOM thus focuses on the validation of the AOLT concept, where 

findings shown an improvement in the mapping quality given the basic AOLT process. 

In addition, a case study is presented in this chapter, where SOCOM is applied to an 

adaptive information retrieval, composition and presentation system named ARCHING. 

This study serves as a proof of concept for CLOM-enabled CLIR systems. 
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5 PROTOTYPE TWO: SOCOM++ 

 

5.1. Chapter Overview 

A basic AOLT process (with minimum intake of the source and target ontology 

semantics that are always available to a mapping scenario) has shown to be effective at 

improving CLOM quality (discussed in chapter 4). This finding naturally motivates 

further research on whether an improved AOLT process - for instance, one that 

accounts more inputs than the basic AOLT process in SOCOM - could gain further 

improvement on the CLOM quality. It is now known that the mapping outcome differs 

depending on the translations of the ontology labels (since the only difference between 

SOCOM and the baseline system is the translations used for the source ontology during 

ontology rendition). It is thus of interest to investigate whether support can be provided 

for adjusting the AOLT outcome in a given CLOM scenario, through for example, the 

use of configurable inputs of the AOLT process. This chapter presents the second 

prototype: SOCOM++, which aims to address the above issues. 

 SOCOM++ incorporates a more sophisticated AOLT component which allows 

adjustment on the AOLT outcome in an effort to influence the final mapping outcome. 

Improved from SOCOM, SOCOM++ offers additional inputs to the AOLT component, 

which are also configurable for the mapping expert. Such a design aims to facilitate the 

tuning of SOCOM++ in specific cross-lingual ontology mapping environments. The 

evaluation of SOCOM++ focuses on the adjustment of the mapping quality given the 

same ontology pair, and aims to demonstrate evidently that the mapping outcome can 

be adjusted in the same cross-lingual ontology mapping scenario when different AOLT 

results are selected. The evaluation of SOCOM++ uses the same two pairs of ontologies 

that were previously used in the evaluation of SOCOM. In order to investigate the 
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impact of different AOLT settings on the quality of the mappings generated, a total of 

six experimental trials have been conducted where each trial focuses on one aspect of 

the configurable features. In addition, scalability tests have been carried out to 

investigate how two different trial configurations cope with increased workload. Note 

that the trials presented in this chapter are not an exhaustive list of all possible 

configurations of SOCOM++, but rather examples of typical adjustments that can be 

made to the AOLT selection process. 

The evaluation results shown in section 5.4.3.3. (experiment two) have been 

published in the paper titled Using Pseudo Feedback to Improve Cross-Lingual 

Ontology Mapping, at the 8th Extended Semantic Web Conference (ESWC 2011), 

LNCS 6643, pp. 336-351, in May 2011. The remainder of this chapter is organised as 

follows. Section 5.2 presents the design of SOCOM++. This is followed by the 

implementation details in section 5.3. The evaluation of SOCOM++ is presented in 

section 5.4. Finally, section 5.5 concludes this chapter with a summary. 

5.2. SOCOM++ Design 

This section presents an overview of the design of SOCOM++. The processes involved 

are outlined in figure 5-1. As discussed previously (in chapter 4, section 4.2), there are 

other ways to achieve AOLT results in the context of CLOM such as expert-based or 

rule-based, the AOLT process shown in SOCOM++ and SOCOM are examples of how 

AOLT results can be achieved.  

The core steps to achieve cross-lingual ontology mapping in SOCOM++ are 

generally similar to what is seen in SOCOM, in that O1 is transformed to O1' via the 

ontology rendition process, which is then matched to O2 via the MOM process. 

However in SOCOM++, when choosing the AOLT results for labels in O1, the AOLT 

selection process accounts several additional inputs compared to SOCOM. Besides 

analysing the O1 semantics and O2 semantics (similarly to SOCOM), SOCOM++ also 

accounts four other inputs in the process of generating AOLT results, including 

execution constraint, resource constraint, task intent and feedback as shown in figure 5-

1. All six inputs can be configured by the user - their configuration details are discussed 

later (in section 5.3). An overview of each input is presented here.  
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Figure  5-1. Prototype Two: SOCOM++ Design Diagram 
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• O1 semantics refer to the embedded and background semantics of 

ontological entities in a given source ontology. Embedded semantics refer 

to formally defined resources in a given ontology such as the semantic 

surroundings of entities. Background semantics refer to knowledge drawn 

from external resources such as dictionaries and thesauri. In SOCOM++, 

synonyms of the candidate translations for O1 labels are collected which 

differs from the design of prototype one (recall from chapter 4, section 4.3, 

figure 4-2, the translation repository only contained candidate translations 

of labels in O1). This increases the size of the selection pool for the AOLT 

results, which presents the system with more candidate AOLT results for a 

given label. Also, additional alternative translations will be available to the 

system when a collision is encountered. 

• O2 semantics refer to the embedded and background semantics of 

ontological entities in a given target ontology. Similarly to the O1 

semantics discussed above, embedded semantics are formally defined and 

background semantics are externally concluded. More precisely, the 

embedded semantics in O2 include the labels used by target entities and 

their semantic surroundings. The background semantics in O2 include the 

synonyms generated for the target labels.  

• Execution constraint is a high-level restriction on how the AOLT selection 

process will be run. It offers the user with a choice of performing the 

default system configuration without having to specify values for any 

other configurable input. By having a default configuration, the user can 

generate initial mappings in a CLOM scenario, analyse the mapping 

outcome and decide on the specific adjustment on the AOLT process for 

further tuning of the mapping outcome.  

• Resource constraint is the availability of external resources (e.g. 

dictionaries, thesaurus) that are available to the AOLT selection process. 

In SOCOM++, this includes the availability of synonyms in the given 

ontology domain. A lack of synonyms may be evident in some specialised 

domains (e.g. medical) whereby there are few other ways to express the 

same concept, or synonyms are simply not available/accessible. 

• Task intent is a representation of the motivation for the mapping activity 

being carried out. For example, the intent can be to increase mapping 
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precision (i.e. generating as many correct matches as possible), or to 

increase mapping recall (i.e. generating as many matches as possible to 

ensure the completeness of the mappings).  

• Feedback aims to improve the matching quality upon recognising how 

correct matches have been achieved. By assessing the candidate matches 

generated in a specific CLOM scenario via automated assessor (e.g. infer 

the correctness of the matches without the involvement of a user using 

pseudo feedback) or manual assessor (e.g. explicit feedback from a user), 

the system attempts to improve its future selection of the translations 

based on the AOLT selection rationale derived from this assessment 

process. The feedback feature in SOCOM++ is inspired by the relevance 

feedback mechanism that is commonly used in the field of IR.  

Ruthven & Lalmas [Ruthven & Lalmas, 2003] present an extensive survey on 

relevance feedback used in IR. Broadly speaking, there are three types of relevance 

feedback: explicit, implicit and pseudo feedback. Explicit feedback is obtained after a 

query is issued by the user and an initial set of documents is retrieved, the user marks 

these initial documents as relevant or not relevant, and the system retrieves a better list 

of documents based on this feedback by computing a single or multiple iterations. 

Implicit feedback works similarly but attempts to infer users’ intentions based on 

observable behaviour. Pseudo feedback is generated when the system makes 

assumptions on the relevancy of the retrieved documents. In the context of ontology 

mapping, the use of explicit user feedback is successfully demonstrated in monolingual 

ontology mapping [Duan et al., 2010]. SOCOM++ expands on Duan et al.’s work and 

applies a pseudo feedback technique (i.e. without the involvement of a user) in CLOM 

scenarios. Assumptions on matches’ correctness are based on their confidence levels in 

SOCOM++. There are many ways to calculate confidence levels as documented by 

Euzenat & Shvaiko [Euzenat & Shvaiko, 2007]. Although currently there is no obvious 

method that is a clear success [Ichise, 2009], confidence levels nonetheless are a way to 

perceive the probability of a match being correct or not. In SOCOM++, the feedback 

feature assumes after an initial execution that matches with confidence levels above a 

certain threshold are correct. It then examines how these matches are generated. 

Currently, this involves examining which translation media were used (i.e. selection 

rationale). The rationale then influences the selection of AOLT results in the second 

iteration of the AOLT process.  
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To initiate SOCOM++, a user is required to configure the inputs discussed above. 

The users of SOCOM++ are anticipated to have knowledge in ontologies and ontology 

mapping. Typical use of the system will likely to include several executions of 

SOCOM++, whereby a user will determine the configurations for the first run of the 

system, examine the matches generated from this initial run and adjust variable settings 

for the second run of SOCOM++. This is repeated until the user achieves the desired 

mappings or terminates the system when improvement is no longer evident in the 

mappings. The implementation details of SOCOM++ are discussed next. 

5.3. SOCOM++ Implementation 

The tools and technologies used in SOCOM++ are presented and discussed in this 

section. The source code of SOCOM++ can be found at root/SOCOM++/ on the DVD.  

System configuration: a configuration file using the Java utility class 

Properties
88 representing a persistent set of properties formatted in XML (see figure 

5-2) and is read at the start-up of SOCOM++ to instruct the execution of the AOLT 

process. This configuration file contains the variable values that have been set by the 

user. It follows the DTD (see appendix D, section D.3, figure D-3) defined by Sun 

Microsystems89. How the AOLT inputs are modelled in SOCOM++ is discussed next. 

 
Figure  5-2. The Configuration File in SOCOM++ 

Execution constraint is modelled by the entry element with the key attribute: 

default in figure 5-2. It can be configured to either true or false, whereby true 

                                                 
88 http://download.oracle.com/javase/1.5.0/docs/api/java/util/Properties.html 
89 Renamed Oracle America, Inc. in 2010.  
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initiates SOCOM++ to run a default setting of the AOLT selection process, and false 

instructs the AOLT process to run according to the values set for the other entry 

elements. When it is set to true, the values configured for all other entry elements are 

ignored by the prototype. In other words, execution constraint offers the user the choice 

between an automated execution of the prototype or a tailored execution with desired 

configurations of other entry elements depending on the specific mapping scenario.     

O1 semantics is modelled by the entry element with the key attribute: 

sourceSurrounding in figure 5-2. It can be configured to either true or false, with 

the former instructing the AOLT process to take the semantic surroundings of source 

entities into account, and the latter instructing the AOLT process to not consider the 

semantic surroundings of the source entities during the selection process. In addition to 

generating candidate translations for labels in O1 (as seen in SOCOM), SOCOM++ also 

generates synonyms for these candidate translations.  

Similarly, O2 semantics is modelled by the entry element with the key attribute: 

targetSurrounding in figure 5-2, which can be set to either true or false. A value 

true allows the AOLT selection process of take the semantic surroundings of the target 

entities into account, and a value false instructs the AOLT selection process to 

disregard the semantic surroundings of the target entities. Synonyms for labels in O2 are 

generated in SOCOM++ as was done in SOCOM.  

Resource constraint is modelled by the entry element with the key attribute: 

translationSynonym and the entry element with the key attribute: targetSynonym. 

Both elements can be configured to either true or false, and are designed to offer the 

user the option to restrict external resources during an AOLT selection process. If the 

translationSynonym is set to true, the synonyms generated for candidate translations 

of the source labels are accounted during the AOLT selection. If it is set to false, the 

AOLT process will not consider these synonyms. Similarly, if the targetSynonym is 

set to true, the AOLT process will include the synonyms collected for the O2 labels 

during the selection process. If it is set to false, the opposite will occur.  

Task intent is modelled by the entry element with the key attribute: 

correctnessOptimise and the entry element with the key attribute: 

completenessOptimise. Both can be configured to either true (i.e. enabling a feature) 

or false (i.e. disabling a feature), however, only one of these elements can be set to 

true at a time. This is because the current implementation can only aim to improve 

either just the correctness or just the completeness of the matches generated, but not 
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both at the same time. Optimising correctness is achieved by assuming only the 

matches generated from the first iteration with 1.0 confidence levels are correct, 

analysing how they were achieved (in SOCOM++, this involves identifying the MT 

tools used to generate these correct matches) and compute a second iteration of the 

AOLT process. Optimising completeness is achieved by assuming all matches (i.e. with 

any confidence level) generated from the first iteration are correct, analysing how they 

were achieved and computing a second iteration of the AOLT selection process 

accordingly. Correctness is optimised by strictly eliminating uncertain matches (i.e. any 

match that has less than 1.0 confidence level), and attempts to increase the number of 

certain matches (i.e. matches with 1.0 confidence levels) which in turn optimises 

mapping precision. During this process, it is possible that correct matches are 

eliminated (i.e. those matches that have lower than 1.0 confidence levels, but are still 

correct). Hence in contrast, completeness optimisation avoids incorrect eliminations of 

uncertain matches (since all matches in the first iteration are assumed to be correct), 

which is a much more relaxed strategy (in comparison to optimising correctness) to 

increase correct matches.  

SOCOM++ integrates a pseudo feedback feature, which is modelled by the entry 

element with the key attribute: threshold in figure 5-2. Its value can be set to anything 

between 0.0 and 1.0. The threshold is a cut-off point for the confidence levels that 

enables the pseudo feedback to speculate which matches generated may be correct. For 

example, when the threshold is set to 0.75, the pseudo feedback feature assumes those 

matches with at least 0.75 confidence levels are correct. This feature can be considered 

as being a middle ground between two extremes - one extreme being the optimisation 

of the completeness and the other being the optimisation of the correctness (as modelled 

in the task intent feature). The task intent and the pseudo feedback feature are different 

options for SOCOM++ to carry out a second iteration of the AOLT process, which 

means only one task intent (either optimising correctness or optimising completeness) 

or pseudo feedback can be in effect at a time.  

AOLT Selection in SOCOM++: To facilitate the selection of AOLT results 

given the aforementioned configurable inputs, SOCOM++ carries out three main steps 

including semantic analysis, ontology rendition and ontology mapping to achieve cross-

lingual ontology mapping as shown in figure 5-3. Each step is discussed next. 
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Figure  5-3. Implementation Diagram of SOCOM++ 
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The Semantic Analysis Step: the Jena framework 2.5.7 is used to parse the given 

ontologies, extracts the resource labels and their corresponding semantic surroundings. 

To generate candidate translations for ontology labels in O1, the GoogleTranslate API 

0.5 and the Microsoft Translator API90 are integrated by the MT Service shown in figure 

5-3. In addition, synonyms are also generated for these candidate translations via the 

Thesaurus Service. In SOCOM++, the Thesaurus Service uses the Big Huge Thesaurus 

API91  for synonyms in English and the synonyms-fr.com website for synonyms in 

French. The code snippet in appendix C, section C.4, figure C-13 demonstrates how 

synonyms are generated via the Big Huge Thesaurus API. The code snippet in appendix 

C, section C.4, figure C-14 illustrates how synonyms are generated via the synonyms-

fr.com. The outcomes from processing the source ontology, including the original O1 

labels, their semantic surroundings, their candidate translations and the corresponding 

synonyms of these candidate translations are formatted in XML and stored in the eXist 

DB version 1.4, as O1 Analysis shown in figure 5-3. Similarly, the outcomes from 

processing the target ontology, including the original labels in O2, their semantic 

surroundings and corresponding synonyms are also formatted in XML and stored in the 

eXist database version 1.4, as O2 Analysis shown in figure 5-3. An example of O1 

analysis is shown in figure 5-4 and an example of O2 analysis is shown in figure 5-5. 

The DTD declared for O1 analysis can be found in appendix D, section D.3, figure D-4. 

The DTD declared for O2 analysis can be found in appendix D, section D.3, figure D-5. 

<?xml version=“1.0” encoding=“UTF-8”?> 
<!DOCTYPE SourceSemantic SYSTEM “SourceSemantic.dtd”> 
<SourceSemantic> 
… 
<Resource id="CLS11"> 

<OntLabel>学术会议</OntLabel> 

<MTLabel>学术会议</MTLabel> 
<Translation> 
<Candidate id="CDD0-CLS11"> 
<CandidateValue>Conference</CandidateValue> 
<CandidateSource>google</CandidateSource> 
<CandidateConcatenated>Conference</CandidateConcatenated> 
<CandidateSynonymCollection> 
<CandidateSynonym concatenated="discussion" id="SYN0-CDD0-CLS11" 
source="BHT" value="discussion"/> 
<CandidateSynonym concatenated="group_meeting" id="SYN1-CDD0-CLS11" 
source="BHT" value="group meeting"/> 
<CandidateSynonym concatenated="league" id="SYN2-CDD0-CLS11" source="BHT" 
value="league"/> 
<CandidateSynonym concatenated="association" id="SYN3-CDD0-CLS11" 
source="BHT" value="association"/> 

</CandidateSynonymCollection> 
</Candidate> 
<Candidate id="CDD1-CLS11"> 
<CandidateValue>Academic conferences</CandidateValue> 
<CandidateSource>bing</CandidateSource> 
<CandidateConcatenated>Academic_conferences</CandidateConcatenated> 

</Candidate> 
</Translation> 

                                                 
90 http://www.microsofttranslator.com/dev 
91 http://words.bighugelabs.com/api.php, its data is based on the Princeton University WordNet database, 
the Carnegie Mellon Pronouncing Dictionary, and crowd-sourced suggestions.  
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<Surrounding MTLabel="事件" OntLabel="事件" id="CLS48"/> 
</Resource> 
…  
<Resource id="CLS48"> 

<OntLabel>事件</OntLabel> 
<MTLabel>事件</MTLabel> 

<Translation> 
<Candidate id="CDD0-CLS48"> 
<CandidateValue>Event</CandidateValue> 
<CandidateSource>google</CandidateSource> 
<CandidateConcatenated>Event</CandidateConcatenated> 
<CandidateSynonymCollection> 
<CandidateSynonym concatenated="case" id="SYN0-CDD0-CLS48" source="BHT" 
value="case"/> 
<CandidateSynonym concatenated="consequence" id="SYN1-CDD0-CLS48" 
source="BHT" value="consequence"/> 
<CandidateSynonym concatenated="effect" id="SYN2-CDD0-CLS48" source="BHT" 
value="effect"/> 
<CandidateSynonym concatenated="outcome" id="SYN3-CDD0-CLS48" source="BHT" 
value="outcome"/> 
<CandidateSynonym concatenated="result" id="SYN4-CDD0-CLS48" source="BHT" 
value="result"/> 
<CandidateSynonym concatenated="issue" id="SYN5-CDD0-CLS48" source="BHT" 
value="issue"/> 
<CandidateSynonym concatenated="circumstance" id="SYN6-CDD0-CLS48" 
source="BHT" value="circumstance"/> 
<CandidateSynonym concatenated="phenomenon" id="SYN7-CDD0-CLS48" 
source="BHT" value="phenomenon"/> 

</CandidateSynonymCollection> 
</Candidate> 
<Candidate id="CDD1-CLS48"> 
<CandidateValue>Event</CandidateValue> 
<CandidateSource>bing</CandidateSource> 
<CandidateConcatenated>Event</CandidateConcatenated> 
<CandidateSynonymCollection> 
<CandidateSynonym concatenated="case" id="SYN0-CDD1-CLS48" source="BHT" 
value="case"/> 
<CandidateSynonym concatenated="consequence" id="SYN1-CDD1-CLS48" 
source="BHT" value="consequence"/> 
<CandidateSynonym concatenated="effect" id="SYN2-CDD1-CLS48" source="BHT" 
value="effect"/> 
<CandidateSynonym concatenated="outcome" id="SYN3-CDD1-CLS48" source="BHT" 
value="outcome"/> 
<CandidateSynonym concatenated="result" id="SYN4-CDD1-CLS48" source="BHT" 
value="result"/> 
<CandidateSynonym concatenated="issue" id="SYN5-CDD1-CLS48" source="BHT" 
value="issue"/> 
<CandidateSynonym concatenated="circumstance" id="SYN6-CDD1-CLS48" 
source="BHT" value="circumstance"/> 
<CandidateSynonym concatenated="phenomenon" id="SYN7-CDD1-CLS48" 
source="BHT" value="phenomenon"/> 

</CandidateSynonymCollection> 
</Candidate> 

</Translation> 

<Surrounding MTLabel="展览" OntLabel="展览" id="CLS32"/> 
<Surrounding MTLabel="课程" OntLabel="课程" id="CLS40"/> 
<Surrounding MTLabel="研讨会" OntLabel="研讨会" id="CLS46"/> 

<Surrounding MTLabel="会议" OntLabel="会议" id="CLS5"/> 
<Surrounding MTLabel="学术会议" OntLabel="学术会议" id="CLS11"/> 

</Resource> 
… 

</SourceSemantic> 

Figure  5-4. An Example of O1 Analysis 

<?xml version=“1.0” encoding=“UTF-8”?> 
<!DOCTYPE TargetSemantic SYSTEM “TargetSemantic.dtd”> 
<TargetSemantic> 
…  
<Resource id="CLS3"> 
<OntLabel>Researcher</OntLabel> 
<MTLabel>Researcher</MTLabel> 
<SynonymCollection> 
<Synonym concatenated="research_worker" id="SYN0-CLS3" source="BHT" 
value="research worker"/> 
<Synonym concatenated="investigator" id="SYN1-CLS3" source="BHT" 
value="investigator"/> 
<Synonym concatenated="scientist" id="SYN2-CLS3" source="BHT" 
value="scientist"/> 

</SynonymCollection> 
<Surrounding MTLabel="Person" OntLabel="Person" id="CLS16"/> 

</Resource>  
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… 
<Resource id="CLS16"> 
<OntLabel>Person</OntLabel> 
<MTLabel>Person</MTLabel> 
<SynonymCollection> 
<Synonym concatenated="individual" id="SYN0-CLS16" source="BHT" 
value="individual"/> 
<Synonym concatenated="someone" id="SYN1-CLS16" source="BHT" 
value="someone"/> 
<Synonym concatenated="somebody" id="SYN2-CLS16" source="BHT" 
value="somebody"/> 
<Synonym concatenated="being" id="SYN3-CLS16" source="BHT" value="being"/> 
<Synonym concatenated="cause" id="SYN4-CLS16" source="BHT" value="cause"/> 
<Synonym concatenated="figure" id="SYN5-CLS16" source="BHT" value="figure"/> 

</SynonymCollection> 
<Surrounding MTLabel="Employee" OntLabel="Employee" id="CLS18"/> 
<Surrounding MTLabel="Researcher" OntLabel="Researcher" id="CLS3"/> 
<Surrounding MTLabel="Student" OntLabel="Student" id="CLS2"/> 
<Surrounding MTLabel="Faculty Member" OntLabel="Faculty_Member" id="CLS28"/> 

</Resource> 
… 

</TargetSemantic> 
Figure  5-5. An Example of O2 Analysis 

A UML class diagram illustrating the semantic analysis process (that generates 

output such as the examples shown in figure 5-4 and figure 5-5) is presented in figure 

5-6. The OntologyParser class is responsible for loading a given ontology and creating 

an OntModel92 for it via the Jena framework for further semantic processing (i.e. extract 

resource labels, generate semantic surroundings for a given resource). For a source 

ontology, the SemanticProcessor class then initiates the SourceUpdater class to extract 

and store the embedded semantics for ontological classes, object properties, data type 

properties and individuals. For a target ontology, this is achieved by the TargetUpdater 

class. A unique ID is assigned to each Resource element (which can be an ontological 

class, an object property, a data type property or an individual) as the value of the 

attribute id as shown in figure 5-4 and figure 5-5. The original resource label is stored 

as the content of the OntLabel element. To break up concatenated labels, the 

LabelProcessor class is called, and the label in natural language form is stored as the 

content of the MTLabel element. The SurroundingGenerator class is responsible for 

generating semantic surroundings for a given ontological resource, which are stored as 

the Surrounding element with the attribute id (which is a reference identifier), 

OntLabel and MTLabel in figure 5-4 and figure 5-5. For a source ontology, candidate 

translations with unique IDs are collected via the MTService class and stored in the 

Candidate element with child elements CandidateValue (the translation returned from 

a MT tool), CandidateSource (the MT tool which returned this translation) and 

CandidateConcatenated (the translation with removed white spaces) as shown in 

figure 5-4. To collect synonyms for the candidate translations, the ThesaurusService 

class is called. These synonyms are stored in the CandidateSynonym element under the 

                                                 
92  OntModel is an interface from the Jena framework that wraps the underlying model of a given 
ontology.  
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parent element CandiateSynonymCollection, with attributes id (unique ID for a 

synonym), source (the thesaurus used to generate this synonym), value (the synonym 

in natural language form) and concatenated (the synonym without any white space). 

Similarly, the TargetUpdater class calls the ThesaurusService class to generate 

synonyms for the target resource labels, which are stored in the Synonym element under 

the parent element SynonymCollection, with attributes id (the unique ID for this 

synonym), source (the thesaurus that returned this synonym), value (the synonym in 

natural language form) and concatenated (the synonym with removed white spaces).  

 

Figure  5-6. Class Diagram of Ontology Semantic Analysis in SOCOM++ 

The Ontology Rendition Step: after analysing the semantics of the given source 

and target ontology, the next step in the SOCOM++ prototype is ontology rendition. To 

achieve this, the AOLT selection process chooses the AOLT results in a specified 

mapping environment according to the configurations (see figure 5-3).  Once AOLT 

results are determined, the Jena framework is used to render the converted source 

ontology (i.e. containing resources with translated labels and in original structure). A 

UML class diagram illustrating the rendition process is presented in figure 5-7.  

As shown in figure 5-7, upon initiation, the ontologyRendition class initiates the 

Socom class which loads the property configuration and checks its validity. The 
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validation ensures that the properties.xml file contains meaningful configurations 

for the system. For example, only one of the <entry key=“correctnessOptimise”/> 

element and the <entry key=“completenessOptimise”/> element can be set to true 

at a time (this is explained previously), or the value for the cut-off point when using the 

pseudo feedback in the <entry key=“threshold”/> element must be between zero 

and one (this is explained in detail in section 5.4.3.3). Code snippet shown in appendix 

C, section C.4, figure C-15 illustrates how the validation is conducted. With a 

successful property validation, the ExecutionFactory class is initiated next that contains 

a collection of run methods implemented specifically to property configurations (they 

are discussed in detail in the remaining sections of this chapter).  

For an entity in O1, its candidate translations and their synonyms are compared to 

what is stored in the O2 analysis. The SemanticComparison class is called to compare a 

given character string (i.e. a label) to the character strings (i.e. a set of labels) stored in 

the O2 analysis, using string comparison technique (discussed in chapter 4, section 4.4). 

This process creates a record of candidate AOLT results via the CandidateAOLTRecord 

class.  Figure 5-8 shows an example of the data that is contained in an AOLT record. 

The DTD used by the AOLT record can be found in appendix D, section D.3, figure D-

6. As shown in figure 5-8, each <Record/> element contains a set of attributes that 

store information including the original source resource’s label (value stored in the 

attribute sourceValue), its ID (value stored in the attribute sourceID), the candidate 

AOLT (value stored in the attribute aoltValue) and its ID (value stored in the attribute 

aoltID), how this candidate AOLT was concluded (value stored in the attribute type) 

and where the translation came from (value stored in the attribute media). 



 

 

123 

 
Figure  5-7. UML Class Diagram of Ontology Rendition in SOCOM++ 
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<?xml version=“1.0” encoding=“UTF-8”?> 
<!DOCTYPE AOLTRecord SYSTEM “AOLTRecord.dtd”> 
<AOLTRecord> 

…  

<Record aoltID="CLS15" aoltValue="Organization" sourceID="CLS0" sourceValue="院所 " 

media="BHT" type="2"/> 
<Record aoltID="SYN2-CLS22" aoltValue="establishment" sourceID="CLS0" sourceValue="院所" media="BHT" type="4"/> 
<Record aoltID="CDD0-CLS0" aoltValue="Institutions" sourceID="CLS0" sourceValue="院所
" media="google" type="6"/> 

<Record aoltID="CDD1-CLS0" aoltValue="Institute" sourceID="CLS0" sourceValue="院所" 

media="bing" type="6"/> 
…  

<Record aoltID="DTP66" aoltValue="email" sourceID="DTP103" sourceValue=" 电 子 邮 件 " 

media="both" type="1"/> 

<Record aoltID="SYN1-DTP66" aoltValue="e-mail" sourceID="DTP103" sourceValue="电子邮件" media="both" type="3"/> 
<Record aoltID="SYN0-DTP66" aoltValue="electronic_mail" sourceID="DTP103" 

sourceValue="电子邮件" media="BHT" type="4"/> 
<Record aoltID="SYN2-DTP66" aoltValue="electronic_communication" sourceID="DTP103" 

sourceValue="电子邮件" media="BHT" type="4"/> 
<Record aoltID="CDD0-DTP103" aoltValue="E-mail" sourceID="DTP103" sourceValue="电子邮件" media="both" type="5"/> 
… 

</AOLTRecord> 

Figure  5-8. An Example of AOLT Record 

There are six approaches to generate a candidate AOLT as summarised in table 5-

1, discussed next.  

• Type 1 denotes a match93 found between a candidate translation (from O1 

analysis) and a target label (from O2 analysis), whereby the target label is 

stored in the attribute aoltValue and its ID from the O2 analysis is stored 

in the attribute aoltID.  

• Type 2 illustrates a match between a synonym of a candidate translation 

and a target label. The target label is stored in the attribute aoltValue and 

its ID from the O2 analysis is stored in the attribute aoltID.  

• Type 3 refers to matches found between a candidate translation and a 

target label’s synonym. This synonym is stored in the attribute aoltValue, 

and its ID from the O2 analysis is stored in the attribute aoltID.  

• Type 4 represents instances when matches are found between a synonym 

of a candidate translation and a synonym of a target label. The synonym of 

the target label is stored in the attribute aoltValue and its ID from the O2 

analysis is stored in the attribute aoltID.  

• When the incorporated MT tools agree on the translation for a source label, 

this is stored as type 5 candidate AOLT. The agreed candidate translation 

                                                 
93 A match in the context of storing candidate AOLT results refers to a pair of labels that has zero edit 
distance when the white spaces and character cases in them are ignored.   
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is stored in the attribute aoltValue and one of the IDs (from one of the 

MT tools) assigned during the O1 analysis is stored in the aoltID.  

• Type 6 refers to machine-generated candidate translations that differ (i.e. 

the case/space-insensitive edit distance between them is greater than zero) 

from one another. Each candidate translation is stored in a <Record/> 

element, with IDs that were assigned during the O1 analysis. Note that type 

6 conclusions can only exist with the absence of a type 5 conclusion in the 

AOLT record. When a type 5 conclusion is recorded, it implies there are 

two type 6 conclusions in the AOLT record which could also be stored. 

However, this is considered as redundant data in SOCOM++ as they do 

not add additional candidate AOLT results to the record.  

Table  5-1. Types of Candidate AOLT Results 

Type O1 Analysis   O2 Analysis Candidate AOLT 

1 candidate translation target label target label 

2 
candidate translation’s 
synonym 

target label target label 

3 candidate translation 
target label’s 
synonym 

target label’s synonym 

4 
candidate translation’s 
synonym 

matches 

target label’s 
synonym 

target label’s synonym 

5 
MT agreed candidate 
translation 

- - 
MT agreed candidate 
translation 

6 
MT disagreed candidate 
translation 

- - each candidate translation  

Type 1 to 6 candidate AOLT results are ordered in terms of the strongest to the 

weakest type of match in table 5-1. In the example shown in figure 5-8, the source label 院所 with ID CLS0 has four candidate AOLT results. The first candidate: Organization 

is derived from the BHT (the Big Huge Thesaurus API) via the type 2 match, has the 

CLS15 ID which was assigned during the O2 analysis.  A second candidate: 

establishment is also derived from the BHT via type 4 conclusion, has the SYN2-CLS22 

ID in the O2 analysis. A third candidate: Institutions is derived from google (the 

GoogleTranslate API) with ID CDD0-CLS0 (assigned during O1 analysis) which differs 

from a fourth candidate: Institute which was returned from bing (the Microsoft 

Translator API) with ID CDD1-CLS0 (assigned during O1 analysis).  

After the AOLT record is prepared, the ExecutionFactory class initiates the 

AoltSelection class which begins the selection of the final AOLT results, as shown in 

figure 5-7. The AoltSelection class is responsible for choosing the AOLT results, 

solving any translation collisions that may occur via the CollisionResolutionCentre 

class and storing the final AOLT results in the database. (Note that how collisions are 
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solved depends on the SOCOM++ configuration, six trials with six different resolution 

strategies are discussed later in section 5.4.) To access the candidate AOLT results, the 

AoltSelection class issues XQuery and XPathQuery via the XML:DB 1.0 API to the 

AOLT record in the database. The code snippet in appendix C, section C.4, figure C-16 

presents an example of using XQuery via the XML:DB API. An example of querying 

the AOLT record using XPathQuery via the XML:DB API is presented in appendix C, 

section C.4, figure C-17. To solve collisions, the CollisionResolutionCentre class needs 

to determine which entity should keep the collided term and which alternative 

translation should be given to the other entity, by comparing semantic surroundings via 

the SemanticAnalysis class. The comparisons between character strings (i.e. a label vs. 

another label) and groups of character strings (i.e. a set of labels vs. another set of labels) 

are achieved by the StringComparison class, which is implemented in the same way as 

prototype one (see chapter 4, section 4.4) via the LingPipe API. Recall there are six 

approaches to conclude a candidate AOLT result - they are prioritised during the AOLT 

selection. For example, in the absence of a type 1 conclusion, use the type 2 candidate 

AOLT; if it causes collision or simply does not exist, use the type 3 candidate AOLT 

and so on. The AOLT selection algorithm varies depending on what resources are 

available to the system. This is discussed in detail through six trial experiments 

presented in the remaining sections of this chapter. The final AOLT results are stored in 

the eXsit DB, figure 5-9 presents an example of the AOLT selection. Each <AOLT/> 

element contains the attribute sourceID (the ID of the source label assigned during O1 

analysis), the attribute media (the translation source used to pin down the final AOLT 

for the source label), the attribute type (the AOLT conclusion type as discussed 

previously), the attribute source (the original URI for the resource with the given 

source label) and the attribute translation (the URI of the resource in the converted 

source ontology which contains a new base URI and translated label identifiers).  The 

DTD used for the AOLT selections can be found in appendix D, section D.3, figure D-7.  

<?xml version=“1.0” encoding=“UTF-8”?> 
<!DOCTYPE AOLTSelection SYSTEM “AOLTSelection.dtd”> 
<AOLTSelection> 

…  

<AOLT sourceID="CLS-9" media="both" type="5" source="http://kdeg.cs.tcd.ie/CSWRC#经理
" translation="http://kdeg.cs.tcd.ie/CSWRC/translated#Manager"/> 

<AOLT sourceID="CLS-12" media="both" type="1" source="http://kdeg.cs.tcd.ie/CSWRC#副教授" translation="http://kdeg.cs.tcd.ie/CSWRC/translated#Associate_Professor"/> 
<AOLT sourceID="CLS-30" media="google" type="3" source="http://kdeg.cs.tcd.ie/CSWRC#论文" translation="http://kdeg.cs.tcd.ie/CSWRC/translated#paper"/> 
<AOLT sourceID="OBP-57" media="BHT" type="2" source="http://kdeg.cs.tcd.ie/CSWRC#工作者" translation="http://kdeg.cs.tcd.ie/CSWRC/translated#Person"/> 
<AOLT sourceID="OBP-74" media="BHT" type="4" source="http://kdeg.cs.tcd.ie/CSWRC#成员
" translation="http://kdeg.cs.tcd.ie/CSWRC/translated#associate"/> 
<AOLT sourceID="DTP-115" media="bing" type="6" source="http://kdeg.cs.tcd.ie/CSWRC#国际标准刊号" 
translation="http://kdeg.cs.tcd.ie/CSWRC/translated#International_standards_call_num
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ber"/> 
… 

</AOLTSelection> 

Figure  5-9. An Example of Final AOLT Results 

As shown in figure 5-7, once AOLT results are selected for all the source labels, 

the OntologyConverter class is called to generate O1' by looking up the AOLT selection 

stored in the database. The Jena Framework is implemented to construct the converted 

ontology in the target natural language. This process is previously demonstrated by the 

code snippet shown in appendix C, section C.2, figure C-1 and figure C-2.  

The Ontology Mapping Step: upon the creation of the O1' ontology, MOM 

techniques are applied to generate matches between O1' and O2 by using the Alignment 

API (this is the same with SOCOM). As figure 5-10 illustrates, the Map class is 

initiated that calls the MatchingAlgorithmFactory class which contains a collection of 

eight matching algorithms provided by the Alignment API. 

 
Figure  5-10. Class Diagram of Mapping Generation 

The matches generated from this class however, consist of pairs of matched 

entities from O1' and O2 in the alignment format94. For example: 

<?xml version='1.0' encoding='utf-8' standalone='no'?> 
<rdf:RDF xmlns='http://knowledgeweb.semanticweb.org/heterogeneity/alignment#' 
         xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#' 
         xmlns:xsd='http://www.w3.org/2001/XMLSchema#' 
         xmlns:align='http://knowledgeweb.semanticweb.org/heterogeneity/alignment#'> 
<Alignment> 
… 
<map> 
<Cell> 

<entity1 
rdf:resource='http://kdeg.cs.tcd.ie/CSWRC/translated#Assistant_Professor'/> 
<entity2 
rdf:resource='http://annotation.semanticweb.org/2004/iswc#Associate_Professor'
/> 
<relation>=</relation> 
<measure 
rdf:datatype='http://www.w3.org/2001/XMLSchema#float'>0.8157657657657658</meas
ure> 

</Cell> 
</map> 
… 

</Alignment> 
</rdf:RDF> 

                                                 
94 http://oaei.ontologymatching.org/2009/align.html 
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To generate the final CLOM results between O1 and O2, the MappingGenerator 

class looks up the AOLT selection (e.g. figure 5-9) from the database and replaces all 

the O1' entities (in target natural language) with O1 entities (in source natural language). 

This is the same approach as was taken with the baseline system and SOCOM. The 

previous matches are converted now as:  

<?xml version='1.0' encoding='utf-8' standalone='no'?> 
<rdf:RDF xmlns='http://knowledgeweb.semanticweb.org/heterogeneity/alignment#' 
         xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#' 
         xmlns:xsd='http://www.w3.org/2001/XMLSchema#' 
         xmlns:align='http://knowledgeweb.semanticweb.org/heterogeneity/alignment#'> 
<Alignment> 
… 
<map> 
<Cell> 

<entity1 rdf:resource= http://kdeg.cs.tcd.ie/CSWRC#副教授'/> 
<entity2 
rdf:resource='http://annotation.semanticweb.org/2004/iswc#Associate_Professor'
/> 
<relation>=</relation> 
<measure 
rdf:datatype='http://www.w3.org/2001/XMLSchema#float'>0.8157657657657658</meas
ure> 

</Cell> 
</map> 
… 

</Alignment> 
</rdf:RDF> 

5.4. SOCOM++ Evaluation 

This section presents the evaluation of SOCOM++, which aims to demonstrate the 

impact of different configurations on the final mappings generated. A total of six trials 

have been carried out. The flexibility of SOCOM++ is demonstrated through these 

trials, with emphasis placed on adjusting the inputs of the AOLT process in an effort to 

influence the matching outcome.  The goal of these trials is to investigate the impact of 

each input on the AOLT outcome and how the CLOM results are consequently 

influenced. Also, scalability tests are carried out to investigate the execution time 

required to complete a simpler and a more complicated trial run. The six trials are not 

an exhaustive list of how SOCOM++ can be configured, but rather examples of typical 

adjustment on the AOLT selection process. The first three trials (discussed in section 

5.4.2) focus on adjusting the inputs that are related to the given ontologies involved in a 

mapping scenario. The other three trials (discussed in section 5.4.3) focus on executing 

a second iteration of the AOLT process. Each trial focuses on one of the six inputs 

(discussed in section 5.3) of the AOLT process. An overview of the six trial 

experiments is presented in section 5.4.1. Section 5.4.2 presents the first three trials that 

focus on semantic adjustments. Section 5.4.3 presents another three trials that focus on 

the second iteration of the AOLT process.  Section 5.4.4 discusses the conclusions 

drawn from the six trials undertaken. Finally, section 5.4.5 presents the scalability tests. 
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5.4.1. Overview of Trials 

An overview of the configurations used in the six trials can be found in table 5-2. For a 

given CLOM scenario, inputs to the AOLT process are adjusted, with the exception of 

two: candidate translations (of O1 labels) and O2 labels. These two inputs are essential 

in any trial, because candidate translations must be available to bridge between the 

natural languages presented in O1 and O2; and O2 labels must be consulted to realise the 

AOLT concept (since the AOLT process at core concerns selecting translations that are 

the same/similar with the labels in O2).  

Each trial has a different configuration of the inputs to the AOLT process. The 

evaluation of each configuration consists of two CLOM experiments, which were first 

used in the evaluation of SOCOM (discussed in chapter 4, section 4.5), namely, 

mapping the CSWRC ontology (in Chinese) to the ISWC ontology (in English) of the 

research domain and mapping the 101 ontology (in English) to the 206 ontology (in 

French) of the bibliography domain. These two CLOM experiments are used in the 

evaluation of each trial in SOCOM++. Such experimental setups (i.e. the same ontology 

pairs are used again) will continuously examine the AOLT process, since how AOLT 

results are achieved is the only difference between SOCOM++ and SOCOM.  
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Table  5-2. A Summary of SOCOM++ Trial Configurations 

Inputs of the AOLT Selection Process 
Configuration Candidate 

Translations 
Synonyms of Candidate 

Translations 
O1 Semantic 
Surroundings 

O2 
Labels 

Synonyms of O2 
Labels 

O2 Semantic 
Surroundings 

2
nd

 
Iteration 

Cut-off 
Point 

Trial 1 � � � � � � � n/a 

Trial 2 � � � � � � � n/a 

Trial 3 � � � � � � � n/a 

Trial 4  � � � � � � � Conf.=1 

Trial 5 � � � � � � � Conf.>0 

Trial 6 � � � � � � � Conf.≥0.5 
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Trial one, two and three concern the adjustment on inputs that are related to the 

ontologies involved in a CLOM scenario. A second iteration of the AOLT process is 

not conducted in these three trials. Trial one (discussed in section 5.4.2.1) focuses on 

adjusting the execution constraint, whereby the default configuration is applied to 

achieve AOLT results. This default execution is essentially an enhanced SOCOM, 

where (as explained previously in section 5.2) the enhancement is that synonyms of 

candidate translations (of O1 labels, in addition to O2 labels and their synonyms) are 

included in the AOLT selection process. This trial thus investigates whether an 

increased candidate AOLT pool (through the added synonyms of the candidate 

translations) could improve the matching quality. Matches generated from trial one and 

their evaluations can be found at root/SOCOM++Experiments/TrialOne/ on the DVD.   

Trial two (discussed in section 5.4.2.2) focuses on adjusting the resource 

constraint property, whereby background resources such as thesauri are made 

unavailable to the AOLT selection process. This configuration thus does not include 

synonyms (of either O2 labels or candidate translations of O1 labels) in the AOLT 

selection process. This trial investigates the impact on the matching quality when the 

system only has access to the minimum amount of information that is naturally 

available (i.e. the semantics in the given ontologies - the labels in them and their 

semantic surroundings). Matches generated from trial two and their evaluations can be 

found at root/SOCOM++Experiments/TrialTwo/ on the DVD. 

Trial three (discussed in section 5.4.2.3) focuses on adjusting the embedded 

semantics that are available to the system, whereby semantic surroundings are not 

included in the AOLT process. This configuration draws AOLT conclusions from 

background knowledge alone (i.e. synonyms of O2 labels and synonyms of candidate 

translations of O1 labels) and investigates how the absence of semantic surroundings 

may impact on the matching outcome. Matches generated in trial three and their 

evaluations can be found at root/SOCOM++Experiments/TrialThree/ on the DVD.    

Trial four, five and six focus on carrying out a second iteration of the AOLT 

process using three different selection rationales to achieve AOLT results during the 

second iteration. The selection rationales are achieved through the optimising 

correctness task intent, the optimising completeness task intent and the pseudo feedback 

feature. As discussed in section 5.3, only one task intent or pseudo feedback can be in 
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effect at a time. Trial four (discussed in section 5.4.3.1) focuses on adjusting the 

optimising correctness intent in the configuration. This trial investigates how a strict 

cut-off point in the initial iteration (i.e. only matches with 1.0 confidence levels are 

assumed to be correct) may impact on the matching outcome generated from the second 

iteration of the AOLT process. Matches generated from trial four and their evaluations 

can be found at root/SOCOM++Experiments/TrialFour/ on the DVD.   

Trial five (discussed in section 5.4.3.2) applies the optimising completeness task 

intent in the configuration, and investigates how the matching quality is effected in the 

second iteration when no cut-off point is applied in the assumption (i.e. all matches 

generated from the first iteration are assumed to be correct). This configuration 

effectively prioritises most frequently used selection rationales (i.e. MT media used) in 

the second iteration of the AOLT process according to their popularity in the first 

iteration. Matches generated from trial five and their evaluations can be found at 

root/SOCOM++Experiments/TrialFive/ on the DVD.     

Trial six (discussed in section 5.4.3.3) focuses on the pseudo feedback feature, 

which offers adjustment of the cut-off point on confidence levels. This feature allows 

the user to specify a threshold anywhere between the cut-off points used in trial four 

and trial five. (Note that trial four and five do not offer adjustable cut-off points.) In 

trial six, a threshold of 0.5 is applied (i.e. matches with at least 0.5 confidence levels 

from iteration one are assumed to be correct). This cut-off point was chosen as it is a 

natural division between 0.0 and 1.0, where equal to/greater than 0.5 indicates an 

incline towards confident, and less than 0.5 indicates an incline towards not confident. 

Matches generated from trial six and their evaluations can be found at root/ 

SOCOM++Experiments/TrialSix/ on the DVD.    

Figure 5-11 presents an overview of the experiments carried out in the evaluation 

of SOCOM++. Experiment one (figure 5-11-a) requires the mapping of the Chinese 

CSWRC ontology to the English ISWC ontology. Experiment two (figure 5-11-b) 

concerns the mapping of the English 101 ontology to the French 206 ontology. In both 

experiments, eight MOM matching algorithms (provided by the Alignment API) have 

been applied to generate matches for the baseline system as well as SOCOM++. The 

generation of the gold standards for these experiments have been discussed previously 

(see chapter 4, section 4.5.1.1 and 4.5.2.1). 
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M MP2-T1/2/3/4/5/6

Prototype 2: 

SOCOM++

MB

Baseline

CSWRC 

(Chinese)

ISWC 

(English)

CSWRC 

(Chinese)

CSWRC 

(Chinese)

ISWC 

(English)

ISWC 

(English)

Quality Comparison

MP2-T1/2/3/4/5/6 Evaluated Against M
 

(a) Experiment One - Map CSWRC to ISWC using SOCOM++ 

 
(b) Experiment Two - Map Ontology 101 to 206 using SOCOM++ 

Figure  5-11. Experimental Setup of Trial One to Six 

In experiment one ( figure 5-11-a), M is the gold standard between the CSWRC 

ontology and the ISWC ontology. MB is the matches generated by the baseline system, 

which contains eight sets of matches (each set is generated by a MOM algorithm). MP2-

T1/2/3/4/5/6 is the matches generated by the SOCOM++, where MP2-T1 contains eight sets 

of matches generated from trial one, MP2-T2 contains eight sets of matches generated 

from trial two and so on. MP2-T1/2/3/4/5/6 is evaluated against the gold standard M, and 

compared to MB. In experiment two, M' is gold standard between ontology 101 and 206. 

MB' is the matches generated by the baseline system. MP2-T1/2/3/4/5/6' refers to the matches 

generated by the SOCOM++, where MP2-T1' contains eight sets of matches generated in 

trial one, MP2-T2' contains eight sets of matches generated in trial two and so on. MP2-

T1/2/3/4/5/6' is evaluated against gold standard M', and compared to MB'.  
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5.4.2. Three Trials to adjust Ontology Semantics 

This section presents trial one (discussed in section 5.4.2.1), two (discussed in section 

5.4.2.2) and three (discussed in section 5.4.2.3) that focus on the adjustment of ontology 

semantics during the AOLT process.  

5.4.2.1. Trial One - adjust Execution Constraint  

Trial one investigates whether the default AOLT process in SOCOM++ can improve 

the mapping quality compared to the baseline system, or even what was achieved by 

SOCOM (discussed in chapter 4, section 4.5). The setup of this trial is discussed in 

section 5.4.2.1.1, and the findings are presented in section 5.4.2.1.2. 

5.4.2.1.1. Trial Setup 

As discussed previously (in section 5.3), the system property: execution constraint can 

be set to either true or false. When it is set to true, all other property settings are 

ignored and the system is executed with its default configuration. The default 

configuration of the system makes use of all the resources that are available to aid the 

AOLT process, including the candidate translations, their synonyms, source semantic 

surroundings from the O1 analysis and target labels, their synonyms, target semantic 

surroundings from the O2 analysis. For each source label, its candidate translations and 

synonyms are compared to what is stored in the O2 analysis and a record of candidate 

AOLT results are generated and stored as shown previously in figure 5-8.  

When selecting the AOLT result for a source label, the system looks through the 

AOLT record for the lowest possible conclusion type (by issuing XPath queries - 

demonstrated by the code snippet shown in appendix C, section C.4, figure C-16). This 

is because lower conclusion types illustrate stronger matches to the data in O2 analysis 

(see table 5-1 for conclusion types, how they are generated and what they represent). In 

the absence of a low conclusion type for a source label, its alternative candidate AOLT 

with a higher type would be selected. In the example shown in figure 5-8, the source 

label 院所with ID CLS15 does not have a type 1 candidate AOLT (i.e. when a candidate 

translation matches a target label), hence the type 2 candidate AOLT (i.e. when a 

candidate translation’s synonym matches a target label) would be selected as the AOLT. 

Note that more than one candidate AOLT with the same conclusion type may exist for a 
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source label. An example can be seen in figure 5-8, the source label 院所 with ID CLS15 

has two type 6 (i.e. when each MT tool gives a differing translation, and these 

translations do not match anything in the O2 analysis) candidate AOLT results, and the 

source label 电子邮件 with ID DTP103 has two type 4 (i.e. when candidate translation’s 

synonym matches target label’s synonym) candidate AOLT results. When more than 

one candidate AOLT result with the same desired type are available to the selection 

process, in the case of type 1, 2, 3 and 4 candidates, the candidate AOLT that is most 

similar to the target surrounding is chosen as the most suitable AOLT. This is because 

these conclusion types are derived with association to the O2 analysis. In the case of 

type 5 candidate AOLT results, no further comparison to semantic surrounding is 

necessary. This is because type 5 candidate AOLT results are a result of MT tools being 

in agreement for the translation of a source label, there can only be one type 5 record at 

most. In the case of having more than one type 6 candidate AOLT results being 

available, the selection process chooses the candidate AOLT that is most similar (using 

string comparison technique, discussed in chapter 4, section 4.4) to the source semantic 

surrounding in the O1 analysis.  

Collisions of AOLT results can occur when the aforementioned selection process 

chooses the same translation term (i.e. two character strings that are identical to one 

another) for two or more source labels, which must be resolved before storing of the 

final AOLT results in the database. The resolution strategies are summarised in table 5-

3, which include 11 types of collisions as scenarios i to xi. To solve a collision between 

a pair of entities E1 and E2, their candidate types are checked. The entity whose 

candidate was concluded as having a lower type keeps the collided term as its AOLT 

result, and the other entity will then seek an alternative candidate from the AOLT 

record with the lowest possible type other than its current collided type, as 

demonstrated by the scenarios i to x in table 5-3.  

For example, the best available candidate in the AOLT record for院所 with ID 

CLS0 is Organization: 

<Record aoltID="CLS15" aoltValue="Organization" sourceID="CLS0" sourceValue="院所" media="BHT" type="2"/> 

However, the best available AOLT candidate for another entity label组织 with ID CLS3 

is also Organization: 

<Record aoltID="CLS15" aoltValue="Organization" sourceID="CLS3" sourceValue="组织" media="both" type="1"/> 
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As the former is a type 2 record (i.e. concluded based on a match between a synonym of院所’s candidate translation and a target label - a weaker match in comparison) and the 

latter is a type 1 record (i.e. concluded based on a match between the candidate returned 

from MT and a target label - a stronger match in comparison), the second entity组织
will keep Organization as its AOLT result and the first entity院所will seek the next 

best available translation from the AOLT record, e.g. a type 3 record; if type 3 

candidate is not available or causes collision (either with the same entity or other 

entities), a type 4 record will be chosen and so on. If a pair of collided entities involve 

the same type of record, as demonstrated by scenario xi in table 5-3, the collided AOLT 

is compared to the semantic surrounding of E1 and the semantic surrounding of E2. The 

entity whose semantic surrounding is most similar (using string comparison technique) 

to the candidate AOLT will keep this collided term as its AOLT result, and the other 

entity will seek the next available AOLT in the same fashion as discussed above. 

Table  5-3. Collision Resolution in SOCOM++ Trial One 

Candidate AOLT Collision  
Scenario E1 E2 

Solution 

i type = 1 type = 2, 3, 4, 5 or 6 

ii type = 2 type = 3, 4, 5 or 6 

iii type = 3 type = 4, 5 or 6 

iv type = 4 type = 5 or 6 

v type = 5 type = 6 

E1 keeps the collided AOLT; E2 
seeks alternative AOLT with lowest 
possible type other than the current 
type.  

vi type = 2, 3, 4, 5 or 6 type = 1 

vii type = 3, 4, 5 or 6 type = 2 

viii type = 4, 5 or 6 type = 3 

ix type = 5 or 6 type = 4 

x type = 6 type = 5 

E2 keeps the collided AOLT; E1 
seeks alternative AOLT with the 
lowest possible type other than the 
current type. 

xi E1 type = E2 type 

Entity that is most similar to source 
surrounding keeps the collided 
AOLT; the other entity seeks 
alternative AOLT with the lowest 
possible type other than the current 
type. 

If collisions remain unsolved after all available candidates in the AOLT record 

have been investigated for a source label, a unique integer is attached to the collided 

term as the AOLT for this entity (to break out from the recursive process which seeks 

the next best AOLT result). This is achieved in the same way as the baseline system 

(see chapter 3, section 3.3.2) and SOCOM (see chapter 4, section 4.4). SOCOM++ with 

the default AOLT process discussed in this section is evaluated in the following section.  

5.4.2.1.2. Findings and Analysis 

A summary of the findings on precision, recall and f-measure from trial one can be 

found in figure 5-12. The left column in figure 5-12 contains the findings from 
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experiment one - mapping the CSWRC ontology to the ISWC ontology. The right 

column contains the findings from experiment two - mapping the 101 ontology to the 

206 ontology. These findings are generated when a match is considered correct as long 

as it is included in the gold standard regardless of its confidence level. 

Exp. 1 - Map CSWRC to ISWC Exp. 2 - Map 101 to 206 
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Legend: 1 NameAndPropertyAlignment 5 SMOANameAlignment 
2 StrucSubsDistAlignment 6 SubsDistNameAlignment 
3 ClassStructAlignment 7 EditDistNameAlignment 
4 NameEqAlignment 8 StringDistAlignment 

Figure  5-12. Precision, Recall and F-Measure found in Trial One 

In experiment one, improvements in precision can be seen across all eight 

matching algorithms when SOCOM++ is applied. This finding indicates that no matter 

which matching algorithm was applied, the default configuration of SOCOM++ was 

able to generate more number of correct matches in this experiment than the baseline 

system. The average precision in MP2-T1 is 0.4155, which is an average improvement of 

9.54% compared to the average precision of MB (at 0.3793). A similar finding can be 

seen in the recall scores generated: when SOCOM++ is applied, equal (in the case of 
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the EditDistNameAlignment algorithm) or higher (in the case for all other algorithms) 

recall is found in this experiment with respect to the baseline system. Particularly in the 

case of the NameEqAlignment algorithm and the StringDistAlignment algorithm, 

substantial higher recall scores are obtained in this experiment. This is because both 

algorithms are lexicon-based and employ strict string comparison techniques when 

concluding entity matches95. With the selection of AOLT results for resource labels in 

SOCOM++, the completeness of the matches has been greatly improved for these 

algorithms. An average recall of 0.6488 is found in MP2-T1, which is an average 

improvement of 15.04% compared to MB (at 0.5640). The overall matching quality is 

illustrated by the f-measure achieved. Higher f-measure can be seen in all matching 

algorithms when the SOCOM++ is applied. This suggests the quality of the matches 

generated by SOCOM++ is higher than those generated by the baseline system. On 

average, an f-measure of 0.4654 is found in MP2-T1, which is a 23.06% improvement 

over MB (at 0.3782). The p-value derived from the paired t-test on the f-measure scores 

collected in MP2-T1 and MB is 0.044. At a significance level of α=0.05, this p-value 

rejects the null hypothesis (being that there is no difference between MP2-T1 and MB) 

and supports the finding that matches generated by SOCOM++ are of higher quality 

than those generated by the baseline system in the CLOM scenarios studied. 

In experiment two, improvements in precision can be seen across all eight MOM 

algorithms. On average, the baseline system achieved 0.6918 precision in this 

experiment, and a higher precision of 0.7394 was achieved by SOCOM++. This is an 

average improvement of 6.88%. This result shows that a larger number of correct 

matches were generated by the SOCOM++ in this experiment. More visible 

improvements can be seen in the recall scores generated. A mean recall of 0.6057 was 

found in the baseline system, and a higher mean of 0.6261 was found in SOCOM++. 

This is an average improvement of 3.37%. This finding shows that the matches 

generated by SOCOM++ were more complete than those generated via the baseline 

system in this experiment. A similar trend can be seen in f-measure. Improvement in 

matching quality is visibly shown in all matching algorithms executed. On average, an 

f-measure of 0.6347 is found in MB', whereas a higher f-measure of 0.6684 was found 

in MP2-T1'. This is an average improvement by 5.31% in the overall quality of the 

matches generated. The p-value derived from paired t-test carried out on the f-measure 

                                                 
95 Only matches with 1.0 confidence levels are generated by these algorithm since only entities with 
identical labels are matched (e.g. assistant_professor and Assistant_Professor is not a match because 
these character strings are not identical). 
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scores yield 0.023, suggesting that these differences in the results generated are 

statistically significant. This provides further evidence that the matches generated from 

SOCOM++ are of higher quality than those generated from the baseline system. 

The confidence levels of the matches generated are investigated next in the 

evaluation. The confidence means and standard deviations are calculated in both 

experiments. These results are shown in table 5-4. Scatter plots generated using this 

data can be found in appendix E, section E.1, figure E-1. 

Table  5-4. Confidence Data from Trial One 

Baseline 
SOCOM++ Trial 1 –  

Adjust Execution constraint Exp. Matching Technique 

St. Dev. Mean St. Dev. Mean 

1 NameAndPropertyAlignment 0.1014 0.9374 0.0544 0.9872 

2 StrucSubsDistAlignment 0.2505 0.7505 0.2246 0.8186 

3 ClassStructAlignment 0.2505 0.7505 0.0160 0.9969 

5 SMOANameAlignment 0.0582 0.9649 0.0160 0.9969 

6 SubsDistNameAlignment 0.1618 0.9041 0.0453 0.9911 

7 EditDistNameAlignment  0.0123 0.9909 0.0112 0.9969 

1 

Avg.  0.1391 0.8830 0.0613 0.9646 

1 NameAndPropertyAlignment 0.0909 0.9674 0.0881 0.9774 

2 StrucSubsDistAlignment 0.1509 0.9059 0.1485 0.9233 

3 ClassStructAlignment 0.1545 0.9440 0.1140 0.9577 

5 SMOANameAlignment 0.1556 0.9431 0.0925 0.9664 

6 SubsDistNameAlignment 0.1541 0.9372 0.1791 0.9245 

7 EditDistNameAlignment 0.0179 0.9913 0.0165 0.9935 

2 

Avg.  0.1207 0.9481 0.1065 0.9571 

In experiment one, confidence levels have been improved (i.e. increased 

confidence mean and decreased standard deviation) by SOCOM++ for all algorithms. 

In experiment two, with the exception of the SubsDistNameAlignment algorithm, all 

other algorithms showed improved confidence levels when using SOCOM++. On 

average, the average confidence mean in MP2-T1 is increased by 9.24% (to 0.9646), and 

the average standard deviation is decreased by 55.93% (to 0.0613) compared to MB. 

The average confidence mean of MB' (at 0.9481) is improved by 0.95% (to 0.9571) in 

MP2-T1'. The average standard deviation of MB' (at 0.1207) is decreased by 11.76% in 

MP2-T1' (to 0.1065). These results denote that the matches generated by SOCOM++ are 

not only more confident but their confidence levels are also less dispersed.  

In summary, it is shown through the evaluation that SOCOM++ trial one (i.e. with 

default configuration) exceeds the baseline system in terms of precision, recall, f-

measure as well as confidence level means and standard deviations. However, when 

compared to SOCOM, the improvement of SOCOM++ is not always evident. Table 5-5 

presents the key findings from the baseline system (MB and MB'), SOCOM (MP1 and 

MP1') and SOCOM++ trial one (MP2-T1 and MP2-T1'). In experiment one, improvement in 
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SOCOM++ trial one is evident in all measures except precision compared to SOCOM. 

In experiment two, improvement in SOCOM++ trial one is evident in all measures 

expect recall and confidence mean. This partial improvement can be understood as: 

with an increased candidate AOLT pool, it consequently comes with an increased risk 

of selecting incorrect AOLT results. In fact, this is later shown in trial two (discussed in 

section 5.4.2.2): when synonyms are removed (leading to a much smaller candidate 

AOLT pool), the mapping quality is not necessarily decreased as the AOLT process is 

more likely to select translations that are used by the target ontology (hence more exact 

matches). Nonetheless, it is worth noting that the default SOCOM++ configuration has 

further improved matching quality on several aspects compared to SOCOM. It is thus 

motivating for this author to explore other configurations, discussed next. 

Table  5-5. Key Findings of Baseline, SOCOM and SOCOM++ Trial One 

Evaluations  Baseline SOCOM 
SOCOM++ 

Trial 1 (default configuration) 

Precision 0.3793 0.4367 0. 4155 

Recall 0.5640 0.5854 0.6488 

F-Measure 0.3782 0.4146 0.4654 

Confidence Level Mean 0.8830 0.8962 0.9646 

Exp.1 

Confidence Level St.Dev. 0.1391 0.1239 0.0613 

Precision 0.6918 0.7084 0.7394 

Recall 0.6057 0.6353 0.6261 

F-Measure 0.6347 0.6621 0.6684 

Confidence Level Mean 0.9481 0.9640 0.9571 

Exp.2 

Confidence Level St.Dev. 0.1207 0.1110 0.1065 

5.4.2.2. Trial Two - adjust Resource Constraint  

Trial two investigates the effects of restricted background semantics (e.g. when thesauri 

are unavailable to the AOLT process) on the matching quality. The experimental setup 

is discussed in section 5.4.2.2.1, and the findings are presented in section 5.4.2.2.2.  

5.4.2.2.1. Trial Setup 

In specialised domains (e.g. medicine), it may be the case that there simply is few other 

ways to express certain concepts, or it may be the case that background resources which 

synonyms can be extracted from are simply not accessible. This trial aims to investigate 

how the matching outcome is affected given a lack of background semantics.  

As discussed previously (see section 5.3), resource constraint is modelled by two 

entry elements (see figure 5-2), one with key attribute translationSynonym and the 

other with key attribute targetSynonym. Both elements can be configured to either 

true or false. In trial two, both elements are configured to false, which illustrates a 
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case where thesauri are unavailable96 . This means that the synonyms of candidate 

translations for source labels and the synonyms for target labels are not included to the 

AOLT process. As a result, there will only be type 1, 5 and 6 candidate AOLT results 

(see table 5-1 for types of candidate AOLT results), but no type 2, 3 or 4 candidates in 

the AOLT record.  When selecting AOLT results, the system looks up the AOLT record 

and prioritises candidates with lower type attributes. If a type 1 candidate is available 

for a source label, it is selected as the AOLT result; in the absence of type 1 candidate, 

a type 5 candidate would be selected as the final AOLT and so on.  

A summary of the strategies used to resolve collisions in trial two is presented in 

table 5-6. For a pair of collided entity E1 and E2, their AOLT results’ respective 

candidate types are checked first. The entity with the lower type keeps the collided term 

as its final AOLT result, and the other entity seeks an alternative translation, as 

demonstrated by the scenarios i, ii, iii and iv in table 5-6. If both entities end with the 

same term based an equal type (as demonstrated by scenario v in table 5-6), the entity 

with semantic surrounding that is most similar (i.e. lowest aggregated edit distance) to 

that of the source label will keep the collided term as its AOLT result, and the other 

entity must seek an alternative translation (i.e. another translation with the lowest 

possible type other than the current type). 

Table  5-6. Collision Resolution in Trial Two 

Candidate AOLT Collision  
Scenario E1 E2 

Solution 

i type = 1 type = 5 or 6 

ii type = 5 type = 6 

E1 keeps the collided AOLT; E2 seeks alternative AOLT 
with lowest possible type other than the current type.  

iii type = 5 or 6 type = 1 

iv type = 6 type = 5 

E2 keeps the collided AOLT; E1 seeks alternative AOLT 
with the lowest possible type other than the current 
type. 

v E1 type = E2 type 

Entity that is most similar to source surrounding keeps 
the collided AOLT; the other entity seeks alternative 
AOLT with the lowest possible type other than the 
current type. 

If all alternatives have been explored and none are suitable (i.e. cause further 

collisions, or simply do not exist in the requested AOLT type), a unique integer is 

attached to the collided term for the entity with no more appropriate alternatives. This 

strategy is used in the baseline system, SOCOM and SOCOM++ trial one. Trial two is 

evaluated in experiments discussed in section 5.4.1, and the findings are presented next.  

5.4.2.2.2. Findings and Analysis 

                                                 
96 Note that the execution constraint, i.e. <entry key=“default”/> must be set to false, in order for 
the system to account settings of other properties (see figure 5-2).   
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The precision, recall and f-measure scores generated in experiment one (mapping the 

CSWRC ontology to the ISWC ontology, shown in the left column) and experiment 

two (mapping ontology 101 to ontology 206, shown in the right column) can be seen in 

figure 5-13. These scores are generated when a match is considered correct so long it is 

included in the gold standard regardless of its confidence level.  

Exp. 1 – Map CSWRC to ISWC Exp. 2 – Map 101 to 206 
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Matching Algorithms: 1 NameAndPropertyAlignment 5 SMOANameAlignment 
2 StrucSubsDistAlignment 6 SubsDistNameAlignment 
3 ClassStructAlignment 7 EditDistNameAlignment 
4 NameEqAlignment 8 StringDistAlignment 

Figure  5-13. Precision, Recall, F-Measure in SOCOM++ Trial Two 

In experiment one, with the exception of the NameAndPropertyAlignment 

algorithm, all other matching algorithms experienced some degree of improvement on 

precision. On average, a precision of 0.3793 was achieved by MB, and a higher 

precision of 0.4437 was achieved by MP2-T2. This is an average improvement of 16.98% 

on the number of correct matches generated using the SOCOM++ trial two 

configuration. Significant improvements can be seen in the recall scores generated by 

all eight matching algorithms. An average recall of 0.5640 was found in MB where as 

an average of 0.6616 was found in MP2-T2. This is a 17.30% improvement on the 

completeness of the correct matches when using SOCOM++ with the trial two 
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configuration. Overall, improvement can be seen in all matching algorithms through the 

f-measure scores generated. An average f-measure of 0.3782 was found in MB, and an 

average of 0.4674 was found in MP2-T2. This is an improvement of 23.59%. This finding 

is further supported by the p-value found in the paired t-test of the f-measure scores 

generated by the two systems. At a p-value of 0.019, the paired t-test rejects null 

hypothesis of there being no difference between the two systems.  

In experiment two, with the exception of the NameEqAlignment algorithm, all 

other algorithms generated higher precision scores in MP2-T2'. An average precision of 

0.7569 was found in MP2-T2', which is an improvement by 9.41% compared to the 

baseline system (with an average precision of 0.6918). The average recall score is also 

improved when the SOCOM++ trial two configuration was applied, which yielded an 

average recall of 0.6521 - an improvement by 7.66% compared to the baseline system 

(with an average recall of 0.6057). Except for the NameAndPropertyAlignment 

algorithm and the StringDistAlignment algorithm, all other algorithms generated equal 

or higher recall scores in this trial as shown in figure 5-13-b. The f-measure scores 

reveal that with the exception of the NameEqAlignment algorithm, all other algorithms 

were able to improve the overall matching quality in MP2-T2'. An average f-measure of 

0.6886 was found in SOCOM++ trial two, which is an improvement of 8.49% 

compared to the baseline system (with an average f-measure of 0.6347). The p-value 

generated from the paired t-test on f-measure score is 0.006, which supports the 

statistical significance of the findings so far.  

The evaluation carried out on the confidence levels can be found in table 5-7. 

Scatter plots generated using this data can be found in appendix E, section E.2, figure 

E-2. In experiment one, the confidence means are increased and the standard deviations 

are decreased for all matching algorithms in MP2-T2. On average, a mean of 0.9326 was 

found in SOCOM++ trial two, which is an improvement by 5.62% compared to the 

baseline system (at a mean of 0.8830). An average standard deviation of 0.1088 was 

found in MP2-T2, which is a decrease by 21.78% compared to MB (with a standard 

deviation of 0.1391). In experiment two, the average mean and standard deviation have 

not been improved in this trial. Data in table 5-7 shows that matches in MB ' were more 

confident and with less dispersed confidence levels than matches in MP2-T2'.  

Table  5-7. Confidence Data from Trial Two 

Baseline 
SOCOM++ Trial 2 -  

Adjust Resource Constraint Exp. Matching Technique 
St. Dev. Mean St. Dev. Mean 
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1 NameAndPropertyAlignment 0.1014 0.9374 0.0922 0.9560 

2 StrucSubsDistAlignment 0.2505 0.7505 0.2379 0.7752 

3 ClassStructAlignment 0.2505 0.7505 0.0404 0.9791 

5 SMOANameAlignment 0.0582 0.9649 0.1633 0.9510 

6 SubsDistNameAlignment 0.1618 0.9041 0.1040 0.9431 

7 EditDistNameAlignment  0.0123 0.9909 0.0150 0.9914 

1 

Avg.  0.1391 0.8830 0.1088 0.9326 

1 NameAndPropertyAlignment 0.0909 0.9674 0.1483 0.9323 

2 StrucSubsDistAlignment 0.1509 0.9059 0.2188 0.8295 

3 ClassStructAlignment 0.1545 0.9440 0.1237 0.9356 

5 SMOANameAlignment 0.1556 0.9431 0.1233 0.9376 

6 SubsDistNameAlignment 0.1541 0.9372 0.2299 0.8664 

7 EditDistNameAlignment 0.0179 0.9913 0.0173 0.9898 

2 

Avg.  0.1207 0.9481 0.1435 0.9152 

The key findings from the baseline system, SOCOM++ trial one and SOCOM++ 

trial two are presented in table 5-8.  

Table  5-8. Key Findings of Baseline, SOCOM++ Trial One and Two 

Evaluations  Baseline 
SOCOM++ 

Trial 1 (default 
configuration) 

SOCOM++ 
Trial 2  

Precision 0.3793 0. 4155 0.4437 

Recall 0.5640 0.6488 0.6616 

F-Measure 0.3782 0.4654 0.4674 

Confidence Level Mean 0.8830 0.9646 0.9326 

Exp.1 

Confidence Level St.Dev. 0.1391 0.0613 0.1088 

Precision 0.6918 0.7394 0.7569 

Recall 0.6057 0.6261 0.6521 

F-Measure 0.6347 0.6684 0.6886 

Confidence Level Mean 0.9481 0.9571 0.9152 

Exp.2 

Confidence Level St.Dev. 0.1207 0.1065 0.1435 

Compared to trial one, improvement in trial two is not always evident (e.g. lower 

confidence level mean and higher standard deviation were found in experiment two 

using the trial two configuration). As the difference between trial one and two is the 

lack of synonyms, one might intuitively assume that matching quality from trial two 

should be worse than those found of trial one. However, the opposite is shown (e.g. 

increased precision, recall and f-measure in experiment two; and improvements on all 

aspects in experiment one). Though the candidate AOLT pool has been reduced in trial 

two (compared to trial one), the selected AOLT results are therefore more likely to be 

the exact labels used by the target ontology (see table 5-6). Consequently, a greater 

number of matches can be generated with confidence, which leads to increased 

precision, recall and f-measure. Since this is the case, one could then assume that 

matches generated without analysing the embedded semantics (i.e. comparisons 

between semantic surroundings) would lead to poor matching outcome. Whether this 

assumption is true or not is investigated in the next trial. 



 

 145 

5.4.2.3. Trial Three - adjust Embedded Semantics 

Trial three investigates how the CLOM outcome is affected when the semantic 

surroundings (i.e. embedded semantics) are not taken into account during the AOLT 

selection process. Section 5.4.2.3.1 discusses the configuration details of trial three, 

followed by the findings in section 5.4.2.3.2. 

5.4.2.3.1. Trial Setup 

An assumption which can be derived from the findings in trial two is: matches 

generated without analysing the embedded semantics (i.e. semantic surroundings) may 

be of poor quality, since quality was not poorly affected even when there was a lack of 

candidate AOLT results to select from so long the semantic surroundings were included. 

The validity of this assumption is examined in trial three. As discussed previously in 

section 5.3, the embedded semantics of the source ontology is modelled by the entry 

element with key attribute sourceSurrounding, and the embedded semantics of the 

target ontology is modelled by the entry element with key attribute 

targetSurrounding in the system properties. Both elements can be configured to 

either true or false. In trial three, the semantic surroundings are disabled when both 

elements are set to the value false97. This configuration effectively disregards the 

semantic surroundings of both source and target ontology during the AOLT process.  

Trial three is similar to trial one in that there are six types of candidate AOLT 

results available to the AOLT selection process. However, different from trial one, the 

configuration of trial three does not allow translation collisions to be resolved by 

comparisons made to semantic surroundings of ontological resources (since semantic 

surroundings are not accounted in the trial three configuration). In trial three, when a 

collision is detected between two entities E1 and E2, their candidate types are checked 

first as summarised in table 5-9. The entity with a lower type keeps the collided term as 

its AOLT result, and the other entity must seek an alternative translation. This is 

already demonstrated previously in trial one (see table 5-3, scenario i to x). When entity 

E1 and E2 are both of an equal candidate type, different from trial one however, the 

latter entity (one that is being considered by the AOLT selection process) will by 

default search for an alternative - without comparing to the source label’s semantic 

                                                 
97 Note that the execution constraint, i.e. <entry key=“default”/> must be set to false, in order for 
the system to account settings of other properties (shown in figure 5-2).   
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surrounding (as shown in table 5-9, scenario xi). Alternative translations are achieved 

either by searching for a candidate AOLT with a higher type other than the current one 

(that is causing collision) or by attaching an integer (that is free of collision) to the 

collided term in the absence of any alternatives.  

Table  5-9. Collision Resolution in Trial Three 

Candidate AOLT Collision  
Scenario E1 E2 

Solution 

i type = 1 type = 2, 3, 4, 5 or 6 

ii type = 2 type = 3, 4, 5 or 6 

iii type = 3 type = 4, 5 or 6 

iv type = 4 type = 5 or 6 

v type = 5 type = 6 

E1 keeps the collided AOLT; E2 
seeks alternative AOLT with lowest 
possible type other than the current 
type.  

vi type = 2, 3, 4, 5 or 6 type = 1 

vii type = 3, 4, 5 or 6 type = 2 

viii type = 4, 5 or 6 type = 3 

ix type = 5 or 6 type = 4 

x type = 6 type = 5 

E2 keeps the collided AOLT; E1 
seeks alternative AOLT with the 
lowest possible type other than the 
current type. 

xi E1 type = E2 type 

The existing entity that is already 
stored in the AOLT selection keeps 
the collided AOLT; the other entity 
seeks an alternative. 

This trial configuration of SOCOM++ discussed in this section is applied to the 

two CLOM experiments outlined in section 5.4.1, findings are discussed next. 

5.4.2.3.2. Findings and Analysis  

The precision, recall and f-measure found in trial three for the two experiments are 

presented in figure 5-14. Findings from experiment one are shown in the left column 

and findings from experiment two are shown in the right column.  
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Legend: 1 NameAndPropertyAlignment 5 SMOANameAlignment 
2 StrucSubsDistAlignment 6 SubsDistNameAlignment 
3 ClassStructAlignment 7 EditDistNameAlignment 
4 NameEqAlignment 8 StringDistAlignment 

Figure  5-14. Precision, Recall, F-Measure in Trial Three 

In experiment one, improvements in precision can only be seen in three matching 

algorithms: the NameEqAlignment algorithm, the EditDistNameAlignment algorithm 

and the StringDistAlignment algorithm. The number of correct matches generated by 

the majority of algorithms (i.e. the NameAndPropertyAlignment algorithm, the Struc-

SubsDistAlignment algorithm, the ClassStructAlignment algorithm, the SMOAName-

Alignment algorithm and the SubsDistNameAlignment algorithm) has not been 

improved when using the SOCOM++ trial three configuration. On average, a precision 

of 0.3769 was found in MP2-T3, which is a 0.63% decline in the number of correct 

matches compared to MB (at 0.3793). This deterioration is even more evident in recall, 

where no improvement is shown in any matching algorithm using the SOCOM++ trial 

three configuration. At an average recall of 0.4848, this is a fall by 14.04% in MP2-T3 

compared to MB (at 0.5640). Consequently, the f-measure generated in MP2-T3 is poorer 

in this trial than in MB. On average, an f-measure of 0.3457 was found in MP2-T3, which 

is an 8.59% of decrease compared to MB (at 0.3782). The p-value from paired t-test on 

the f-measure scores is 0.05, which rejects the null hypothesis and suggests that there is 

a difference between the baseline and the SOCOM++ trial three configuration. 

In experiment two, with the exception of the NameEqAlignment algorithm, the 

EditDistNameAlignment algorithm and the StringDistAlignment algorithm, all other 

algorithms generated higher precision in MP2-T3' than in MB'. An average precision of 

0.7105 was found in SOCOM++ in this trial, which is a 2.70% improvement from the 

baseline system (at 0.6918). MP2-T3' generated equal (in the case of the NameEq-

Alignment algorithm and the EditDistNameAlignment algorithm) or higher (in the case 

of the NameAndPropertyAlignment algorithm, the StrucSubsDistAlignment algorithm, 

the ClassStructAlignment algorithm, the SMOANameAlignment algorithm and the 

SubsDistNameAlignment algorithm) recall scores when using SOCOM++ with the 
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exception of the StringDistAlignment algorithm. An average recall of 0.6224 was found 

in MP2-T3', which is a 2.76% improvement compared to MB' (at 0.6057). Most 

algorithms generated higher f-measure scores in MP2-T3' in this trial except the NameEq-

Alignment algorithm, the EditDistNameAlignment algorithm and the StringDist-

Alignment algorithm. On average, an f-measure of 0.6529 was found in MP2-T3', which 

is an improvement of 2.87% compared to MB' (at 0.6347). The average precision, recall 

and f-measure scores in MP2-T3' are higher than those found in MB' in this trial, which 

may suggest improved quality in MP2-T3'. However, this is not supported by the paired t-

test carried out on the f-measure collected in MP2-T3' and MB'. At a p-value of 0.148, the 

null hypothesis cannot be rejected. This finding suggests that although an improvement 

was noted in f-measure, the difference between them is not statistically significant. It is 

therefore difficult to argue that there has been an improvement on the matching quality 

when the SOCOM++ configuration was used in this trial.  

The results from evaluating the confidence levels can be seen in table 5-10. 

Scatter plots generated using this data is shown in appendix E, section E.3, figure E-3. 

In experiment one, the average confidence mean is 0.8735 in MP2-T3, which is a 1.08% 

decrease compared to MB (at 0.8830).  The average standard deviation in MP2-T3 is 

0.1540, which is a 10.71% increase compared to MB (at 0.1391). This finding suggests 

that there has not been an improvement in the matches’ confidence levels in SOCOM++ 

in this trial. A similar result is found in experiment two. The average confidence mean 

is decreased by 1.70% in MP2-T3' to 0.9320 compared to MB' (at 0.9481). The standard 

deviation is increased by 8.04% to 0.1304 in MP2-T3' compared to MB' (at 0.1207). 

Table  5-10. Confidence Data from Trial Three 

Baseline 
SOCOM++ Trial 3 - 

Adjust Embedded Semantics Exp. Matching Technique 

St.Dev. Mean St.Dev. Mean 

1 NameAndPropertyAlignment 0.1014 0.9374 0.1471 0.8897 

2 StrucSubsDistAlignment 0.2505 0.7505 0.2125 0.6771 

3 ClassStructAlignment 0.2505 0.7505 0.1841 0.9207 

5 SMOANameAlignment 0.0582 0.9649 0.1886 0.9138 

6 SubsDistNameAlignment 0.1618 0.9041 0.1758 0.8536 

7 EditDistNameAlignment  0.0123 0.9909 0.0158 0.9859 

i 

Avg.  0.1391 0.8830 0.1540 0.8735 

1 NameAndPropertyAlignment 0.0909 0.9674 0.1358 0.9377 

2 StrucSubsDistAlignment 0.1509 0.9059 0.1861 0.8726 

3 ClassStructAlignment 0.1545 0.9440 0.1163 0.9499 

5 SMOANameAlignment 0.1556 0.9431 0.1170 0.9476 

6 SubsDistNameAlignment 0.1541 0.9372 0.2143 0.8900 

7 EditDistNameAlignment 0.0179 0.9913 0.0131 0.9939 

ii 

Avg.  0.1207 0.9481 0.1304 0.9320 

In summary, this trial shows a much less superior performance of SOCOM++, as 

predicated in the assumption previously. Particularly when dealing with ontologies 
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containing natural language pairs from different language families (i.e. experiment one), 

the trial three configuration of SOCOM++ proves to be far from desired. Not only are 

the precision, recall and f-measure not been improved, but the matches are less 

confident also with more dispersed confidence levels. Table 5-11 presents the key 

findings from baseline, and SOCOM++ trial one, two and three. Trial three achieved 

the worst matching quality (lower values in precision, recall, f-measure and mean 

confidence level, and higher values in confidence level standard deviations) in both 

experiments compared to the previous two trials (where both trial configurations 

accounted semantic surroundings during the AOLT selection). This finding shows that 

semantic surrounding is an essential input for the AOLT process, even when a small 

AOLT candidate pool is available. This validates the assumption at the start of this trial. 

Table  5-11. Key Findings of Baseline, SOCOM++ Trial One, Two and Three 

Evaluations  Baseline 
SOCOM++ 

Trial 1 (default 
configuration) 

SOCOM++ 
Trial 2  

SOCOM++ 
Trial 3  

Precision 0.3793 0. 4155 0.4437 0.3769 

Recall 0.5640 0.6488 0.6616 0.4848 

F-Measure 0.3782 0.4654 0.4674 0.3457 

Confidence Level Mean 0.8830 0.9646 0.9326 0.8735 
Exp.1 

Confidence Level 
St.Dev. 

0.1391 0.0613 0.1088 0.1540 

Precision 0.6918 0.7394 0.7569 0.7105 

Recall 0.6057 0.6261 0.6521 0.6224 

F-Measure 0.6347 0.6684 0.6886 0.6529 

Confidence Level Mean 0.9481 0.9571 0.9152 0.9320 
Exp.2 

Confidence Level 
St.Dev. 

0.1207 0.1065 0.1435 0.1304 

5.4.3. Three Trials to execute a Second Iteration of the AOLT Process 

This section presents another three trials of SOCOM++ that focus on carrying out a 

second iteration of the AOLT process (in contrast to the previous three trials discussed 

in section 5.4.2). Trial four (discussed in section 5.4.3.1), five (discussed in section 

5.4.3.2) and six (discussed in section 5.4.3.3) each presents and investigates a different 

selection rationale for the AOLT process during its second iteration. 

5.4.3.1. Trial Four - adjust Task Intent: Optimising Correctness  

Trial four investigates how the optimising correctness task intent may impact on the 

matching quality generated using SOCOM++. Section 5.4.3.1.1 discusses the 

configuration details, and section 5.4.3.1.2 presents the findings and analysis.  
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5.4.3.1.1. Trial Setup 

Optimising correctness aims to generate as many precise matches as possible in the 

second iteration of SOCOM++, by applying a strict cut-off point to the matches 

generated from the first iteration. As discussed in section 5.3, task intent is modelled by 

the entry element with the key attribute correctnessOptimise and the entry element 

with the key attribute completenessOptimise. Both can be configured to true (i.e. 

enabled) or false (i.e. disabled), but only one can be enabled at a time. In trial four, 

optimising correctness is enabled, and two iterations of SOCOM++ are executed. In the 

first iteration, the default AOLT selection (i.e. trial one - discussed in section 5.4.2.1, 

also see the example shown in figure 5-9) is executed to generate an initial set of 

matches using a specific MOM algorithm. The system then assumes that the matches 

with 1.0 confidence levels are most likely to be correct and computes the selection 

rationale (i.e. how the AOLT results are derived) behind them. An example of the 

analysis generated through this process in the XML format is presented in figure 5-15. 

The DTD for this output can be found in appendix D, section D.3, figure D-8. 

<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE TaskIntent SYSTEM "TaskIntent.dtd"> 
<TaskIntent algorithm="SMOANameAlignment" intent="correctnessOptimise" matches="119.0" 
estimate="32.0"> 

<Entry count="16.0" media="both" type="1" usage="0.5"/> 
<Entry count="8.0" media="google" type="1" usage="0.25"/>         
<Entry count="3.0" media="bing" type="1" usage="0.09375"/> 
<Entry count="2.0" media="BHT" type="4" usage="0.0625"/> 
<Entry count="1.0" media="BHT" type="2" usage="0.03125"/> 
<Entry count="1.0" media="google" type="6" usage="0.03125"/> 
<Entry count="1.0" media="bing" type="6" usage="0.03125"/> 

</TaskIntent> 

Figure  5-15. An Example Output from Task Intent Analysis - Optimising Correctness 

In the example shown in figure 5-15, the analysis is computed for the 

SMOANameAlignment algorithm (stored in the attribute algorithm of the root element 

TaskIntent) with the intent of optimising correctness (stored in the attribute method of 

the root element) in the matches generated. After the first interaction of the system (i.e. 

applying the default configuration when selecting AOLT results), a total of 119 matches 

(stored in the attribute matches of the root element) were generated by the SMOA-

NameAlignment algorithm. Among which, 32 of them (stored in the attribute estimate 

of the root element) had confidence levels of 1.0. The rationale behind these 32 

“correct” matches is stored as attribute values in the child element: Entry.  In the 

example, 16 (stored in the attribute count of the first Entry element) of those “correct” 

matches were generated using AOLT results that were of type 1 (stored in the attribute 

type of the Entry element) and had been agreed by both MT tools (stored in the 

attribute media of the Entry element), which yields a usage of 50% (stored in the 
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attribute usage of the Entry element, calculated as count/estimate). Similarly, usages 

are calculated for all combinations (i.e. combination of type and media) that appeared 

in the “correct” matches for each matching algorithm as shown in this example.  

In the second iteration, the rationales generated from the first iteration are treated 

as a ranked list of AOLT selection strategies. Note that the order of the AOLT selection 

strategies will differ depending on the matching algorithm applied, because the ranked 

lists are generated on a per-MOM-algorithm basis. In the example shown in figure 5-15, 

when using the SMOANameAlignment algorithm in the second iteration, the candidate 

AOLT results (which are stored in the AOLT record, see section 5.3, figure 5-8 for an 

example) with type="1" and media="both" are most preferred translations for the 

source labels. If such candidates are unavailable, in second place, the AOLT results 

with type="1" and media="google" will be selected. In the absence of the above, in 

third place, the AOLT results with type="1" and media="bing" will be selected and so 

on. When several AOLT selection strategies acquire equal usages, for example in figure 

5-15, the last three Entry elements all obtained the same usage of 0.03125, in such 

situation, any one of these selection techniques is considered suitable, as long as no 

collision is caused. This is discussed next.  

The AOLT selection process discussed thus far is repeated for each MOM 

matching algorithm, and the selection strategies are applied accordingly in the second 

iteration (as mentioned earlier, the type and media combination as well as the order of 

them vary depending on the MOM algorithm). When collisions are detected, the system 

checks the origins of the collided term and prioritises the resource with higher ranked 

selection strategy (i.e. one that scored a higher usage in the task intent analysis) where 

possible. A summary of the resolutions is presented in table 5-12. Given a pair of 

entities E1 and E2, the entity with the AOLT result that derived from a higher selection 

strategy will keep the collided term, and the other entity must seek an alternative AOLT 

with a lower selection strategy from the AOLT record, as demonstrated by scenario i 

and ii in table 5-12. When both entities choose the same AOLT result with equal rank, 

the system checks whether alternative AOLT results exist for each of them. If 

alternative AOLT results are only available for one entity, then this entity must seek an 

alternative whereas the other entity keeps the collided term, as shown in scenario iii. If 

alternative AOLT results exist for both entities, then the second entity (i.e. one that 

came after the collided term has already been stored as an AOLT for an earlier entity) 

will seek alternative while the first entity keeps the collided term, as shown in scenario 
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iv. When collisions cannot be solved using solutions presented in table 5-12 (e.g. 

alternative AOLT results simply do not exist in the desired type and media 

combination), the system retreats to the default resolution technique used in trial one 

(discussed previously in section 5.4.2.1.1). This SOCOM++ trial configuration is 

evaluated next using experiments outlined in section 5.4.1.  

Table  5-12. Collisions Resolution in Trial Four 

Candidate AOLT Collision 
Scenario E1 E2 

Solution 

i 
Higher rank in 
TaskIntent.xml 

Lower rank in 
TaskIntent.xml 

E1 keeps the collided AOLT; E2 seeks 
alternative AOLT with lower ranked 
selection strategy.  

ii 
Lower rank in 
TaskIntent.xml 

Higher rank in 
TaskIntent.xml 

E2 keeps the collided AOLT; E1 seeks 
alternative AOLT with lower ranked 
selection strategy. 

iii 
Equal rank in TaskIntent.xml, one entity has 
alternative candidate AOLT results, the other 
entity has no alternative candidate AOLT.  

The entity with no alternative AOLT 
keeps the collided AOLT; the other entity 
seeks alternative AOLT with lower ranked 
selection strategy. 

iv 
Equal rank in TaskIntent.xml, both entities have 
alternative candidate AOLT results. 

The first entity keeps the collided AOLT; 
the second entity seeks alternative AOLT 
with lower ranked selection strategy.  

5.4.3.1.2. Findings and Analysis 

The precision, recall and f-measure generated in trial four are shown in figure 5-16. The 

results from experiment one are presented in the left column. The results from 

experiment two are presented in the right column. 
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Matching Algorithms: 1 NameAndPropertyAlignment 5 SMOANameAlignment 
2 StrucSubsDistAlignment 6 SubsDistNameAlignment 
3 ClassStructAlignment 7 EditDistNameAlignment 
4 NameEqAlignment 8 StringDistAlignment 

Figure  5-16. Precision, Recall, F-Measure in Trial Four 

In experiment one, with the exception of the SMOANameAlignment algorithm and 

the SubsDistNameAlignment algorithm, all other algorithms achieved higher precision 

in MP2-T4. The improvement is particularly evident in the case of the NameEq-

Alignment algorithm and the StringDistAlignment algorithm, where a precision score of 

1.0 had been achieved. This is the highest precision any algorithm was able to obtain in 

the trials so far. On average, a precision of 0.4497 was generated in MP2-T4, which is an 

18.56% improvement compared to MB (at 0.3793). This average precision is the highest 

score in all trials carried out so far. As more correct matches are generated, the recall 

scores are thus increased at the same time98. Similar results can be seen in the recall 

scores generated. On average, a recall of 0.6677 was found in MP2-T4, which is an 

18.39% improvement of the MB (at 0.5640).  Overall, an average f-measure of 0.4800 

was found in MP2-T4, which is an improvement by 26.92% compared to MB (at 0.3782). 

However, the p-value generated from paired t-test yields 0.06, which suggests that there 

is not enough evidence to conclude a difference between the two systems in this trial, 

though the average f-measure may suggest otherwise. Nevertheless, the goal of this trial 

- optimising the correctness of matches generated in the second iteration - has been 

achieved as shown through the highest precision score achieved by SOCOM++ to date.  

In experiment two, optimising correctness is less evident in comparison to 

experiment one. Particularly in the case of the NameEqAlignment algorithm and the 

StringDistAlignment algorithm, decreases of precision scores have been found. On 

average, a precision of 0.7449 was found in MP2-T4', which is an improvement of 7.68% 

compared to MB' (at 0.6918). This is not the highest precision that has been achieved in 

this experiment (see section 5.4.2.2.2 trial two). Except the NameAndProperty-

                                                 
98 Precision = N/X; Recall = N/R where X is the total number of matches found, N is the correct matches 
among X, and R is the gold standard. While N increases and R remains static, Recall is thus increased as 
a result.  
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Alignment algorithm, recall is improved for all other algorithms in MP2-T4'. At an 

average of 0.6572, this is an 8.50% improvement of MB' (at 0.6057). Overall, an 

average f-measure of 0.6892 was found in MP2-T4', which is an improvement by 8.59% 

on MB' (at0.6347). The p-value generated from paired t-test carried on the f-measure 

scores is 0.01, suggesting the statistical significance of the findings in this experiment.  

Table 5-13 presents the evaluation results of the confidence levels from the two 

experiments. Scatter plots generated using this data shown can be found in appendix E, 

section E.4, figure E-4. In experiment one, matches in MP2-T4 are more confident with 

less dispersed confidence levels. An average confidence mean of 0.9472 was found in 

MP2-T4, which is an improvement by 7.27% compared to MB (at 0.8830). An average 

standard deviation of 0.0832 was found in MP2-T4, which is a 40.19% improvement 

from MB (at 0.1391). In contrast, the evaluation results found from experiment two are 

less positive. The matches in MP2-T4' are less confident (i.e. lower mean confidence 

level), however their confidence levels are less dispersed (i.e. lower standard deviation) 

compared to MB'. An average mean of 0.9436 was found in MP2-T4', which is a decrease 

by 0.47% compared to MB' (at 0.9481). An average standard deviation of 0.1182 was 

found in MP2-T4', which is an improvement by 2.07% compared to MB' (at 0.1207). 

Table  5-13. Confidence Data from Trial Four 

Baseline 
SOCOM++ Trial 4 – 

Adjust Task Intent (Optimising 
Correctness) 

Exp. Matching Technique 

St.Dev. Mean St.Dev. Mean 

1 NameAndPropertyAlignment 0.1014 0.9374 0.0615 0.9830 

2 StrucSubsDistAlignment 0.2505 0.7505 0.2472 0.7479 

3 ClassStructAlignment 0.2505 0.7505 0.0390 0.9900 

5 SMOANameAlignment 0.0582 0.9649 0.0390 0.9900 

6 SubsDistNameAlignment 0.1618 0.9041 0.1083 0.9730 

7 EditDistNameAlignment  0.0123 0.9909 0.0040 0.9992 

i 

Avg.  0.1391 0.8830 0.0832 0.9472 

1 NameAndPropertyAlignment 0.0909 0.9674 0.1166 0.9598 

2 StrucSubsDistAlignment 0.1509 0.9059 0.1816 0.8904 

3 ClassStructAlignment 0.1545 0.9440 0.1050 0.9532 

5 SMOANameAlignment 0.1556 0.9431 0.1048 0.9548 

6 SubsDistNameAlignment 0.1541 0.9372 0.1835 0.9132 

7 EditDistNameAlignment 0.0179 0.9913 0.0178 0.9903 

ii 

Avg.  0.1207 0.9481 0.1182 0.9436 

Table 5-14 presents the key findings from the baseline system, SOCOM++ trial 

one (default configuration) and SOCOM++ trial four. As trial four is essentially the 

default configuration added with a second iteration (that is enabled by the optimising 

correctness task intent), it is thus of interest to compare trial four to trial one (as 

opposed to trial two or three). In summary, correct matches generated in the second 

iteration are shown to be greater than those generated in the first iteration of the system 

(see higher precision, recall and f-measure values from both experiments in trial four 
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compared to trial one). Although there is a trade-off on matches’ confidence levels - in 

both experiments, lower confidence level means and higher standard deviations were 

found. Nevertheless, the trial four configuration did improve the matching quality in 

terms of precision, recall and f-measure, which was the goal of this trial setup. 

Motivated by this result, the possibility of optimising completeness in task intent is 

investigated and discussed next. 

Table  5-14. Key Findings of Baseline, SOCOM++ Trial One and Four 

Evaluations  Baseline 
SOCOM++ 

Trial 1 (default configuration) 
SOCOM++ 

Trial 4  

Precision 0.3793 0. 4155 0.4497 

Recall 0.5640 0.6488 0.6677 

F-Measure 0.3782 0.4654 0.4800 

Confidence Level Mean 0.8830 0.9646 0.9472 

Exp.1 

Confidence Level St.Dev. 0.1391 0.0613 0.0832 

Precision 0.6918 0.7394 0.7449 

Recall 0.6057 0.6261 0.6572 

F-Measure 0.6347 0.6684 0.6892 

Confidence Level Mean 0.9481 0.9571 0.9436 

Exp.2 

Confidence Level St.Dev. 0.1207 0.1065 0.1182 

5.4.3.2. Trial Five - Optimising Completeness 

Trial five investigates how the configuration with the task intent of optimising 

completeness affects the mapping outcome. Section 5.4.3.2.1 presents the configuration 

details of this trial. Section 5.4.3.2.2 presents the findings and analysis.  

5.4.3.2.1. Trial Setup 

When optimising completeness is enabled in task intent (by setting the entry element 

with attribute completenessOptimise to true), similarly to optimising correctness, 

two iterations of the AOLT process are executed. However, different from optimising 

correctness, the system assumes that all matches (with any confidence levels) are 

correct for a specific MOM algorithm applied. Through this assumption, the system 

does not discard any match generated from the first iteration pre-maturely (i.e. a match 

may still be correct even though it has lower than 1.0 confidence level), and ensures as 

many matches as possible are analysed in an effort to optimise the completeness of 

correct matches generated in the second iteration. An example output is shown in figure 

5-17. Its DTD can be found in appendix D, section D.3, figure D-8.  

<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE TaskIntent SYSTEM "TaskIntent.dtd"> 
<TaskIntent algorithm="SMOANameAlignment" intent="completenessOptimise" matches="119.0" 
estimate="119.0">     

<Entry count="24.0" media="google" type="6" usage="0.20168067226890757"/> 
<Entry count="20.0" media="both" type="5" usage="0.16806722689075632"/> 
<Entry count="17.0" media="BHT" type="4" usage="0.14285714285714285"/> 
<Entry count="16.0" media="both" type="1" usage="0.13445378151260504"/> 
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<Entry count="13.0" media="bing" type="6" usage="0.1092436974789916"/> 
<Entry count="9.0" media="google" type="1" usage="0.07563025210084033"/> 

    <Entry count="6.0" media="both" type="3" usage="0.05042016806722689"/> 
<Entry count="6.0" media="google" type="3" usage="0.05042016806722689"/> 
<Entry count="3.0" media="bing" type="1" usage="0.025210084033613446"/> 
<Entry count="3.0" media="external" type="external" usage="0.025210084033613446"/> 
<Entry count="2.0" media="BHT" type="2" usage="0.01680672268907563"/>     

</TaskIntent> 

Figure  5-17. An Example Output from Task Intent Analysis - Optimising Completeness 

In the example shown in figure 5-17, the analysis is computed for the SMOA-

NameAlignment algorithm (stored as attribute value: algorithm in the root element 

TaskIntent) with the intent of optimising completeness (stored as attribute value: 

intent in the root element). In the first iteration, 119 matches (stored as attribute value: 

matches in the root element) were generated, and all 119 of them (stored as attribute 

value: estimate in the root element) are estimated to be correct in the analysis. A list 

of rationales (stored as attribute values in the Entry elements) used to select the AOLT 

results for these “correct” matches are then calculated grouped by type and media. 

Ranked in first place with the highest usage, 24 matches used AOLT results of 

type="6" and media="google" in the first iteration. In second place, 20 matches used 

AOLT results of type="5" and media="both", and so on. In the second iteration of 

SOCOM++, AOLT results are selected based on this ranking.  

Similarly to trial four (discussed in section 5.4.3.1.1, see table 5-12), translation 

collisions are solved in the same way in trial five. Note that in the example shown in 

figure 5-17, 3 matches were of type="external" and media="external". These are 

matches made between externally defined resources, e.g. rdf:resource="http://www. 

w3.org/1999/02/22-rdf-syntax-ns#List" is an RDF vocabulary that is defined by 

the World Wide Web Consortium (W3C). Although categorised, such rationale cannot 

influence the selection of AOLT results during the second iteration of SOCOM++, 

because syntax specifications are not changed during the ontology rendition process in 

the first iteration (discussed in chapter 1, section 1.7). SOCOM++ trial five 

configuration is evaluated in the experiments outlined in section 5.4.1 next. 

5.4.3.2.2. Findings and Analysis 

The precision, recall and f-measure scores generated in trial five are presented in figure 

5-18. The results from experiment one are presented in the left column. The results 

from experiment two are presented in the right column. 

Exp. 1 – Map CSWRC to ISWC Exp. 2 – Map 101 to 206 
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Matching Algorithms: 1 NameAndPropertyAlignment 5 SMOANameAlignment 
2 StrucSubsDistAlignment 6 SubsDistNameAlignment 
3 ClassStructAlignment 7 EditDistNameAlignment 
4 NameEqAlignment 8 StringDistAlignment 

Figure  5-18. Precision, Recall, F-Measure in Trial Five 

In experiment one, with the exception of the NameAndPropertyAlignment 

algorithm, precision scores of all other algorithms were improved in MP2-T5. An average 

of 0.4696 was found in MP2-T5, which is a 23.81% improvement compared to MB (with 

at 0.3793). Significant improvement in the recall scores can be seen in all matching 

algorithms, particularly in the case of the NameEqAlignment algorithm and the 

StringDistAlignment algorithm. An average recall of 0.7165 was found in MP2-T5, which 

is an improvement by 27.04% compared to MB (at 0.5640). This is the highest average 

recall score that has been achieved in this experiment by any trial so far. This finding 

shows that the optimising completeness configuration in trial four has been successful 

in this experiment. With improved precision and recall, the f-measure scores are 

consequently increased. An average of 0.5098 was found in MP2-T5, which is an 

improvement by 34.80% compared to MB (at 0.3782). The p-value generated from 

paired t-test carried out on the f-measure scores from the two systems yields 0.016, 



 

 158 

which supports the statistical significance of the findings so far. This further validates 

the improved matching quality in MP2-T5.  

In experiment two, with the exception of the NameEqAlignment algorithm and the 

StringDistAlignment algorithm, all other algorithms generated higher precision in MP2-

T5'. An average precision of 0.7288 was found in MP2-T5', which is an improvement by 

5.35% compared to MB' (at 0.6918). The recall for most matching algorithms (with the 

exception of the NameAndPropertyAlignment algorithm) has also been improved in 

MP2-T5'. An average recall of 0.6379 was found in MP2-T5', which is a 5.32% 

improvement from MB' (at 0.6057). This is not the highest recall mean that was ever 

achieved in this experiment, as the average recall achieved in trial two and trial four are 

both higher. This finding suggests that the trial five configuration is not as suitable in 

experiment two as it is in experiment one. Overall, improvement in f-measure can be 

seen in all matching algorithms. An average f-measure of 0.6715 was found in MP2-T5', 

which is an improvement by 5.80% compared to MB' (at 0.6347). The p-value further 

supports the improvement in matching quality in MP2-T5': at 0.004, it validates the 

statistical significance of the results above.  

Table 5-15 presents the results from evaluating the confidence levels of the 

matches generated in both experiments. Scatter plots generated using this data can be 

found in appendix E, section E.5, figure E-5. In experiment one, an average confidence 

mean of 0.9252 and an average standard deviation of 0.0973 was found in MP2-T5. This 

is an average increase by 4.78% on the confidence mean and a decrease by 30.05% on 

the standard deviation compared to MB. This finding suggests that the matches 

generated using SOCOM++ were more confident with less dispersed confidence levels 

in this experiment. In experiment two, an average confidence mean of 0.9441 and an 

average standard deviation of 0.1205 was found in MP2-T5'. This is an average 0.17% 

improvement on standard deviation, but a 0.42% decrease on confidence mean. This 

finding suggests that the matches generate by SOCOM++ may have less dispersed 

confidence levels, but their confidence means are not quite as high in this experiment.  

In summary, this trial run has successfully demonstrated the optimising 

completeness feature when working with ontologies containing natural language pairs 

from different language families. However, this configuration was not as successful 

when dealing with ontologies containing natural language pairs from the same language 

family. Table 5-16 presents the key findings from the baseline system, SOCOM++ trial 
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one (default configuration) and SOCOM++ trial five. The effectiveness of the trial five 

configuration is evident through the increased recall values generated in both 

experiments compared to the default configuration (i.e. trial one). However, there is a 

trade-off regarding the confidence levels: as shown in table 5-16, decreased confidence 

level means and increased standard deviations were found in both experiments.  

Table  5-15. Confidence Data from Trial Five 

Baseline 
SOCOM++ Trial 5 - 

Adjust Task Intent (Optimising 
Completeness) 

Exp. Matching Technique 

St.Dev. Mean St.Dev. Mean 

1 NameAndPropertyAlignment 0.1014 0.9374 0.0943 0.9597 

2 StrucSubsDistAlignment 0.2505 0.7505 0.2336 0.7355 

3 ClassStructAlignment 0.2505 0.7505 0.0507 0.9734 

5 SMOANameAlignment 0.0582 0.9649 0.0507 0.9734 

6 SubsDistNameAlignment 0.1618 0.9041 0.1405 0.9189 

7 EditDistNameAlignment  0.0123 0.9909 0.0141 0.9904 

i 

Avg.  0.1391 0.8830 0.0973 0.9252 

1 NameAndPropertyAlignment 0.0909 0.9674 0.1079 0.9619 

2 StrucSubsDistAlignment 0.1509 0.9059 0.1600 0.9022 

3 ClassStructAlignment 0.1545 0.9440 0.1061 0.9525 

5 SMOANameAlignment 0.1556 0.9431 0.1498 0.9422 

6 SubsDistNameAlignment 0.1541 0.9372 0.1815 0.9151 

7 EditDistNameAlignment 0.0179 0.9913 0.0177 0.9905 

ii 

Avg.  0.1207 0.9481 0.1205 0.9441 

Table  5-16. Key Findings of Baseline, SOCOM++ Trial One and Five 

Evaluations  Baseline 
SOCOM++ 

Trial 1 (default configuration) 
SOCOM++ 

Trial 5  

Precision 0.3793 0. 4155 0.4696 

Recall 0.5640 0.6488 0.7165 

F-Measure 0.3782 0.4654 0.5098 

Confidence Level Mean 0.8830 0.9646 0.9252 

Exp.1 

Confidence Level St.Dev. 0.1391 0.0613 0.0973 

Precision 0.6918 0.7394 0.7288 

Recall 0.6057 0.6261 0.6379 

F-Measure 0.6347 0.6684 0.6715 

Confidence Level Mean 0.9481 0.9571 0.9441 

Exp.2 

Confidence Level St.Dev. 0.1207 0.1065 0.1205 

Optimising correctness (trial four) and optimising completeness (trial five) can be 

thought of as two extremes when assessing matches generated in the first iteration of 

SOCOM++, where the former applies a highest possible cut-off point (i.e. only matches 

with 1.0 confidence levels are assumed to be correct) and the latter applies a lowest 

possible cut-off point (i.e. assume all matches generated in the first iteration are correct). 

Clearly, there can be many other cut-off points between these two extremes. For 

example, 0.5 is a natural cut-off point between the value 0.0 and 1.0, whereby equal or 

greater than 0.5 indicates an incline towards confident, and less than 0.5 indicates an 

incline towards not confident. Although any value between 0.0 and 1.0 is acceptable, 

0.5 is most interesting as it is a natural division point between the two extremes. This is 

implemented in trial six, discussed next. 
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5.4.3.3. Trial Six - adjust Pseudo Feedback 

Trial six focuses on the configuration of the pseudo feedback property, which offers the 

user with flexible cut-off points (any value between 0.0 and 1.0) when assessing 

matches for further iterations of SOCOM++. In particular, a cut-off point of 0.5 is 

investigated in this trial. Section 5.4.3.3.1 presents the configuration details, followed 

by experimental findings and analysis in section 5.4.3.3.2.  

5.4.3.3.1. Trial Setup 

As discussed in section 5.3, the pseudo feedback property is modelled by setting a cut-

off point for the assessment of matches generated in the first iteration of SOCOM++. 

This is achieved by setting the entry element with the key attribute threshold to any 

value that is between 0.0 and 1.0 (see figure 5-2). This value is then treated as the cut-

off point for confidence levels. 

In this trial, the pseudo feedback property is configured as <entry key= 

"threshold">0.5</entry>. Instead of assuming all matches are correct (as shown in 

trial five), or only matches with 1.0 confidence levels are correct (as shown in trial four), 

this configuration assumes any match with confidence level that is equal to or above 0.5 

is correct for a specific MOM algorithm. As confidence levels range between 0.0 and 

1.0, 0.5 is a natural division point where matches would either incline towards being 

either confident (i.e. equal or above 0.5) or not confident (i.e. below 0.5). Based on this 

assumption, a set of AOLT selection rationale is computed. Note that trial six does not 

attempt to present an exhaustive list of all possible cut-off points (since it can be 

anything between the value of 0.0 and 1.0), or aim to establish the best possible cut-off 

point for the two experiments (as that will require extensive tests on various cut-off 

points which will lead to an exhaustive list). It is simply an example of configurable 

cut-off points that is offered by the pseudo feedback feature. Similar to what was 

discussed in trial four and five, selection rationales are generated on a per-matching-

algorithm basis. An example output from the pseudo feedback analysis is shown in 

figure 5-19. Its DTD can be found in appendix D, section D.3, figure D-9. 

<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE PseudoFeedback SYSTEM "PseudoFeedback.dtd"> 
<PseudoFeedback algorithm="SMOANameAlignment" threshold="0.5" matches="119.0" 
estimate="60.0">     

<Entry count="16.0" media="both" type="1" usage="0.266666667"/> 
<Entry count="10.0" media="google" type="6" usage="0.166666667"/> 
<Entry count="9.0" media="google" type="1" usage="0.15"/> 
<Entry count="8.0" media="bing" type="6" usage="0.133333333"/> 
<Entry count="6.0" media="both" type="5" usage="0.1"/>     

    <Entry count="4.0" media="BHT" type="4" usage="0.0666666667"/> 
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    <Entry count="3.0" media="bing" type="1" usage="0.05"/>     
    <Entry count="2.0" media="BHT" type="2" usage="0.0333333333"/> 
    <Entry count="1.0" media="google" type="3" usage="0.0166666667"/> 
    <Entry count="1.0" media="both" type="3" usage="0.0166666667"/> 
</PseudoFeedback> 

Figure  5-19. An Example Ouput from Pseudo Feedback Analysis 

The example shown in figure 5-19 is generated for the SMOANameAlignment 

algorithm (stored as attribute value: algorithm in the root element PseudoFeedback) 

when the threshold is 0.5 (stored as attribute value: threshold of the root element). A 

total of 119 matches (stored as attribute value: matches in the root element) were 

generated in the first iteration, 60 of which are estimated to be correct (stored as 

attribute value: estimate in the root element) using the threshold. Ranked in first place, 

the most often used AOLT results are of type="1" and media="both" (see the first 

child element) among the “correct” matches, followed by several other selection 

strategies. Note how the combinations and the rankings of them differ from figure 5-15 

and figure 5-17 for the same matching algorithm. In the second iteration of the system, 

the AOLT results are selected with preferences to the ranked list shown in figure 5-19 

for the SMOANameAlignment algorithm. Translation collisions are solved in the same 

fashion as in trial four and five (discussed in section 5.4.3.1.1 and section 5.4.3.2.1 

respectively). The evaluation of this SOCOM++ trial configuration is discussed next 

using the experiments outlined in section 5.4.1. 

5.4.3.3.2. Findings and Analysis  

The precision, recall and f-measure scores generated in trial five are presented in figure 

5-20. The results from experiment are shown in the left column, and the results from 

experiment two are shown in the right column.  

In experiment one, with the exception of the NameAndPropertyAlignment 

algorithm, all others generated higher precision in MP2-T6. An average precision of 

0.4462 was found in MP2-T6, which is an improvement by 17.64% compared to MB (at 

0.3793). Improvement in recall can be seen in all matching algorithm in this trial, an 

average of 0.7501 was found in MP2-T6 which is a 33.00% increase compared to MB (at 

0.5640). A similar finding is shown in the f-measure scores, whereby increased f-

measure was found in MP2-T6 by all matching algorithms. An average f-measure of 

0.5062 was found MP2-T6 which is an increase by 33.84% compared to MB (at 0.3782). 

This improvement of the overall quality is further supported by the paired t-test carried 
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out on the f-measure scores. With a p-value of 0.011, the t-test validates the statistical 

significance of the findings.  

In experiment two, improvements of precision can be seen in all matching 

algorithms. An average precision of 0.7650 was found in MP2-T6' which is a 10.58% 

increase compared to MB' (at 0.6918). Increase recall can be seen with most matching 

algorithms with the exception of the NameAndPropertyAlignment algorithm. An 

average of 0.6675 was found in MP2-T6' which is a 10.20% increase compared to MB' (at 

0.6057). Overall, increased f-measure is seen in all matching algorithms, where an 

average f-measure of 0.7037 was found in MP2-T6' which is a 10.87% improvement 

compared to MB' (at 0.6347). This improvement is supported by the paired t-test, with a 

p-value of 0.001, the null hypothesis is rejected. 

Exp. 1 – Map CSWRC to ISWC Exp. 2 – Map 101 to 206 
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Legend: 1 NameAndPropertyAlignment 5 SMOANameAlignment 
2 StrucSubsDistAlignment 6 SubsDistNameAlignment 
3 ClassStructAlignment 7 EditDistNameAlignment 
4 NameEqAlignment 8 StringDistAlignment 

Figure  5-20. Precision, Recall, F-Measure in Trial Six 
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The evaluation of the matches’ confidence levels are presented in table 5-17. 

Scatter plots generated using this data can be found in appendix E, section E.6, figure 

E-6. In experiment one, more confident and less dispersed matches were found in MP2-

T6 compared to MB. An increased average confidence mean by 32.42% (at 0.9310) and a 

decreased average standard deviation by 5.44% (at 0.0940) were found in MP2-T6 

compared to MB. In experiment two, the matches in MP2-T6' contained less dispersed 

confidence levels, however, are less confident on average compared to MB'. An 

decrease average confidence mean by 0.12% (at 0.9470) as well as a decreased average 

standard deviation by 6.96% (at 0.1123) were found in MP2-T6' compared to MB'.  

Table  5-17. Confidence Data from Trial Six 

Baseline 
SOCOM++ Trial 6 – 

Adjust Pseudo Feedback Exp. Matching Technique 
St.Dev. Mean St.Dev. Mean 

1 NameAndPropertyAlignment 0.1014 0.9374 0.0943 0.9597 

2 StrucSubsDistAlignment 0.2505 0.7505 0.2381 0.7438 

3 ClassStructAlignment 0.2505 0.7505 0.0442 0.9785 

5 SMOANameAlignment 0.0582 0.9649 0.0442 0.9785 

6 SubsDistNameAlignment 0.1618 0.9041 0.1369 0.9272 

7 EditDistNameAlignment  0.0123 0.9909 0.0061 0.9984 

i 

Avg.  0.1391 0.8830 0.0940 0.9310 

1 NameAndPropertyAlignment 0.0909 0.9674 0.1067 0.9628 

2 StrucSubsDistAlignment 0.1509 0.9059 0.1663 0.8998 

3 ClassStructAlignment 0.1545 0.9440 0.1099 0.9495 

5 SMOANameAlignment 0.1556 0.9431 0.1038 0.9557 

6 SubsDistNameAlignment 0.1541 0.9372 0.1700 0.9227 

7 EditDistNameAlignment 0.0179 0.9913 0.0170 0.9913 

ii 

Avg.  0.1207 0.9481 0.1123 0.9470 

Table  5-18. Key Findings of Baseline, SOCOM++ Trial One and Six 

Evaluations  Baseline 
SOCOM++ 

Trial 1 (default configuration) 
SOCOM++ 

Trial 6  

Precision 0.3793 0. 4155 0.4462 

Recall 0.5640 0.6488 0.7501 

F-Measure 0.3782 0.4654 0.5062 

Confidence Level Mean 0.8830 0.9646 0.9310 

Exp.1 

Confidence Level St.Dev. 0.1391 0.0613 0.0940 

Precision 0.6918 0.7394 0.7650 

Recall 0.6057 0.6261 0.6675 

F-Measure 0.6347 0.6684 0.7037 

Confidence Level Mean 0.9481 0.9571 0.9470 

Exp.2 

Confidence Level St.Dev. 0.1207 0.1065 0.1123 

Table 5-18 presents the key findings of the baseline system, SOCOM++ trial one 

and trial six. In summary, trial six has improved the precision, recall and f-measure in 

both experiments compared to the SOCOM++ default configuration (i.e. trial one). 

However, the trade-offs on confidence levels are evident (i.e. increased standard 

deviation and decreased confidence level mean in trial six compared to trial one). This 

trade-off on confidence levels was shown previously in both trial four (optimising 

correctness) and trial five (optimising completeness). This consistent finding regarding 

the trade-off suggests that the feedback feature is able to improve the precision, recall 
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and f-measure, however it may not be able to improve the confidence levels of the 

matches generated in the second iteration of SOCOM++. 

5.4.4. Conclusions arising out of the Six Trials 

This section presents a summary of the findings from the six trials carried out in the 

evaluation of SOCOM++. An overview of the findings in each trial from experiment 

one is presented in table 5-19. An overview of the findings in each trial from 

experiment two is presented in table 5-20.  

In experiment one, trial three (where the AOLT selection process does not 

consider the semantic surroundings) was least successful at improving matching quality. 

The biggest improvement on precision (by 23.81% compared to the baseline system) 

was seen in trial five (optimising completeness). The highest recall (at 0.7501) was 

achieved in trial six (pseudo feedback with 0.5 cut-off point). Overall, the highest f-

measure score (at 0.5098) was seen in trial five. The highest average confidence mean 

(at 0.9310) was achieved in trial six, and the lowest standard deviation (at 0.0613) was 

achieved in trial one (default SOCOM++ configuration). Increased f-measure can be 

seen in trial four (optimising correctness), however, the paired t-test on f-measure 

generated in MB and MP2-T4 fits the null hypothesis, and the p-value suggests that there 

is not enough evidence to conclude a difference between the baseline system and 

SOCOM++ trial four. 
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Table  5-19. An Overview of the SOCOM++ Trials in Experiment One 
 

 Best Results Achieved   Poorer Results in MP2-T1/2/3/4/5/6 when compared to MB  T-Test Result Fits Null Hypothesis  
 

MB (Avg. ) MP2-T1/2/3/4/5/6 (Avg.) % Change (+/-) 
Exp. i 

Precision Recall F-Measure Mean St.Dev. Precision Recall F-Measure Mean St.Dev. Precision Recall F-Measure Mean St.Dev. 
P-Value 

Trial 1 .4155 .6488 .4654 .9646 .0613 +9.54 +15.04 +23.06 +9.24 -55.93 .044 

Trial 2 .4437 .6616 .4674 .9326 .1088 +16.98 +17.30 +23.59 +5.62 -21.78 .019 

Trial 3 .3769 .4848 .3457 .8735 .1540 -0.63 -14.04 -8.59 -1.08 +10.71 .050 

Trial 4  .4497 .6677 .4800 .9472 .0832 +18.56 +18.39 +26.92 +7.27 -40.19 .060 

Trial 5 .4696 .7165 .5098 .9252 .0973 +23.81 +27.04 +34.80 +4.78 -30.05 .016 

Trial 6 

.3793 .5640 .3782 .8830 .1391 

.4462 .7501 .5062 .9310 .0940 +17.64 +33.00 +33.84 +32.42 -5.44 .011 

 
 
 

Table  5-20. An Overview of the SOCOM++ Trials in Experiment Two 

 Best Results Achieved   Poorer Results in MP2-T1/2/3/4/5/6' when compared to MB'  T-Test Result Fits Null Hypothesis  
 

MB' (Avg. ) MP2-T1/2/3/4/5/6' (Avg.) % Change (+/-) 
Exp. ii 

Precision Recall F-Measure Mean St.Dev. Precision Recall F-Measure Mean St.Dev. Precision Recall F-Measure Mean St.Dev. 
P-Value 

Trial 1 .7394 .6261 .6684 .9571 .1065 +6.88 +3.37 +5.31 +0.95 -11.76 .023 

Trial 2 .7569 .6521 .6886 .9152 .1435 +9.41 +7.66 +8.49 -3.47 +18.89 .006 

Trial 3 .7105 .6224 .6529 .9320 .1304 +2.70 +2.76 +2.87 -1.70 +8.04 .148 

Trial 4  .7449 .6572 .6892 .9436 .1182 +7.68 +8.50 +8.59 -0.47 -2.07 .010 

Trial 5 .7288 .6379 .6715 .9441 .1205 +5.35 +5.32 +5.80 -0.42 -0.17 .004 

Trial 6 

.6918 .6057 .6347 .9481 .1207 

.7650 .6675 .7037 .9470 .1123 +10.58 +10.20 +10.87 -0.12 -6.96 .001 
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Table 5-21 shows a ranked list of all the CLOM systems in experiment one 

(including the baseline system, prototype one: SOCOM, and all six trial configurations 

of SOCOM++) with regards to all evaluation aspects (including precision, recall, f-

measure, confidence level mean and standard deviation) during the mapping of the 

CSWRC ontology to the ISWC ontology. Depending on the ranking criteria, the 

systems are ranked in different orders as shown in table 5-21. Although SOCOM++ 

configuration one and configuration five are both ranked first twice (configuration one 

is ranked first due to its highest confidence level mean and lowest standard deviation; 

configuration five is ranked first by precision as well as by f-measure), it is difficult to 

declare a system as a clear winner since configuration one is only ranked sixth by 

precision, fifth by recall and f-measure, whereas configuration five is ranked fifth by 

confidence level mean and fourth by standard deviation. However, conclusions that can 

be drawn from the rankings include:  

(1) the trials that had a second iteration of the AOLT process (i.e. SOCOM++ trial 

four, five and six discussed in section 5.4.3) generated higher precision, recall 

and f-measure compared to those that did not (i.e. the baseline system, SOCOM, 

SOCOM++ trial one, two and three discussed in section 5.4.2).  

(2) when SOCOM++ trial three did not take account of the embedded semantics (i.e. 

semantic surroundings) during the AOLT selection process, it generated the 

worst results (ranked last in every evaluation aspect) in the CLOM experiments. 

This finding provides evidence that translations of ontology labels should not 

take place in isolation of the ontologies involved in a CLOM scenario.  

(3) With the exception of trial three, all other configurations of SOCOM++ 

generated better results (across all evaluation criteria) than the baseline system. 

This finding further validates the effectiveness of the AOLT process, which is 

the core of this thesis.  
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Table  5-21. Rankings of CLOM Systems in Experiment One 

Ranking Criteria 
Rank 

Precision Recall F-Measure Confidence Level Mean Confidence Level St.Dev. 
1 SOCOM++ Trial 5 = 0.4696 SOCOM++ Trial 6 = 0.7501 SOCOM++ Trial 5 = 0.5098 SOCOM++ Trial 1 = 0.9646 SOCOM++ Trial 1 = 0.0613 
2 SOCOM++ Trial 4 = 0.4497 SOCOM++ Trial 5 = 0.7165 SOCOM++ Trial 6 = 0.5062 SOCOM++ Trial 4 = 0.9472 SOCOM++ Trial 4 = 0.0832 
3 SOCOM++ Trial 6 = 0.4462 SOCOM++ Trial 4 = 0.6677 SOCOM++ Trial 4 = 0.4800 SOCOM++ Trial 2 = 0.9326 SOCOM++ Trial 6 = 0.0940 
4 SOCOM++ Trial 2 = 0.4437 SOCOM++ Trial 2 = 0.6616 SOCOM++ Trial 2 = 0.4674 SOCOM++ Trial 6 = 0.9310 SOCOM++ Trial 5 = 0.0973 
5 SOCOM = 0.4367 SOCOM++ Trial 1 = 0.6488 SOCOM++ Trial 1 = 0.4654 SOCOM++ Trial 5 = 0.9252 SOCOM++ Trial 2 = 0.1088 
6 SOCOM++ Trial 1 = 0.4155 SOCOM = 0.5854 SOCOM = 0.4146 SOCOM = 0.8962 SOCOM = 0.1239 
7 Baseline = 0.3793 Baseline = 0.5640 Baseline = 0.3782 Baseline = 0.8830 Baseline = 0.1391 
8 SOCOM++ Trial 3 = 0.3769 SOCOM++ Trial 3 = 0.4848 SOCOM++ Trial 3 = 0.3457 SOCOM++ Trial 3 = 0.8735 SOCOM++ Trial 3 = 0.1540 

 

Table  5-22. Rankings of CLOM Systems in Experiment Two 

Ranking Criteria 
Rank 

Precision Recall F-Measure Confidence Level Mean Confidence Level St.Dev. 
1 SOCOM++ Trial 6 = 0.7650 SOCOM++ Trial 6 = 0.6675 SOCOM++ Trial 6 = 0.7037 SOCOM = 0.9640 SOCOM++ Trial 1 = 0.1065 
2 SOCOM++ Trial 2 = 0.7569 SOCOM++ Trial 4 = 0.6572 SOCOM++ Trial 4 = 0.6892 SOCOM++ Trial 1 = 0.9571 SOCOM = 0.1110 
3 SOCOM++ Trial 4 = 0.7449 SOCOM++ Trial 2 = 0.6521 SOCOM++ Trial 2 = 0.6886 Baseline = 0.9481 SOCOM++ Trial 6 = 0.1123 
4 SOCOM++ Trial 1 = 0.7394 SOCOM++ Trial 5 = 0.6379 SOCOM++ Trial 5 = 0.6715 SOCOM++ Trial 6 = 0.9470 SOCOM++ Trial 4 = 0.1182 
5 SOCOM++ Trial 5 = 0.7288 SOCOM = 0.6353 SOCOM++ Trial 1 = 0.6684 SOCOM++ Trial 5 = 0.9441 SOCOM++ Trial 5 = 0.1205 
6 SOCOM++ Trial 3 = 0.7105 SOCOM++ Trial 1 = 0.6261 SOCOM = 0.6621 SOCOM++ Trial 4 = 0.9436 Baseline = 0.1207 
7 SOCOM = 0.7084 SOCOM++ Trial 3 = 0.6224 SOCOM++ Trial 3 = 0.6529 SOCOM++ Trial 3 = 0.9320 SOCOM++ Trial 3 = 0.1304 
8 Baseline = 0.6918 Baseline = 0.6057 Baseline = 0.6347 SOCOM++ Trial 2 = 0.9152 SOCOM++ Trial 2 = 0.1435 
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In experiment two, all six configurations of SOCOM++ generated higher 

precision, recall and f-measure compared to the baseline system, although improvement 

on confidence levels (i.e. increased confidence level mean, decreased standard 

deviation) is not always evident. Table 5-22 presents the ranked list of all CLOM 

systems when mapping the 101 ontology to the 206 ontology. In terms of precision, 

recall and f-measure, it is clear that trial six generated the best results (ranked first) 

whereas the baseline system generated the worst results (ranked last). In terms of 

confidence level mean and standard deviation, it is however difficult to identify a clear 

winner. Nevertheless, the results from this experiment clearly demonstrate that CLOM 

systems that incorporate the AOLT process (i.e. SOCOM, and six configurations of 

SOCOM++) generated matches with higher precision, recall and f-measure than the 

baseline system. This finding further supports the AOLT concept proposed in this thesis.   

The experiments shown in the six SOCOM++ trials are somewhat limited in their 

domains and natural language pairs covered. However, as examples of CLOM scenarios 

that involve ontologies with distinct and similar characteristics, the findings from these 

experiments are nonetheless useful to gain an insight into the AOLT process. Table 5-

23 shows the ranks achieved by all CLOM systems in both experiments, which 

summarises the ranks presented in table 5-21 and table 5-22. For example, SOCOM++ 

trial one configuration achieved rank one 3 times; rank two 1 time; rank four 1 time, 

rank five 3 times and rank six 2 times. Assuming precision, recall, f-measure, 

confidence level mean and standard deviation are as important as one another, the 

average rank that is achieved by each CLOM system can be calculated: for SOCOM++ 

trial one, its average rank is (1×3 + 2×1 + 4×1 + 5×3 + 6×2)/(3 + 1 + 1 + 3 

+ 2) = 3.6. In table 5-23, the highest average rank is achieved by the SOCOM++ trial 

six configuration (with an average rank of 2.3), and the lowest average rank is achieved 

by the SOCOM++ trial three configuration (with an average rank of 7.4). In order of 

best to worst average rank achieved, the CLOM systems can be ordered as SOCOM++ 

trial six in first place, followed by the SOCOM++ trial four in second place, then the 

SOCOM++ trial five, the SOCOM++ trial one, the SOCOM++ trial two, the SOCOM 

system, the baseline system, and the SOCOM++ trial three in last place. Note though 

SOCOM++ trial one and five both achieved an average rank of 3.6, the trial five 

configuration is considered better as it contains a better rank record (i.e. it has a better 

record with ranks in fifth place or higher) compared to trial one (i.e. with a poorer 

record with ranks in sixth place twice). 
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Table  5-23. An Overview of Ranks achieved in Experiment One and Two 

 
System 

Rank 
1 2 3 4 5 6 7 8 Avg. Rank 

SOCOM++ Trial 1  ×3 ×1 - ×1 ×3 ×2 - - 3.6 

SOCOM++ Trial 2  - ×1 ×3 ×3 ×1 - - ×2 4.4 

SOCOM++ Trial 3  - - - - - ×1 ×4 ×5 7.4 

SOCOM++ Trial 4  - ×5 ×3 ×1 - ×1 - - 2.9 

SOCOM++ Trial 5  ×2 ×1 - ×3 ×4 - - - 3.6 

SOCOM++ Trial 6  ×4 ×1 ×3 ×2 - - - - 2.3 

SOCOM  ×1 ×1 - - ×2 ×5 ×1 - 5.0 

Baseline  - - ×1 - - ×1 ×5 ×3 6.8 

Three key conclusions can be drawn from the analysis on the rankings achieved. 

First of all, SOCOM++ trial six can be considered as the overall best configuration in 

the experiments conducted. Compared to the other two trials (SOCOM++ trial four and 

five) that also carried out a second iteration of the AOLT process, trial six is a better 

way to assess matches generated in the first iteration. While trial four applies a strict 

cut-off point (assuming matches with 1.0 confidence levels are correct) and trial five 

applies no cut-off point (assuming all matches are correct), trial six is relaxed yet 

effective by applying the 0.5 cut-off point (since 0.5 is a natural division point between 

0.0 and 1.0). This assumption is more useful to determine the AOLT results in the 

second iteration as it concentrates on the incline in the confidence levels (i.e. equal or 

greater than 0.5 shows an incline towards confident while less than 0.5 shows an incline 

towards not confident) rather than treating the confidence levels as precise assessments 

on the matches’ correctness (as seen with trial four and five).  

Secondly, the CLOM systems that carried out a second iteration of the AOLT 

process (i.e. SOCOM++ trial four, five and six) achieved better rankings than those that 

did not (SOCOM++ trial one, two, three, the SOCOM and the baseline system). This 

finding suggests that using a form of feedback for the AOLT process (whether by 

optimising correctness in trial four, or optimising completeness in trial five or applying 

pseudo feedback in trial six) can further improve the AOLT results even more which 

consequently leads to better mapping quality.  

Lastly, it is shown that SOCOM++ trial three achieved the worst rankings in the 

experiments. This finding is in fact further evidence to support the AOLT concept (i.e. 

translations should not take place in isolation of the mapping context), since trial three 

did not consider the mapping context (i.e. the semantic surroundings) during the AOLT 

process, even though the candidate translation pool was increased (i.e. synonyms were 

available for both candidate translations of the source labels and target labels), the 

translations were still poor which led to low mapping quality.     
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In conclusion, configurable inputs of the AOLT process have been successfully 

demonstrated in the six trials. It is shown through the evaluations that the AOLT 

process in SOCOM++ can be adjusted in order to alter its output which will lead to a 

variety of mapping outcomes. What is not yet known is how SOCOM++ might cope 

with increased workload such as larger ontologies. This is investigated next.   

5.4.5. Scalability Tests 

The trials shown thus far successfully demonstrate an improved prototype: SOCOM++ 

from the initial prototype: SOCOM, in terms of the mapping quality achieved (i.e. 

precision, recall, f-measure, confidence level mean and standard deviation) in the same 

CLOM experiments (i.e. mapping the CSWRC ontology in Chinese to the ISWC 

ontology in English, and mapping the 101 ontology in English to the 206 ontology in 

French). However, these experimental findings cannot identify major workloads that 

may be potentially improved for future prototypes of the proposed system. To address 

this shortcoming, scalability tests are carried out which aim to identify major workloads 

in SOCOM++ that can be improved to mitigate bottlenecks in future prototypes. In 

particular, this section investigates the execution time required by SOCOM++ when 

working with increased workload (i.e. larger ontologies, sophisticated configurations of 

the AOLT selection process). Section 5.4.5.1 discusses the experimental setup of the 

scalability tests. The findings are presented in section 5.4.5.2. 

5.4.5.1. Tests Setup 

The goal of the scalability tests is to investigate how examples of a simple (e.g. 

configuration used in SOCOM++ trial two) and a sophisticated (e.g. configuration used 

in SOCOM++ trial four) configuration of SOCOM++ will cope with smaller and larger 

ontologies in terms of execution time required. The ontologies used in the scalability 

tests are discussed next. 

The CSWRC ontology in Chinese (a total of 128 entities, see chapter 4, section 

4.5.1.1) and the ISWC ontology (a total of 118 entities, see chapter 3, section 3.4) in 

English of the research domain are used as an example of small ontologies in the 

scalability tests. To represent a larger ontology pair, an OWL ontology in English and 

an OWL ontology in Japanese of the automobile domain are taken from the OAEI 2008 
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multilingual directory data set 99 . The English ontology was constructed using the 

Google Directory100 , the Open Directory Project101  and the Yahoo Directory102 . It 

contains 867 classes, 4089 individuals and no properties. The Japanese ontology is 

constructed using the Lycos Japan103 and the Yahoo Japan Directory104. It contains 

1063 classes, 2727 individuals and no properties. For more information on how these 

ontologies are generated, see [Ichise et al., 2003] and [Ichise et al., 2004]. It can be 

argued that since these ontologies do not contain properties, they are rather 

classifications than ontologies as such. Nevertheless, this author views them as OWL 

vocabularies with less sophisticated/expressive restrictions. As the goal of the 

scalability tests is to investigate the execution time required by SOCOM++ when 

working with increased ontology sizes, these automobile ontologies are suitable for this 

purpose considering the larger set of classes and individuals (compared to the CSWRC 

and the ISWC ontology ) that will need to be processed by SOCOM++. Table 5-24 

gives an overview of the characteristics of the two pairs of ontologies in the scalability 

tests. In terms of total entity count, the automobile ontologies contain over 35 times 

more entities than the research ontologies. 

Table  5-24. Ontologies used in the Scalability Tests 

Ontology Size 
Test Ontology 

Natural 
Language Class 

Data Type 
Property 

Object 
Property 

Individual Total 

O1 Chinese 54 30 44 0 128 
i 

O2 English 33 17 18 50 118 

O1 Japanese 1063 0 0 2727 3790 
ii 

O2 English 867 0 0 4089 4956 

To match the ontologies above, SOCOM++ is executed using two different 

configurations (see section 5.4.1 table 5-2): the settings used in trial two (a single 

iteration of the system where synonyms are not considered during the AOLT selection 

process) and the settings used in trial five (two iterations of the system where the 

feedback feature does not enforce any cut-off point, in addition, the AOLT process will 

considered all available inputs). In trial two, the AOLT selection process only needs to 

process a minimum set of candidate AOLT results (see section 5.4.2.2). In trial five, the 

AOLT selection process not only needs to process a maximum set of candidate AOLT 

results but also needs to carry out two iterations of the AOLT process (for which the 

second iteration considers all matches from the first iteration as correct, see section 
                                                 
99 http://oaei.ontologymatching.org/2008/mldirectory/ 
100 http://www.google.com/dirhp?hl=en 
101 http://www.dmoz.org/ 
102 http://dir.yahoo.com/ 
103 http://www.lycos.co.jp/ 
104 http://dir.yahoo.co.jp/ 



 

 172 

5.4.3.2. This is the most demanding type of iteration compared to trial four or six while 

only partial matches are considered correct). These trial configurations are selected in 

the scalability tests to represent a simpler configuration (trial two) and a more 

sophisticated configuration (trial five) of SOCOM++.  

In the scalability tests carried out, SOCOM++ ran on Windows Vista Business 

edition, service pack 2 that was installed on a Dell Latitude D830 notebook powered by 

Intel® Core™ 2 Duo CPU T7500 @ 2.20 GHz with 2.00 GB memory. The runtime 

environment was provided by the Eclipse105 Europa version 3.3.2 platform which ran 

on JRE6 (Java Runtime Environment 6) JVM (Java Virtual Machine). The time taken 

to complete each stage (i.e. the semantic analysis, the ontology rendition and the 

ontology mapping step discussed in section 5.3) in the CLOM process and the total 

execution time is recorded and considered as a measurement for efficiency for the two 

trial configurations. To measure the execution time, System.currentTimeMillis() is 

added in the program code at the start (the current time in milliseconds when the 

application is initiated) and the end (the current time in milliseconds when the 

application is terminated) of each stage of the CLOM process, whereby the difference 

between the end and the start is the time took (in milliseconds) to complete a stage. The 

execution time is finally converted in minutes (from milliseconds). 

5.4.5.2. Findings and Analysis 

This section presents the findings and conclusions drawn from the scalability tests. In a 

given mapping scenario, the two configurations (trial two and trial five) are compared 

to each other first. Then for the same trial configuration, comparisons are made between 

the different mapping scenarios.   

As shown in table 5-25, when mapping the Chinese CSWRC ontology to the 

English ISWC ontology (test i), it took the simpler configuration (i.e. trial two) 1.4899 

minutes to complete semantic analysis (which includes generating and storing candidate 

translations for the O1 labels, the semantic surroundings for all entities presented in 

both ontologies) and 4.8498 minutes to complete ontology rendition (which includes 

selecting and storing AOLT results for each O1 label, and rendering O1'). Depending on 

the MOM algorithm used, there is a slight variation in the ontology mapping step 

(which includes generating and storing matches between O1' and O2, and converting 
                                                 
105 http://www.eclipse.org/ 
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these matches to CLOM results between O1 and O2 based on the selected AOLT 

results). However, the distinctions among them are very little: for instance, the quickest 

time took to complete the ontology mapping stage was 0.0108 minutes (when applying 

the StringDistAlignment algorithm), and the slowest time took was 0.0496 minutes - 

this is only a difference by 2.3280 seconds (0.0388 minutes).  

Table  5-25. Scalability Tests’ Results 
 

Matching Algorithms: 1 NameAndPropertyAlignment 5 SMOANameAlignment 
2 StrucSubsDistAlignment 6 SubsDistNameAlignment 
3 ClassStructAlignment 7 EditDistNameAlignment 
4 NameEqAlignment 8 StringDistAlignment 

 

Test 

i. Map the CSWRC Ontology 
(Chinese)  

to the ISWC Ontology 
(English) 

ii. Map Automobile Ontologies  
(Japanese to English) 

SOCOM++ Configuration Trial 2 Trial 5 Trial 2 Trial 5 

Semantic 

Analysis 
1.4899 5.6881 230.8115 1258.7525 

1 5.7146 540.9799 

2 5.5919 540.7425 

3 5.6415 542.3158 

4 5.6442 541.8760 

5 5.5882 540.5479 

6 5.5796 541.5472 

7 5.7536 542.8751 

8 

4.8498 

5.6569 

210.2826 

541.8765 

Ontology 

Rendition 

Avg. n/a 5.6463 n/a 541.5951 

1 0.0496 0.0130 0.2636 0.2693 

2 0.0248 0.0122 0.2592 0.2397 

3 0.0120 0.0132 0.9129 1.2522 

4 0.0125 0.0113 0.2198 0.3940 

5 0.0148 0.0148 0.6554 0.9143 

6 0.0117 0.0123 0.3935 0.5653 

7 0.0130 0.0128 27.5276 6.0223 

8 0.0108 0.0114 0.5773 0.4255 

Ontology 

Mapping 

Avg. 0.0187 0.0126 3.8512 1.2603 

Execution 
Time 

(Mins) 

Total (Avg.) 6.3584 11.3470 444.9453 1801.6079 

 

The average total execution time is calculated as: total execution time (Avg.) = 

time took to complete semantic analysis + time took to complete ontology rendition + 

average time took to complete ontology mapping where a total average execution time 

of 6.3584 minutes was found for trial two in test scenario one. When applying the trial 

five configuration (synonyms are now generated for labels in both O1 and O2), 

increased execution times were found in the semantic analysis stage as thesauri are now 

included. As shown in table 5-25, it took over 5 minutes for trial five to complete 

semantic analysis. This is 3.8 times the execution time taken to complete semantic 

analysis in trial two. The ontology rendition stage also took longer to complete in trial 

five, as this configuration now requires more processing power when selecting from a 

much larger candidate AOLT pool. An average execution time of 5.6463 minutes was 

recorded for ontology rendition in trial five. Compared to trial two, this is an average 

increase by over 16%. An average time of 0.0126 minutes was achieved for ontology 
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mapping in trial five, which is almost the same (the difference is only 36 seconds) with 

trial two. This is not a surprising finding, as the ontology size remains unchanged in 

trial two and trial five. An average total processing time of 11.3470 minutes was found 

in trial five, which is an increase by over 78% compared to trial two. This increase is 

largely due to the need to generate synonyms for the labels extracted from both O1 and 

O2 (at the semantic analysis stage). In addition, having to select AOLT results from a 

much bigger candidate pool (at the ontology rendition stage) also contributed towards 

the increase of the execution time.   

When dealing with the much larger ontology pair (test ii) - mapping the Japanese 

automobile ontology to the English automobile ontology using the trial two 

configuration of SOCOM++, it took nearly four hours (at 230.8115 minutes) to 

complete the semantic analysis stage, a further three hours (at 540.9799 minutes) to 

complete the ontology rendition stage and about four minutes (at 3.8512 minutes on 

average) to complete the ontology mapping stage. Similar to the findings from test i, 

time took to generate the final mapping results vary depending on the MOM algorithm 

applied. However, the variations are small with the exception of the EditDistName-

Alignment algorithm. This algorithm calculates the edit distances between all resources 

by creating a matrix of distances first and then generates matches based on these 

distances. This requirement on pre-processing the distances between all pairs of 

resources in the given ontologies is more time consuming compared to other algorithms.  

In total, the trial two configuration took more than seven hours (at 444.9453 

minutes) to complete the CLOM process in test scenario two. When the trial five 

configuration was applied, increased processing time was found especially in the 

semantic analysis and the ontology rendition stage. Over twenty hours (at 1258.7525 

minutes) were required to complete the semantic analysis in trial five. This is over five 

times the time recorded for trial two. On average, approximately nine hours (at 

541.5951 minutes) were required to complete the ontology rendition stage (as the 

assessment is conducted on a per-matching algorithm basis, time took to generate O1' 

varies depending on the matching algorithm used). This is over double the time 

recorded in trial two. The ontology mapping stage remained relatively fast which took 

an average of just over one minute (at 1.2603 minute) to complete. In total, an average 

of 1801.6079 minutes (approximately thirty hours) were recorded in trial five, which is 

over four times of what was recorded in trial two.    
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When applying the trial two configuration, test two (larger ontologies) took 

almost ×70 the total time needed in test one (smaller ontologies). More specifically, the 

semantic analysis stage took almost ×155 the time; the ontology rendition stage took 

over ×43 the time; and the ontology mapping stage took over ×205 the time. It is clear 

that the increased total execution time is largely caused by the increased workload at all 

stages. This is further supported by the findings of trial five. When the trial five 

configuration was applied, test two took over × 158 the time required in test one. 

Specifically, the semantic analysis stage took over ×221 the time needed in test one; 

the ontology rendition stage took over × 95 the time required in test one; and the 

ontology mapping stage took about 100 times the time required in test one.  

In summary, increased processing times are shown when the system has to deal 

with large ontologies and especially when using sophisticated configurations of 

SOCOM++. To prevent out-of-memory error, heap memory size had to be increased in 

the second test for both simple (i.e. trial two) and sophisticated (i.e. trial five) 

configurations. The bottleneck of the system is at the semantic analysis and the 

ontology rendition step. The semantic analysis step needs to parse an entire ontology to 

extract entity labels in order to generate and store information such as candidate 

translations, synonyms and semantic surroundings; and the ontology rendition stage 

needs to process an increased candidate AOLT pool to overcome collisions and finally 

select the appropriate translations. The current implementation uses the Jena framework 

to parse ontologies, which showed significantly slower processing time when a reasoner 

is presented106. This may be improved with other parser tools (e.g. the alignment API 

integrates the OWL API107 in the process of generating MOM matches, which was 

shown to be reasonably fast in the scalability test), however, further tests are necessary. 

The results from the scalability tests suggest that the current implementation is not 

suitable for CLOM scenarios that need to be conducted in real time. However, the 

current integration would be suitable if the execution times are not a critical issue.  

Though it can be argued that other aspects such as the operating system, the 

hardware on which it is running can be changed to optimise the allocation of resources 

when running SOCOM++ besides tuning the application code and APIs, however, the 

scalability tests shown in this section are not an exhaustive list of performance tests, but 

                                                 
106 Further reading regarding slow processing time when a reasoner is presented in the Jena framework 
can be found at: http://tech.groups.yahoo.com/group/jena-dev/message/42621 
107 http://owlapi.sourceforge.net/ 
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rather examples of extreme AOLT configurations (i.e. one extreme being the simple 

configuration used in trial two and the other being the sophisticated configuration used 

in trial five) and how they cope with increased workload (i.e. from smaller ontologies 

such as the Chinese CSWRC and the English ISWC ontology, to the larger ontologies 

such as the automobile ontology in Japanese and English). The tests shown in this 

section are useful to identify major workloads and potential bottlenecks. 

5.5. Summary  

This chapter presents the design, implementation and evaluation of the second 

prototype: SOCOM++. SOCOM++ allows the user to adjust various inputs that are 

available to the AOLT process in an effort to influence the final CLOM outcome. 

SOCOM++ is demonstrated and evaluated in six trial configurations, where each trial 

focuses on one particular configurable feature. The first three trials concern the 

adjustment of ontology-related semantics, such as making use of all internal and 

background semantics (as demonstrated in trial one), generating AOLT results without 

any background semantics (i.e. synonyms, as demonstrated in trial two) and ignoring 

internal semantics (i.e. semantic surroundings, as demonstrated in trial three). The 

remaining three trials focus on executing two iterations of the AOLT process, whereby 

matches generated from the first iteration are assessed to assist with the selection of the 

AOLT results in the second iteration. Three approaches to achieve the assessment were 

demonstrated, including optimising correctness (as demonstrated in trial four), 

optimising completeness (as demonstrated in trial five) and pseudo feedback (as 

demonstrated in trial six). It is shown through these trials that various precision, recall 

and f-measure scores as well as confidence mean and standard deviation can be 

achieved with the same pair of ontologies in a CLOM setting through variations of the 

SOCOM++ configuration. This shows that depending on what is desired by the user, 

SOCOM++ can be configured accordingly to adapt to the particular CLOM scenario. 

To investigate the scalability of SOCOM++, two configurations of SOCOM++: trial 

two and five are used as examples of a lightweight and a heavyweight configuration in 

CLOM scenarios involving a smaller and a larger ontology pair. Execution times 

recorded in the scalability test highlight the major workloads in the system where 

potentially up to ×158 the execution time is required for a sophisticated configuration 

than a simpler configuration. This may be improved by integrating other APIs in future 

implementations given that the operating system and the hardware remain unchanged. 
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6 CONCLUSIONS  

6.1. Chapter Overview 

This chapter discusses how well the objectives that are set out for this research have 

been achieved in section 6.2. The main contributions of this thesis are summarised in 

section 6.3, followed by suggestions for future research in section 6.4. Finally, section 

6.5 concludes this thesis with some final remarks.  

6.2. Objectives  

To answer the research question identified in chapter 1 (section 1.3): this research 

investigates the extent to which machine translation and monolingual ontology 

matching techniques can be incorporated to support the generation of quality mapping 

results in the process of cross-lingual ontology mapping, this thesis has built upon the 

baseline approach to cross-lingual ontology mapping and proposed the AOLT concept 

to achieve ontology label translations specifically suited for the purpose of cross-lingual 

ontology mapping. Two AOLT-based, cross-lingual ontology mapping systems: 

SOCOM and SOCOM++ have been designed and developed in order to support the 

evaluation of the AOLT concept and the AOLT-based CLOM systems. It has been 

shown through the evaluation of SOCOM and SOCOM++ that the AOLT process is 

more effective (in terms of improved precision, recall, f-measure, confidence level 

mean and standard deviation) at improving cross-lingual ontology mapping quality than 

the baseline system. This thesis has also met the research objectives (discussed in 

chapter 1, section 1.4) set out for this research, as discussed next.   

Research objective (1): conduct reviews on the state of the art in CLOM, MT, 

MOM and current approaches to the evaluation of mapping results.  
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This objective is achieved through surveying current approaches used in CLOM. 

Five categories of techniques including manual CLOM, corpus-based CLOM, CLOM 

via linguistic enrichment, CLOM via indirect alignment and translation-based CLOM 

were identified through this survey. This categorisation of CLOM approaches is the 

first attempt at classifying various current approaches to CLOM, and contributes to the 

literature by providing a consolidated view on existing CLOM strategies. To the best of 

this author’s knowledge, the CLOM approaches included in the categorisation are a 

complete list of existing strategies to achieve cross-lingual ontology mapping at the 

time of this writing. Limitations of the approaches in each category are discussed (see 

chapter 2, section 2.4.1) and the translation-based approach to CLOM is established 

through the state of the art review as the most advanced technique to CLOM currently 

available. The translation-based approach applies translation techniques to turn a cross-

lingual mapping problem into a monolingual mapping problem first, which can then be 

solved using MOM tools. Background reviews on MT and MOM have thus been 

carried out and state of the art tools in MT (e.g. the GoogleTranslate API, Microsoft 

translator API) and MOM (e.g. the Alignment API) that are suitable to facilitate the 

CLOM process were identified (see chapter 2, section 2.5 and 2.6). Finally, a survey on 

state of the art evaluation approaches in ontology mapping was conducted (see chapter 

2, section 2.7). Through this review, precision, recall and f-measure were identified as 

the most practised metrics in mapping evaluation. In addition, paired t-test is identified 

as a suitable hypothesis testing technique when validating the difference between two 

systems. Furthermore, mean and standard deviation have been identified as appropriate 

tools to evaluate the confidence levels of the matches generated.     

Research objective (2): design and develop a process specifically suited for 

translations carried out for the purpose of CLOM and implement a set of tools to 

support this translation process in order to achieve CLOM results via MOM techniques. 

To achieve this second objective, it was important to first understand the 

limitations of the current translation-based approach to CLOM. Thus, a baseline system 

(i.e. a realisation of the translation-based approach to CLOM) was developed (see 

chapter 3, section 3.3) using the MT and MOM tools identified in the state of the art. 

Though the baseline implementation uses a limited number of MT and MOM 

techniques, however, is representative of translation-based approach to CLOM in the 

state of the art. This baseline CLOM system is sufficient for the purposes of this 

research, as it provides this thesis with a reference point for further development based 
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on the current state of the art in CLOM. The baseline system was evaluated in two 

experiments that focus on the ontology label translations. These experiments are not 

designed to be an exhaustive list of all possible natural languages in ontologies, 

however, they are sufficient for the purposes of this thesis as they offer this author with 

an opportunity to gain an more in-depth understanding of the translation-based CLOM 

approach. Findings from these experiments show that the requirement for translations in 

the context of CLOM differs from those that take place in the context of localisation. In 

CLOM, translation noise is introduced when an incorrect match is generated or a 

correct match is neglected. This noise consequently leads to poor matching quality.  

Motivated by addressing this shortcoming of the baseline system, the AOLT 

concept was proposed (discussed in chapter 4, section 4.2), which aims to select 

translations that are most likely to maximise the matching ability of the subsequent 

MOM step. To realise the proposed AOLT process, two prototypes of the Semantic-

Oriented Cross-lingual Ontology Mapping system: SOCOM (discussed in chapter 4) 

and SOCOM++ (discussed in chapter 5) were designed and developed to facilitate the 

selection of the AOLT results. The key to the AOLT process is that ontology label 

translations are not taken place in isolation of the ontologies involved in a CLOM 

scenario. The embedded semantics (e.g. labels used in the target ontology, semantic 

surrounding of the entities in both source and target ontology) of the ontologies as well 

as background semantics (e.g. synonyms of the labels in the target ontology, synonyms 

of candidate translations for the labels in the source ontology) are used in the selection 

process in order to achieve appropriate translations. This AOLT concept is a novel 

approach to ontology label translations conducted in the context of CLOM.  

To evaluate the AOLT process, an initial proof-of-concept CLOM system: 

SOCOM, that integrates a basic AOLT component was applied to two CLOM 

experiments. The basic AOLT process (in SOCOM) makes use of a minimum amount 

of semantics that are always available in a given CLOM scenario (i.e. the labels in the 

given ontologies and their semantic surroundings). The effectiveness of the basic 

AOLT process was shown through the evaluation of SOCOM, whereby improvement 

of the matching quality is seen with SOCOM compared to the baseline system.  

Motivated by this positive finding, an improved second prototype: SOCOM++ 

was developed to gain further improvement on the matching quality given the same 

ontology pair. The goal of the AOLT process (in SOCOM++) is to influence the 
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matching outcome by adjusting inputs to the AOLT process. The effectiveness of this 

more sophisticated AOLT process was evaluated through the CLOM results generated 

by SOCOM++. Six trials each with a different AOLT configuration were carried out. It 

was shown through these trials that the adjustment of the AOLT input is effective at 

altering CLOM outcomes. The scalability of the AOLT process (in terms of execution 

times) in SOCOM++ was also investigated (see chapter 5, section 5.4.5). It is shown 

that when workload doubles (e.g. increased ontology size and more complex 

configuration for the AOLT process), execution times of SOCOM++ also increases by 

at least double (depending on the specific AOLT configuration). As discussed in 

chapter 4 (section 4.2), there can be other ways to realise the AOLT concept such as 

expert-based or rule-based approaches. The AOLT process presented in SOCOM and 

SOCOM++ are not an exhaustive list of implementation options, but rather example 

realisations of the AOLT concept. In author’s opinion, these example implementations 

are sufficient for the purpose of demonstrating and evaluating the proposed AOLT 

concept in this thesis. In summary, the second research objective has been achieved 

through the development of the AOLT-based CLOM process and the SOCOM, 

SOCOM++ tools which implement that process. 

Research objective (3): evaluate the quality of the mappings generated using the 

set of tools in CLOM scenarios and demonstrate the use of the set of tools in a real-

world application.  

The evaluations carried out in this thesis use metrics (identified in chapter 2) that 

are currently being used in the state of the art in ontology mapping evaluation. In 

particular, precision, recall and f-measure which originated in the field of IR were 

applied. As the matches generated in this thesis are accompanied by confidence levels, 

they are also evaluated using mean and standard deviation. To evaluate SOCOM, two 

CLOM experiments were designed (see chapter 4, section 4.5). One experiment 

involves an ontology pair with natural languages from different language families, 

containing overlapping domains and different structures (i.e. the CSWRC ontology in 

Chinese and the ISWC ontology in English of the research domain). The other 

experiment involves another ontology pair with natural languages from the same 

language family, containing almost identical structures and domains (i.e. the OAEI 101 

ontology in English and the OAEI 206 ontology in French of the bibliography domain). 

The baseline system and SOCOM were applied to these experiments and their CLOM 

results were compared to gold standards using the aforementioned metrics.  
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To demonstrate the potential application of SOCOM, a case study was conducted 

which enabled cross-lingual document retrieval of the ARCHING [Steichen et al., 2011] 

system via CLOM results (see chapter 4, section 4.6). The ontologies in this case study 

were generated using real-world data from Symantec’s Norton 360 security product, 

one in English and the other in German with overlapping domains. CLIR is enabled by 

generating CLOM results between these ontologies. SOCOM’s applicability in the real 

world was shown through the feasibility of this case study.  

To evaluate SOCOM++, a total of six trials were carried out (see chapter 5, 

section 5.4). Each trial had a different configuration which focused on one particular 

AOLT input (see chapter 5, table 5-2), and was applied to the same two CLOM 

experiments (used in the evaluation of SOCOM). The evaluation results of these trials 

show an array of matching quality (e.g. even better than what was shown in SOCOM) 

that can be achieved depending on the adjustment of the AOLT process. To evaluate the 

scalability of this configurable AOLT process, two configurations of SOCOM++ (one 

with less sophisticated configuration, i.e. minimum AOLT input; and the other with 

more sophisticated configuration, i.e. maximum AOLT input and a second iteration) 

were applied to a smaller ontology pair with just over 200 entities, and a larger 

ontology pair with over 8000 entities collectively (discussed in chapter 5, section 5.4.5). 

It is shown through the scalability tests that the execution time of the system increases 

as the workload increases. The experiments used in the evaluation of SOCOM and 

SOCOM++ are not designed to be an exhaustive list of CLOM scenarios, but rather 

example settings designed to evaluate the effectiveness of the AOLT process. For the 

purposes of this thesis, these experiments are suitable in this research.  

Though the ontologies experimented with in this thesis are somewhat limited in 

terms of domain, size and expressiveness, they are however designed as examples in 

typical CLOM scenarios considering it would be rather difficult to experiment with an 

exhaustive list of ontologies in the given scope. In total, five natural languages 

including Chinese, English, French, German and Japanese have been experimented with 

in this thesis, which are believed to be a good representation of diverse natural 

languages. However, SOCOM, SOCOM++ and the underlying AOLT process are 

designed to work with any natural language pairs. The natural languages shown in this 

thesis are not an exhaustive list of all natural languages that can be involved in CLOM, 

but rather example scenarios. The findings from these evaluations nevertheless are 

motivating and support the proposed AOLT concept, which is the aim of this thesis. 
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6.3. Contributions  

The major contribution of this thesis is the proposed AOLT concept which has been 

successfully demonstrated and evaluated. It is a novel approach to ontology label 

translations that are carried out for the purpose of CLOM. This AOLT concept is shown 

to be more effective at facilitating MT and MOM techniques in CLOM systems (e.g. 

SOCOM and SOCOM++) compared to the baseline system (i.e. the current state of the 

art approach to CLOM) in sets of CLOM experiments. To this author’s best knowledge, 

the proposed AOLT concept is the first of its kind in the field of CLOM. As there has 

not been any study on the impact of translations on the process of cross-lingual 

ontology mapping, this thesis fills a current gap in the research literature.  

A minor contribution of this thesis is the AOLT process in SOCOM and 

SOCOM++. Though there are other ways to realise the AOLT concept in CLOM such 

as expert-based or rule-based approaches (discussed in chapter 4, section 4.2), the 

AOLT process (integrated in SOCOM and SOCOM++) is the first attempt at achieving 

appropriate translations in the context of CLOM. These example AOLT processes 

provide a reference point for future implementations to realise the AOLT concept in the 

context of CLOM. In addition, the evaluations of the AOLT process shown in this 

thesis consist of repeatable experiments and replicable results, which are essential for 

measuring the effectiveness of future research carried out in this domain.  

A total of five publications have derived from this research, including two full 

conference papers, one conference poster and two workshop papers, discussed next. 

With a lack of attention placed on CLOM, the pressing need to facilitate ontology 

mappings carried out in the multilingual environment is identified in the paper outlined 

below. In particular, the challenge concerning the translation of ontology labels in the 

context of CLOM is highlighted. This publication stresses the need to seek support for 

cross-lingual ontology mapping and introduces the SOCOM system.      

Fu B., Brennan R., O'Sullivan D., Multilingual Ontology Mapping: 

Challenges and a Proposed Framework. In Proceedings of the Symposium 

on Matching and Meaning - a symposium at the AISB 2009 Convention, 

SSAISB: The Society for the Study of Artificial Intelligence and the 

Simulation of Behaviour, ISBN 1902956842, pp. 32-35, Edinburgh, UK, 

April 2009 
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Following this initial proposal of the AOLT concept, to demonstrate why the 

AOLT concept will be useful in CLOM and to provide evidence of the shortcomings of 

the current translation-based approach to CLOM, the paper below documents the design 

of the baseline system, its implementation and evaluation (discussed in chapter 3). This 

publication details the design, implementation and the evaluation of the baseline system 

and focuses on the impact of ontology label translations on the mapping quality. This 

paper evidently shows why the current translation-based approach to CLOM needs to 

be improved. This publication has influenced the implementation of the API described 

in [Trojahn et al., 2010], which shows the impact of this research on the on-going 

research effort in the field of cross-lingual ontology mapping.  

Fu B., Brennan R., O'Sullivan D., Cross-lingual Ontology Mapping - An 

Investigation of the Impact of Machine Translation. In Proceedings of the 4th 

Annual Asian Semantic Web Conference (ASWC 2009), LNCS 5926, pp. 1-

15, Shanghai, China, December 2009 

Motivated by improving CLOM quality and realising the proposed AOLT concept, 

the paper below documents the design of SOCOM that integrates the basic AOLT 

process, its implementation and evaluation (discussed in chapter 4). The preliminary 

findings shown in this paper have successfully demonstrated the potential of the basic 

AOLT process at improving CLOM quality. In addition, this publication discusses how 

CLOM can be beneficial for systems and applications on the semantic web. More 

specifically, this paper proposes a novel approach to CLIR that is enabled through the 

use of CLOM results. The importance of tackling multilinguality on the semantic web 

is clearly recognised by the research community given the success of the first 

Multilingual Semantic Web workshop that was collocated at the World Wide Web 

conference in 2010. The paper below is closely connected with the theme of the 

workshop and contributes to the advancements in techniques aimed for the multilingual 

semantic web.     

Fu B., Brennan R., O'Sullivan D., Cross-Lingual Ontology Mapping and Its 

Use on the Multilingual Semantic Web. In Proceedings of the 1st Workshop 

on the Multilingual Semantic Web, collocated at the 19th International 

World Wide Web Conference (WWW 2010), CEUR Vol. 571, pp. 13-20, 

Raleigh, USA, April 2010 
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Centred on the specific strategy that can be used to evaluate the SOCOM system, 

the paper below introduces a set of two CLOM experiments (i.e. mapping the Chinese 

CSWRC ontology to the English ISWC ontology, and mapping the English OAEI 101 

ontology to the French OAEI 206 ontology, discussed in chapter 4, section 4.5). This 

publication focuses on the evaluation approach undertaken for SOCOM, and adds 

confidence to the follow-up experiments carried out in this thesis.  

Fu B., Brennan R., O'Sullivan D., Evaluation of a Semantic-Oriented 

Approach to Cross-Lingual Ontology Mapping. In Proceedings of the 

EKAW 2010 Poster and Demo Track (EKAW 2010 - Knowledge 

Engineering and Knowledge Management by the Masses), CEUR-WS 

Vol.674, Lisbon, Portugal, October 2010 

Built upon the success of SOCOM, an improved prototype SOCOM++ was 

designed and implemented that integrates a more sophisticated AOLT process 

(discussed in chapter 5). Among various adjustable inputs to the AOLT process, the 

following paper focuses on the specific pseudo feedback feature of the SOCOM++ 

system, and presents the evaluation of this feature using the OAEI dataset (i.e. mapping 

the English OAEI 101 ontology to the French OAEI 206 ontology). This publication 

successfully demonstrates how mapping quality can be improved even more (compared 

to the initial SOCOM system) given two iterations of the AOLT process.    

Fu B., Brennan R., O'Sullivan D., Using Pseudo Feedback to Improve 

Cross-Lingual Ontology Mapping. In Proceedings of the 8th Extended 

Semantic Web Conference (ESWC 2011), LNCS 6643, pp. 336-351, 

Heraklion, Greece, May 2011 

The adjustable nature of the SOCOM++ system - in other words, the inputs to the 

AOLT process can be configured to adjust the AOLT output which in turn alters the 

mapping outcome - that have been successfully demonstrated through the six trials 

discussed in chapter 5 (section 5.4) is documented in a journal paper submitted to the 

Journal of Web Semantics. This paper aims to contribute to the future development and 

advancement of CLOM systems by presenting the latest results derived from this 

research. Lastly, a notable contribution of the publications listed above is that the 

experiments and their results are repeatable and replicable, thus provides researchers 

conducting further research in this field with a clear reference point. 
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6.4. Future Work 

The research shown in this thesis is the first attempt that focuses on improving CLOM 

quality through the use of appropriate translations. Building upon the results shown in 

this thesis, this research has also opened up several research opportunities for future 

work, discussed next. 

Evaluation: firstly, though five natural languages (including Chinese, English, 

French, German and Japanese) have been experimented with in this thesis, this is 

however a small sample size. Additional evaluation experiments with more ontology 

pairs involving additional domains and natural languages will give further insight into 

the use of the AOLT process in CLOM. Secondly, more case studies should be 

developed and evaluated with task-oriented evaluation approaches such as Noy & 

Musen’s user-centric evaluation strategy, or Hollink et al.’s end-to-end evaluation 

strategy as discussed in chapter 2 (section 2.7).  

Implementation: firstly, the improvements are shown in a variety of matching 

techniques that are at the element-level as well as the structure-level. However, these 

matching techniques are from the same API. It is not yet known whether the same level 

of improvement (if there is an improvement) can be seen with other MT and MOM 

tools. Thus, further experiments are necessary. Secondly, the use of feedback in CLOM 

can be expanded to incorporate explicit and implicit feedback, whereby user knowledge 

(e.g. obtain the assessment of a match by explicitly asking the user) and user behaviours 

(e.g. obtain the assessment of a match by inferring from the user’s previous assessment) 

may be used to assist the generation of reliable mappings. Thirdly, the pseudo feedback 

can be further extended to include negative feedback (e.g. a blacklist as opposed to the 

current whitelist shown in SOCOM++) whereby the system will recognise which MT 

tools should not be used in the second iteration. Fourthly, the impact of feedback (e.g. 

when the assumptions made on the matches are simply invalid) on the CLOM quality is 

not yet investigated in this thesis, future research could explore this area. For instance, 

given the feedback that was generated automatically by the system, evaluations on their 

soundness can be carried out by human experts which will identify the incorrect 

feedback. When a second iteration is executed using these incorrect feedback, the 

impact on the mapping quality (i.e. precision, recall, f-measure, confidence level mean 

and standard deviation) can be quantified. Fifthly, only two iterations of SOCOM++ is 

demonstrated in this thesis, further iterations using feedback can be evaluated in order 
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to investigate whether a third, fourth etc. iteration can further improve mapping quality 

or not. Lastly, further development based on this research can expand to support 

graphical user interface in the process of facilitating mapping experts with CLOM tasks, 

as well as providing open-source API to help the advancement of this field.  

Other approaches to CLOM: the current translation-based approach to CLOM is 

conditioned upon the AOLT results to generate desired mappings. This approach tailors 

the AOLT outcome to suit specified MOM techniques. In any CLOM scenario however, 

there will always be a finite set of candidate translations available. Though this could be 

a very large pool to choose from, nevertheless, it is still finite. In other words, as long as 

the CLOM process requires identifying the precise translations for ontology labels, i.e. 

the existence of O1',  the mapping outcome will be limited to a finite set of possible 

AOLT outcomes which in turn restricts the improvement that can be seen in a given 

CLOM scenario. Other approaches to CLOM that do not rely on O1' or require the 

subsequent MOM step may be useful to explore in future research. Furthermore, future 

approaches could investigate the benefits of systems that use localised ontologies in the 

CLOM process, whereby conceptualisation mismatches have already been addressed by 

adapting the naming and the structure of ontological concepts to the target community.   

  Community: the advancement in the field of CLOM relies on the research 

community. Collaborate effort is required on several aspects. Firstly, CLOM data sets 

that are accompanied by readily available gold standards are limited, which makes the 

evaluation of CLOM techniques difficult. The Chinese CSWRC ontology that was 

generated during this research, as well as the gold standard generated between the 

CSWRC ontology and the ISWC ontology have been made available online. More 

contributions from others would help fostering innovations in the field of CLOM. 

Secondly, there is a lack of workshops and contests organised specifically for this field. 

The progress of these aspects requires the dedication from the research community as a 

whole. This work presents some motivating findings and issues, and it is the author’s 

intent to continue contributing to the field of CLOM.  

6.5. Final Remarks 

Addressing multilinguality is recognised as one of the pressing challenges for the 

semantic web [Benjamins, 2004]. It is the author’s opinion that cross-lingual ontology 
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mapping can provide a solution to multilingual semantic interoperability, and assists 

with dealing with multilinguality on the semantic web. To improve the quality of 

CLOM results, this thesis proposes and evaluates two CLOM processes that incorporate 

the AOLT concept. An AOLT (appropriate ontology label translation) result in the 

context of CLOM is a translation that is most likely to ensure the success of the 

subsequent MOM step. It has been shown through the evaluation of the AOLT-enabled 

CLOM process that translations are central to the improvement of mapping quality 

when incorporating MT and MOM techniques. Limitations of this research are 

discussed and future directions are suggested. Cross-lingual ontology mapping is a 

relatively unexplored area compared to monolingual ontology mapping, this work is 

among the initial efforts in this research field. It is the author’s opinion that this thesis 

presents a concrete contribution to the field of cross-lingual ontology mapping. 
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APPENDICES  

The appendices present additional details for this thesis.  

• Appendix A contains a table of content for the DVD submitted along this thesis. 

• Appendix B presents a list of monolingual ontology matching tools mentioned 

in chapter 2. 

• Appendix C contains code snippets of the CLOM systems presented in this 

thesis. 

• Appendix D presents the document type definitions used in this thesis. 

• Appendix E presents the scattered plots generated during the trial evaluations on 

confidence levels.  
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APPENDIX A. DVD CONTENT 

This appendix contains a table of content for the DVD that companies this thesis. There 

are seven folders on the root directory of the DVD, including Thesis, Baseline, SOCOM, 

SOCOM++, BaselineExperiments, SOCOMExperiments and SOCOM++Experiments. 

Their content is discussed below.  

Folder Name Content 
root/Thesis Contains two files: 

- The .doc file contains a copy of this thesis in the Microsoft Word 
format.  
- The .pdf file contains a copy this thesis in the portable document 
format. 

root/Baseline Contains the source code used for the implementation of the baseline 
system (discussed in chapter 3).  

root/SOCOM Contains the source code used for the implementation of prototype 
one: SOCOM (discussed in chapter 4). 

root/SOCOM++ Contains the source doe for prototype two: SOCOM++ (discussed in 
chapter 5).  

root/BaselineExperiments Contains the raw experimental data and evaluations of the baseline 
system (discussed in chapter 3).  
There are two folders: 

- The root/BaselineExperiment/Experiment1 folder 
contains the raw data and evaluation results of the 
experiment shown in chapter 3, section 3.4.1. 

- The root/BaselineExperiment/Experiment2 folder 
contains the raw data and evaluation results of the 
experiment shown in chapter 3, section 3.4.2. 

root/SOCOMExperiments Contains the raw experimental data and evaluation results of SOCOM 
(discussed in chapter 4).  
There are three folders: 

- The root/SOCOMExperiments/Experiment1 folder 
contains the raw data and evaluation results of the 
experiment shown in chapter 4, section 4.5.1. 

- The root/SOCOMExperiments/Experimient2 folder 
contains the raw data and evaluation results of the 
experiment shown in chapter 4, section 4.5.2. 

- The root/SOCOMExperiments/CaseStudy folder contains 
the ontologies and the mappings generated in the case study 
discussed in chapter 4, section 4.6.  



 

 A-2 

root/SOCOM++Experiments Contains the raw experimental data and evaluation results of 
SOCOM++ (discussed in chapter 5).  
There are six folders: 

- The root/SOCOM++Experiments/TrialOne folder 
contains the raw data and evaluation results of the 
experiment shown in chapter 5, section 5.4.2.1. 

- The root/SOCOM++Experiments/TrialTwo folder 
contains the raw data and evaluation results of the 
experiment shown in chapter 5, section 5.4.2.2. 

- The root/SOCOM++Experiments/TrialThree folder 
contains the raw data and evaluation results of the 
experiment shown in chapter 5, section 5.4.2.3. 

- The root/SOCOM++Experiments/TrialFour folder 
contains the raw data and evaluation results of the 
experiment shown in chapter 5, section 5.4.3.1. 

- The root/SOCOM++Experiments/TrialFive folder 
contains the raw data and evaluation results of the 
experiment shown in chapter 5, section 5.4.3.2. 

- The root/SOCOM++Experiments/TrialSix folder 
contains the raw data and evaluation results of the 
experiment shown in chapter 5, section 5.4.3.3. 
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APPENDIX B. MONOLINGUAL MATCHING TOOLS 

This Appendix contains a list of matching tools mentioned in chapter 2, section 2.5.  

The matching tools surveyed by Choi et al.  [Choi et al., 2006] include SMART 

[Noy & Musen, 1999], PROMPT [Noy & Musen, 2000], OntoMorph [Chalupsky, 

2000], HICAL (HIerarchical Concept ALignment system) [Ichise et al., 2001], Anchor-

PROMPT [Noy & Musen, 2001], CROSI [Kalfoglou & Hu, 2005], FCA-Merge 

[Stumme & Maedche, 2001] and CHIMAERA [McGuiness et al., 2000]. 

The matching tools surveyed by Kalfoglou & Schorlemmer [Kalfoglou & 

Schorlemmer, 2003] include FCA-Merge [Stumme & Maedche, 2001], IF-Map 

[Kalfoglou & Schorlemmer, 2002], SMART [Noy & Musen, 1999], PROMPT [Noy & 

Musen, 2001], PROMPDIFF [Noy & Musen, 2002a], CHIMAERA [McGuiness et al., 

2000], GLUE [Doan et al., 2002], CAIMAN [Lacher & Groh, 2001], ITTalks [Prasad et 

al., 2002], ONION [Mitra & Wiederhold, 2002] and ConcepTool [Compatangelo & 

Meisel, 2002]. 

The matching tools surveyed by Euzenat & Shvaiko [Euzenat & Shvaiko, 2007 

p.153] include DELTA [Clifton et al., 1997], Hovy [Hovy, 1998], TranScm [Milo & 

Zohar, 1998], DIKE [Palopoli et al., 2003], SKAT [Mitra et al., 1999], ONION [Mitra 

& Wiederhold, 2002], Artemis [Castano et al., 2000], H-Match [Castano et al., 2006], 

Tess [Lerner, 2000], Anchor-PROMPT [Noy & Musen, 2001], OntoBuilder [Modica et 

al., 2001], Cupid [Madhavan et al., 2001], COMA/COMA++ [Do & Rahm, 2002], 

Similarity flooding [Melnik et al., 2002], XClust [Lee et al., 2002], ToMAS [Velegrakis 

et al., 2004], MapOnto [An et al., 2006], OntoMerge [Dou et al., 2004], CtxMatch 

[Bouquet et al., 2003], S-Match [Giunchiglia & Shvaiko, 2003], HCONE [Kotis et al., 

2006], MoA [Kim et al., 2005], ASCO [Bach et al., 2004], BayesOWL [Pan et al., 

2005], OMEN [Mitra et al., 2005], DCM [Chang et al., 2005], T-tree [Euzenat, 1994], 

CAIMAN [Lacher & Groh, 2001], FCA-merge [Stumme & Maedche, 2001], LSD 

[Doan et al., 2001], GLUE [Doan et al., 2002], iMap [Dhamankar at al., 2004], 

Automatch [Berlin & Motro, 2002], SBI & NB [Ichise et al., 2003], Kang & Naughton 

[Kang & Naughton, 2003], Dumas [Bilke & Naumann, 2005], Wang et al. [Wang et al., 

2004], sPLMap [Nottelmann & Straccia, 2005], SEMINT [Li & Clifton, 2000], Clio 

[Miller et al., 2001], IF-Map [Kalfoglou & Schorlemmer, 2002], NOM [Ehrig & Sure, 
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2004], QOM [Ehrig & Staab, 2004], oMap [Straccia & Troncy, 2005], Xu & Embley 

[Xu & Embley, 2003], Wise-Integrator [He et al., 2005], OLA [Euzenat & Valtchev, 

2004], Falcon-AO [Hu & Qu, 2008], RiMOM [Tang et al., 2006] and Corpus-based 

matching [Madhavan et al., 2005]. 
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APPENDIX C. CODE SNIPPETS 

C.1. Appendix Overview 

This appendix presents some of the code that has been implemented during this Ph.D.. 

For a complete record, see the DVD which accompanies this thesis. Section C.2 

includes code snippets for the implementation of the baseline system (discussed in 

chapter 3). Section C.3 contains code snippets used for the implementation of the 

SOCOM prototype (discussed in chapter 4). Section C.4 presents code snippets used for 

the implementation of the SOCOM++ prototype (discussed in chapter 5).  

C.2. The Baseline System Code Snippets 

Figure C-1 presents a code snippet that demonstrates how an OntModel is created.  

 
Figure C-1. OntModel Creation 

Figure C-2 presents a code snippet demonstrating how concatenated class labels (using 

underscores) are converted to their natural language formats. In addition, it shows how 

these labels are translated next using the GoogleTranslate API and finally new classes 

are created using the OntModel.  
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Figure C-2. OntClass Creation in O1' 

Figure C-3 demonstrates how concatenated datatype property labels (using capital 

letters) are converted to their natural language formats. Also, how they are translated 

next to create new datatype properties using the OntModel.  

 
Figure C-3. Datatype Property Creation in O1' 

Figure C-4 demonstrates how the Alignment API is used to generate matches in the 

baseline system.  
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Figure C-4. Creating Matches with the Alignment API 

C.3. Prototype One: SOCOM Code Snippets 

The code snippet shown in figure C-5 loads a locally stored ontology, iterate through 

the classes from within and extract the class labels.  

 
Figure C-5. Iterating through the Classes in an Ontology 

The code snippet in figure C-6 illustrates how the semantic surrounding of an ontology 

class is generated.  
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Figure C-6. Class Semantic Surrounding Generation 

The code snippet in figure C-7 shows the generation of candidate translations for a 

source resource label via the GoogleTranslate API and the WindowsLive translator.  

 
Figure C-7. Generating and Storing Candidate Translations 

The code snippet in figure C-8 illustrates the generation of synonyms for an individual 

label using the WordNet thesaurus and the Dictionary.com API.  
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Figure C-8. Synonym Generation for an Individual in O2 

The code snippet in figure C-9 illustrates the generation of keywords for a candidate 

translation from Wikipedia via the Yahoo Term Extraction tool. 
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Figure C-9. Keyword Generation for a Candidate Translation 

The code snippet in figure C-10 demonstrates how a space/case-insensitive edit distance 

string comparison algorithm is implemented to compare two character strings (i.e. one 

label vs. another label). 
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Figure C-10. String Comparison 

When one-to-many matches are found during the AOLT selection process, the semantic 

surrounding of the source label is compared to the semantic surroundings of the 

matchees’ semantic surrounding (the matchee can be a target label or a synonym of a 

target label) and the corresponding target label with the most similar semantic 

surrounding is chosen as the AOLT in SOCOM. Figure C-11 presents the ranking of 

semantic surroundings based on the edit distance concluded for a collection of character 

strings.  

 

Figure C-11. Semantic Surrounding Comparison 

The code snippet in figure C-12 shows how translation collisions are resolved in 

SOCOM. 
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Figure C-12. Collision Resolution in SOCOM 

C.4. Prototype Two: SOCOM++ Code Snippets 

This section presents some of the code used to implement the second prototype: 

SOCOM++.  

Figure C-13 demonstrates how synonyms in English are generated for a candidate 

translation of a source label via the Big Huge Thesaurus API. 
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Figure C-13. English Synonym Generation via the Big Huge Thesaurus API 

Figure C-14 demonstrates how synonyms in French are generated for target resource 

labels from the synonyms-fr.com.  

 
Figure C-14. French Synonym Generation via synonyms-fr.com 

The code snippet shown in figure C-15 illustrates how property validation is achieved 

in SOCOM++. More specifically, a message (either success or error) is returned 

upon the completion of validation. In the case of an error, instructions are presented to 

the user for the correction configurations of the properties.xml file in the system.  
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Figure C-15. Property Validation 

Figure C-16 presents a code snippet of example use of XQuery via the XML:DB API. It 

illustrates how a candidate AOLT with specified attribute values (i.e. with a precise 

sourceID, a particular translationSource and a specified type in the AOLT record) 

is retrieved from the database in SOCOM++. 

 
Figure C-16. XQuery Example 

Figure C-17 presents a code snippet of an example use of XPathQuery via the XML:DB 

API. It illustrates how a set of <Record/> elements with specified attribute values (i.e. 

with a given sourceID and is of a particular type) in the AOLT record is retrieved in 

SOCOM++. 
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Figure C-17. XPathQuery Example 
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APPENDIX D. DOCUMENT TYPE DEFINITIONS  

D.1. Appendix Overview 

This Appendix contains the Document Type Definitions (DTDs) for the XML 

documents created during this Ph.D. Section D.2 presents the DTDs used by prototype 

one: SOCOM. Section D.3 presents the DTDs declared by the second prototype: 

SOCOM++.  

D.2. DTDs in Prototype One: SOCOM 

This section contains the DTDs used by the first prototype. Figure D-1 below illustrates 

the DTD for the translation repository.  

<!ELEMENT TranslationRepository (Result*)> 
<!ELEMENT Result (SourceID, SourceValue, CandidateCollection)> 
<!ELEMENT SourceID (#PCDATA)> 
<!ELEMENT SourceValue (#PCDATA)> 
<!ELEMENT CandidateCollection (Candidate*)> 
<!ELEMENT Candidate (CandidateID, CandidateValue)> 
<!ELEMENT CandidateID (#PCDATA)> 
<!ELEMENT CandidateValue (#PCDATA)> 

Figure D-1. Translation Repository DTD 

Figure D-2 presents the DTD for the Lexicon repository developed in SOCOM. 

<!ELEMENT LexiconRepository (Result*)> 
<!ELEMENT Result (TargetID, TargetValue, SynonymCollection)> 
<!ELEMENT TargetID (#PCDATA)> 
<!ELEMENT TargetValue (#PCDATA)> 
<!ELEMENT SynonymCollection (Synonym*)> 
<!ELEMENT Synonym (SynonymID, SynonymValue)> 
<!ELEMENT SynonymID (#PCDATA)> 
<!ELEMENT SynonymValue (#PCDATA)> 

Figure D-2. Lexicon Repository DTD 

D.3. DTDs in Prototype Two: SOCOM++ 

This section contains the DTDs used by the second prototype: SOCOM++. Figure D-3 

below illustrates the DTD for the configuration file.  

<!ELEMENT properties ( comment?, entry* ) > 
<!ATTLIST properties version CDATA #FIXED "1.0"> 
<!ELEMENT comment (#PCDATA) > 
<!ELEMENT entry (#PCDATA) > 
<!ATTLIST entry key CDATA #REQUIRED> 

Figure D-3. Configuration File DTD108 

                                                 
108 http://java.sun.com/dtd/properties.dtd 
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Figure D-4 contains the DTD declared for storing the source semantics analysed.  

<!ELEMENT SourceSemantic (Resource*)> 
<!ATTLIST Resource id ID #REQUIRED> 
<!ELEMENT Resource (OntLabel, MTLabel, Translation*, Surrounding*)> 
<!ELEMENT OntLabel (#PCDATA)> 
<!ELEMENT MTLabel (#PCDATA)> 
<!ELEMENT Translation (Candidate*)> 
<!ELEMENT Surrounding EMPTY> 
<!ATTLIST Surrounding id IDREF #REQUIRED> 
<!ATTLIST Surrounding OntLabel CDATA #IMPLIED> 
<!ATTLIST Surrounding MTLabel CDATA #IMPLIED> 
<!ELEMENT Candidate (CandidateValue, CandidateSource, 
CandidateConcatenated, CandidateSynonymCollection?)> 
<!ATTLIST Candidate id ID #REQUIRED> 
<!ELEMENT CandidateValue (#PCDATA)> 
<!ELEMENT CandidateSource (#PCDATA)> 
<!ELEMENT CandidateConcatenated (#PCDATA)> 
<!ELEMENT CandidateSynonymCollection (CandidateSynonym*)> 
<!ELEMENT CandidateSynonym EMPTY>  
<!ATTLIST CandidateSynonym id ID #REQUIRED> 
<!ATTLIST CandidateSynonym source CDATA #IMPLIED> 
<!ATTLIST CandidateSynonym value CDATA #IMPLIED> 
<!ATTLIST CandidateSynonym concatenated CDATA #IMPLIED> 

Figure D-4. Source Semantic DTD 

Figure D-5 presents the DTD declared for storing the analysed target semantics. 

<!ELEMENT TargetSemantic (Resource*)> 
<!ATTLIST Resource id ID #REQUIRED> 
<!ELEMENT Resource (OntLabel, MTLabel, SynonymCollection?, 
Surrounding*)> 
<!ELEMENT OntLabel (#PCDATA)> 
<!ELEMENT MTLabel (#PCDATA)> 
<!ELEMENT SynonymCollection (Synonym*)> 
<!ELEMENT Synonym EMPTY> 
<!ATTLIST Synonym id ID #REQUIRED> 
<!ATTLIST Synonym source CDATA #IMPLIED> 
<!ATTLIST Synonym value CDATA #IMPLIED> 
<!ATTLIST Synonym concatenated CDATA #IMPLIED> 
<!ELEMENT Surrounding EMPTY> 
<!ATTLIST Surrounding id IDREF #REQUIRED> 
<!ATTLIST Surrounding OntLabel CDATA #IMPLIED> 
<!ATTLIST Surrounding MTLabel CDATA #IMPLIED> 

Figure D-5. Target Semantic DTD 

Figure D-6 presents the DTD declared for the AOLT record in SOCOM++. 

<!ELEMENT AOLTRecord (Record*)> 
<!ELEMENT Record EMPTY> 
<!ATTLIST Record sourceID CDATA #REQUIRED> 
<!ATTLIST Record sourceValue CDATA #IMPLIED> 
<!ATTLIST Record translationSource CDATA #IMPLIED> 
<!ATTLIST Record type CDATA #IMPLIED> 
<!ATTLIST Record aoltID CDATA #REQUIRED> 
<!ATTLIST Record aoltValue CDATA #IMPLIED> 

Figure D-6. AOLT Record DTD 

Figure D-7 presents the DTD declared for the AOLT selection in SOCOM++. 

<!ELEMENT AOLTSelection (AOLT*)> 
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<!ELEMENT AOLT EMPTY> 
<!ATTLIST AOLT sourceID ID #REQUIRED> 
<!ATTLIST AOLT media CDATA #IMPLIED> 
<!ATTLIST AOLT type CDATA #IMPLIED> 
<!ATTLIST AOLT source CDATA #IMPLIED> 
<!ATTLIST AOLT translation CDATA #REQUIRED> 

Figure D-7. AOLT Selection DTD 

Figure D-8 presents the DTD declared for the output generated from task intent analysis 

in SOCOM++. 

<!ELEMENT TaskIntent (Entry*)> 
<!ELEMENT Entry EMPTY> 
<!ATTLIST TaskIntent algorithm CDATA #REQUIRED> 
<!ATTLIST TaskIntent intent CDATA #REQUIRED> 
<!ATTLIST TaskIntent matches CDATA #IMPLIED> 
<!ATTLIST TaskIntent estimate CDATA #IMPLIED> 
<!ATTLIST Entry count CDATA #REQUIRED> 
<!ATTLIST Entry media CDATA #REQUIRED> 
<!ATTLIST Entry type CDATA #REQUIRED> 
<!ATTLIST Entry usage CDATA #REQUIRED> 

Figure D-8. Task Intent DTD 

Figure D-9 presents the DTD declared for the output generated from pseudo feedback 

in SOCOM++. 

<!ELEMENT PseudoFeedback (Entry*)> 
<!ELEMENT Entry EMPTY> 
<!ATTLIST PseudoFeedback algorithm CDATA #REQUIRED> 
<!ATTLIST PseudoFeedback threshold CDATA #REQUIRED> 
<!ATTLIST PseudoFeedback matches CDATA #IMPLIED> 
<!ATTLIST PseudoFeedback estimate CDATA #IMPLIED> 
<!ATTLIST Entry count CDATA #REQUIRED> 
<!ATTLIST Entry media CDATA #REQUIRED> 
<!ATTLIST Entry type CDATA #REQUIRED> 
<!ATTLIST Entry usage CDATA #REQUIRED> 

Figure D-9. Pseudo Feedback DTD
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APPENDIX E. CONFIDENCE LEVEL EVALUATION PLOTS 

This appendix contains the plots generated during the evaluation of SOCOM++. The 

legends used in these plots are as follows: 

 Baseline  SOCOM++  Baseline Mean   SOCOM++ Mean 

E.1. Trial One 

Figure E-1 shows the plots generated for the confidence level evaluation in trial one. As 

shown in both plots, the green triangles (illustrating the results generated by 

SOCOM++) are mostly located on the top left corner of the plot, comparing to the 

orange triangles – representing the results generated by the baseline system. This 

suggests that the matches generated by SOCOM++ are more confident and less 

dispersed than those generated by the baseline system in both experiments.  
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Figure E-1. Confidence Evaluation in Trial One 
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E.2. Trial Two 

Figure E-2 presents the plots generated during the confidence level evaluation in trial 

two. In experiment one, green dots are mostly located on the top left corner of the graph, 

whereas the orange dots are mostly located at the bottom right corner. This means that 

the matches generated by SOCOM++ trial two are more confident and less dispersed 

than those generated by the baseline system in both experiments. This is not the case for 

experiment two however, improvement is not shown in either the mean of the 

confidence levels nor their standard deviations.  
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Figure E-2. Confidence Evaluation in Trial Two 

E.3. Trial Three 

Figure E-3 shows the scatter plots of the confidence level evaluation in trial three. In 

both experiments, matches were found to be less confident and with more dispersed 
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confidence levels (i.e. green dots are mostly scattered around the bottom right corner of 

the graph) when applying the SOCOM++ trial three configuration.  
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Figure E-3. Confidence Evaluation in Trial Three 

E.4. Trial Four 

Figure E-4 presents the scatter plots generated for the confidence level evaluation in 

trial four. Improvement (i.e. higher mean confidence level and lower standard deviation) 

when mapping the CSWRC ontology (in Chinese) to the ISWC ontology (in English) is 

more evident (i.e. green dots are mostly located at the top left corner of the graph) than 

when mapping the 101 ontology (in English) to the 206 ontology (in French). 
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Figure E-4. Confidence Evaluation in Trial Four 

E.5. Trial Five 

Figure E-5 presents the scatter plots generated in trial five. Greater improvement on the 

confidence levels (i.e. higher mean confidence level and lower standard deviation) can 

be seen in experiment one - mapping the CSWRC ontology to the ISWC ontology (i.e. 

green dots are mostly located to the top left corner of the graph). 
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Figure E-5. Confidence Evaluation in Trial Five 

E.6. Trial Six 

Figure E-6 presents the scatter plots generated for the confidence level evaluation in 

trial six. Improvements on mean and standard deviation in SOCOM++ trial six can be 

see in experiment one. In experiment two however, though higher confidence mean was 

found in SOCOM++, more dispersed confidence levels were also evident.  
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Figure E-6. Confidence Evaluation in Trial Six 


